首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

2.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

3.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

4.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

5.
《Journal of plant nutrition》2013,36(8):1441-1452
Abstract

Saltgrass [Distichlis spicata (L.) Greene var. stricta (Gray) Beetle], accession WA-12, collected from a salt playa in Wilcox, AZ, was studied in a greenhouse to evaluate its growth responses in terms of shoot and root lengths, shoot dry-matter yield, and nitrogen (N) (regular and 15N) absorption rates under control and salt (sodium chloride, NaCl) stress conditions. Plants were grown under a control (no salt) and three levels of salt stress (100, 200, and 400 mM NaCl, equivalent to 5850, 11700, and 23400 mg L? 1 sodium chloride, respectively), using Hoagland solution in a hydroponics system. Ammonium sulfate [(15NH4)2SO4], 53% 15N (atom percent 15N) was used to enrich the plants. Plant shoots were harvested weekly, oven-dried at 60°C, and the dry weights measured. At each harvest, both shoot and root lengths were also measured. During the last harvest, plant roots were also harvested and oven-dried, and dry weights were determined and recorded. All harvested plant materials were analyzed for total N and 15N. The results showed that shoot and root lengths decreased under increasing salinity levels. However, both shoot fresh and dry weights significantly increased at 200 mM NaCl salinity relative to the control or to the 400 mM NaCl level. Shoot succulence (fresh weight/dry weight) also increased from the control (no salt) to 200 mM NaCl, then declined. The root dry weights at both 200 mM and 400 mM NaCl salinity levels were significantly higher than under the control. Concentrations of both total-N and 15N in the shoots were higher in NaCl-treated plants relative to those under the control. Shoot total-N and 15N contents were highest in 200 mM NaCl-treated plants relative to those under the control and 400 mM salinity.  相似文献   

6.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   

7.
Salt stress can affect alfalfa growth directly by adversely affecting metabolism, or indirectly by its effect on Rhizobium capacity for symbiotic N2 fixation. Growth and carbohydrate metabolism in leaves, roots and nodules of two alfalfa cultivars (Medicago sativa cv Apica and salt-tolerant cv Halo) in association with two rhizobial strains (A2 and salt-tolerant Rm1521) exposed to different levels of NaCl (0, 20, 40, 80 or 160 mM NaCl) were assessed under controlled conditions. For both cultivars, shoot and root biomasses and shoot to root ratio significantly declined with increasing NaCl concentrations. Under 80 mM NaCl, Halo plants yielded 20% more fresh shoot biomass than Apica while plants inoculated with Rm1521 allocated more biomass to the roots than to the shoots compared to A2. Halo plants maintained a steady shoot water content (about 80%) under the entire range of NaCl concentrations. Shoot water content was more variable in Apica. Apica in association with salt-tolerant strain Rm1521 maintained a better water status than with strain A2, as indicated by the higher shoot water content at 80 mM NaCl. Under salt stress, two major compatible sugars involved in plant osmoregulation, sucrose and pinitol, increased in leaves while a large accumulation of starch was observed in roots. In nodules, pinitol, sucrose and starch increased under salt stress and were much more abundant with strain Rm1521 than with A2. This suggests that there could be an active transport from the shoot to the nodules to help maintain nodule activity under NaCl stress and that strain Rm1521 increases the sink strength toward nodules. Our results show that combining cultivars and rhizobial strains with superior salt tolerance is an effective strategy to improve alfalfa productivity in salinity affected areas.  相似文献   

8.
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity.  相似文献   

9.
Abstract

Growth and nutrient acquisition in sour orange (Citrus aurantium L.) were studied under salt stress in vitro. Microshoots were transferred to Murashige and Skoog (MS) solid proliferation media containing 8.9 µM BA (6‐Benzyladenine) and 0.5 µM NAA (naphthaline acetic acid). Salinity was induced by incorporating different concentrations [0.0 (control), 50, 100, 150, 200, or 300 mM] of sodium chloride (NaCl) to the culture media. Microshoots were exposed to direct or gradual salinity shock. Slight reduction was obtained in growth (shoot length, shoot number, leaf number, and dry weight) when microshoots were directly exposed to NaCl stress from 0.0 to 150 mM. At 200 and 300 mM NaCl, growth parameters were adversly affected and microshoots died thereafter. Gradual NaCl shock was studied by transferring microshoots sequentialy every week to different NaCl concentraions (0.0, 50, 100, 150, 200, or 300 mM). Growth was monitored at each concentration until the end of the last week of incubation at 300 mM NaCl. Growth (shoot length, shoot number or leaf number, and dry weight) generally decreased with elevated salinity level, but was less impaired than the direct shock. The percentage of shoot content of phosphorus (P), potassium (K), and iron (Fe) in the direct Nail shock experiment were reduced with elevated salinity level. This reduction was less in the gradual shock treatments. Sodium Chloride level strongly reduced Fe acquisition under both direct and gradual salinity stress. Tissue contents of sodium (Na), zinc (Zn), and manganese (Mn) were increased with the imposed salinity treatments in both experiments.  相似文献   

10.
The present study was conducted to evaluate shoot and root mineral composition of salt-stressed Selva strawberry under application timing of salicylic acid (SA). Treatments included plants sprayed with 0.5 or 1 mM SA, plants exposed to 40 mM sodium chloride (NaCl), and plants sprayed with 0.5 or 1 mM SA 1 week before, simultaneously, or after initiation of 40 mM salinity. Results indicated that under saline conditions, sodium (Na) and chloride (Cl) contents increased along with decrease in nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) in shoot and root of plants. In plants treated with SA at 1 mM concentration, 1 week before salinity application, root Mg and shoot Ca were greater in comparison to salt-stressed plants treated with the same SA concentration 1 week after their exposure to salt stress. Thus, earlier SA application appears to be a better strategy for optimized protection against deleterious influence of salinity.  相似文献   

11.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

12.
Salt toxicity comprises of osmotic and ionic components both of which can severely affect root and shoot growth. In many crop species, supplemental calcium (Ca) reduces the inhibition of growth typical of exposure to salt stress. The objective of this study was to compare whole plant growth and physiological responses to interactive effect of salinity and Ca level on three forage species [African millet (AM), tall wheat grass (TW), and perennial ryegrass (PR)] differing in tolerance to sodium chloride (NaCl) salinity. Plants were grown under glasshouse condition and supplied with nutrient solution containing 0, 100, and 250 mM NaCl supplemented with 0.5, 5, or 10 mM calcium chloride (CaCl2). Plant growth, ionic concentration, water relations, and solute (proline and glycinebetaine) concentrations of the plants were determined two weeks after the salinity treatments. At 100 mM NaCl, there was a moderate reduction in dry matter (DM) production of all three species. A drastic decrease in DM occurred at 250 mM NaCl. Supplemental Ca reduced the adverse effects of salinity on all three species. The TW showed higher shoot and root growth in 100 and 250 mM NaCl than AM and PR. It also showed the highest DM at 5 and 10 mM Ca supplement. The shoot and root DM of TW increased by about 45 and 15%, respectively compared to the control. Chemical analysis indicated that in TW, Ca restricted both uptake and transport of sodium (Na) from root to shoot. It also increased Ca and potassium (K) concentrations in both organs. The transport of K and Ca from root to shoot of AM and PR were decreased by NaCl, but were restored with increasing Ca in the medium. The opposite occurred for Na. In PR, more K uptake was observed in shoot at 250 mM NaCl with 10 mM Ca supplement. The sap osmotic potential (ΨS) was the highest in TW at 10 mM Ca in the presence of 250 mM NaCl. Contribution of various solutes to the difference in ΨS among the species from the control and 250 mM salt treatment differed greatly. Supplemental Ca induced decline in the leaf ΨS of TW which was predominately due to K, glycinebetaine, Na and proline accumulation. Addition of 10 mM Ca to the growth medium maintained a low Na and a high K level. Accumulation of glycinebetaine and proline in leaf contributed the NaCl tolerance of TW. The presented results suggest that supplement Ca, not only improved ionic relations but also induced plant ability in production of compatible solutes (glycinebetaine and proline) and osmotic adjustment. Accordingly, genotype dependent capacity could be found using supplemental Ca.  相似文献   

13.
□ Growth and nutrient acquisition of tomato (Lycopersicon esculentum L.) cv ‘Amani’ were studied under induced salt stress in Hoagland's solution. The plants were treated for 37 days with salinity induced by incorporating different concentrations [0.0 (control), 50, 100, 150, or 200 mM] of sodium chloride (NaCl) to the nutrient solution. Slight reduction was obtained in growth represented by (shoot length and number, leaf number, and dry weight) when seedlings were directly exposed to NaCl stress from 0.0 to 100 mM. At higher concentrations (150 or 200 mM), growth parameters were adversely affected and seedlings died thereafter. Elevated salinity significantly reduced crude protein and fiber in shoots and roots. Tomato shoot and root contents of potassium (K), iron (Fe), and ash were reduced significantly in response to increased levels of salinity. Tissue contents of sodium (Na) and chloride (Cl) increased with elevated salinity treatments.  相似文献   

14.
The study examined the effects of kinetin (KIN) and indoleacetic acid (IAA) applied as seed treatment or sprayed on leaves of salinity stressed plants. Five -week old maize (Zea mays L. cv. ‘DK 647 F1’) plants were grown in pots containing peat and perlite in 1:1 (v/v) mixture. Different treatments used were: 1) control (nutrient solution alone), 2) salt stress [100 mM sodium chloride (NaCl)], 3) 100 mM NaCl and 1 mM kinetin (KIN), 4) 100 mM NaCl and 2 mM KIN, 5) 100 mM NaCl and 1 mM indole acetic acid (IAA), 6) 100 mM NaCl and 2 mM IAA, 7) 100 mM NaCl and 25 mg L?1 KIN and 8) 100 mM NaCl and 25 mg L?1 IAA. In treatments 7 and 8 application was to the seeds, for treatments 3-6 it was applied to foliage. The seeds were soaked in KIN or IAA solution for 12 h. Salt stress reduced the total dry matter, chlorophyll content, and relative water content (RWC), but increased proline accumulation, activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC. 1.11.1.7), catalase (CAT; EC. 1.11.1.6) and polyphenol oxidase (PPO; 1.10.3.1) and electrolyte leakage. Both foliar applications of KIN and IAA treatments overcame to variable extents the adverse effects of NaCl stress on the above mentioned physiological parameters. However, seed treatments with KIN or IAA did not improve salinity tolerance in maize plants. Furthermore, foliar application or seed treatments with KIN and IAA reduced the activities of antioxidant enzymes in the salt stressed-plants. Salt stress lowered some macronutrient concentrations [calcium (Ca) and potassium (K) in leaves and roots, phosphorus (P) in roots] but foliar application of both KIN and IAA increased Ca in both leaves and roots and P in leaves. Foliar application of IAA increased K concentrations in leaves of the salt-stressed plants. Foliar application of KIN and IAA, especially at 2 mM concentration, counteracted some of the adverse effects of NaCl salinity by causing the accumulation of proline and essential inorganic nutrients as well as by maintaining membrane permeability.  相似文献   

15.
We investigated the effects of silicon (Si) and the levels and sources of salinity on the growth and some physiological properties of wheat (Triticum aestivum cv. Chamran) in a sandy loam soil under greenhouse conditions. Treatments comprised four Si levels (8, 50, 100 and 150 mg kg?1 soil), four salinity levels (0.46, 4, 8 and 12 dS m?1) and two salinity sources (sodium chloride (NaCl) and four-salt combination). Salts combination included NaCl, sodium sulfate (Na2SO4), calcium chloride (CaCl2) and magnesium sulfate (MgSO4) at a molar ratio of 4:2:2:1. The experiment was arranged as a completely randomized design in a factorial manner, with three replications. Increasing salinity level resulted in a significant decrease in shoot dry weight, chlorophyll content and catalase (CAT) activity, and it caused a marked increase in proline and glycine betaine (GB) concentrations and superoxide dismutase (SOD) enzyme activity. The stimulating effect on GB accumulation and SOD activity was more intense in NaCl-treated plants. However, the source of salinity had no significant effect on shoot dry weight, chlorophyll and proline concentrations, and CAT activity. Si application enhanced all the above-mentioned parameters, except for proline. The suppressing effect of salinity on shoot dry weight, chlorophyll concentration and CAT activity was alleviated by Si supplementation. The stimulating effects of Si fertilization on shoot dry weight and chlorophyll concentration became more pronounced at higher salinity levels. It could be concluded that a decrease in soil osmotic potential, nutrient imbalance and increasing reactive oxygen species (ROS) in salt-treated plants caused growth suppression, while Si supply decreased the deleterious effects of excess salt on wheat growth. Consequently, it appears that when wheat plants are to be grown in salt-affected soils, it is highly recommended to supply them with adequate available silicon (Si).  相似文献   

16.
Chickpea is considered among the most sensitive grain legumes to salinity. The improvement of tolerance of lines in combination with tolerant rhizobial strains depends on various environmental and cultural conditions such as soil properties. This investigation was undertaken to evaluate the effect of phosphorus fertilization (0, 90 and 200 kg ha?1 of P2O5) on biomass, nodular traits and grain yield (GY) of chickpea (cv. Flip 84-79C) growing under salinity (0 and 150 mM NaCl). The trial was laid out following a randomized block design with three replicates during 2010–2012, at the experimental farm of Oued Smar (Algiers). Salinity did not significantly decrease the dry biomass of the plants but the relative shoot growth was more affected than control, P and SP1 treatments. Besides, salinity significantly reduced GY (?20%) and nodulation traits compared to the control plants while an inversely proportional relationship was found between protein, leghemoglobin and MDA content, K/Na ratio and the increase in salt concentration. Application of two P levels to saline soil enhanced growing conditions of plants. Particularly, the (90?kg?ha–1 of P ×?150?mM?NaCl) combination significantly increased leghemoglobin (92%), reduced proline content (?69%) and protected membranes against peroxydation compared to saline conditions. A significant increase was observed in the GY (about 30%) of plants at both P doses combined with salt stress compared to other cases. Statistically, the low P level combined with salinity induced similar responses of plants and sometimes better responses to control plants. Finally, our results support the roles of phosphorus fertilizer in the alleviation of salt stress and enhancing the soil quality for better symbiosis efficiency and yield of chickpea.  相似文献   

17.
Although the salt resistance mechanisms in plants have received much consideration for many years, varieties’ differences affecting salt resistance are still unsettled. Within the Ocimum genus there occur about 200 species in different varieties and forms. A pot experiment was performed to better understand salt stress responses in crop plants; we compared the impacts of salinity stress on growth and physio-biochemical characteristics in three varieties of basil (Ocimum basilicum) var. odoratus, O. b. var. alba and O. b. var. purpurascens) grown under four levels of salinity stress (0, 50, 100, and 150?mM NaCl) with mycorrhiza (Glomus clarum Nicol. &; Schenck) or without. Results showed significant differences within salinity treatments in all cultivars studied. In this study, the biomass production and physio-biochemical parameters of all cultivars reduced with raised salinity levels except concentration of reducing sugars, sodium, and proline at 150 mM of NaCl, only the variety ‘purpurascens’ didn't show reduction and observed resistant against severe salinity. The colonization of arbuscular mycorrhiza fungi enhanced the biomass production and accumulation of nutrients, reducing sugars, total soluble carbohydrates, photosynthetic pigments, proline, and protein by reducing Na. This study should help understand the function of AMF fungi in basil cultivars’ tolerance to salinity stress.  相似文献   

18.
We investigated the effect of exogenously applied silicon (Si) on the growth and physiological attributes of wheat grown under sodium chloride salinity stress in two independent experiments. In the first experiment, two wheat genotypes SARC-3 (salt tolerant) and Auqab 2000 (salt sensitive) were grown in nutrient solution containing 0 and 100 mM sodium chloride supplemented with 2 mM Si or not. Salinity stress substantially reduced shoot and root dry matter in both genotypes; nonetheless, reduction in shoot dry weight was (2.6-fold) lower in SARC-3 than in Auqab 2000 (5-fold). Application of Si increased shoot and root dry weight and plant water contents in both normal and saline conditions. Shoot Na+ and Na+:K+ ratio also decreased with Si application under stress conditions. In the second experiment, both genotypes were grown in normal nutrient solution with and without 2 mM Si. After 12 days, seedlings were transferred to 1-l plastic pots and 150 mM sodium chloride salinity stress was imposed for 10 days to all pots. Shoot growth, chlorophyll content and membrane permeability were improved by Si application. Improved growth of salt-stressed wheat by Si application was mainly attributed to improved plant water contents in shoots, chlorophyll content, decreased Na+ and increased K+ concentrations in shoots as well as maintained membrane permeability.  相似文献   

19.
The aim of this study was to evaluate the effect of increasing silicon (Si) doses (0, 1.0, 1.7, 3.0 mM) on two maize varieties (Kosmo 230 and SMH 220) grown under optimal and salt stress (60 mM sodium chloride (NaCl)) conditions. After 7 days of the cultivation, both growth and physiological parameters were determined. Application of Si improved some growth parameters, chlorophyll concentration and reduced malondialdehyde content. Kosmo 230 variety very well tolerated all concentrations of silicate and the highest dose significantly increased fresh and dry matter of plants grown under both optimal and stress conditions, meanwhile in SMH 220 some growth parameters were depressed. Si application enhanced chlorophyll content under stress conditions but did not alter fluorescence parameters. Reaction of Kosmo 230 variety to all three concentrations of silicate was more positive than SMH 220. Application of silicate may alleviate the negative effects of stress but needs a careful supply, especially at higher doses.  相似文献   

20.
《Journal of plant nutrition》2013,36(7):1367-1382
Abstract

The effect of supplementary potassium nitrate (KNO3) on growth and yield of bell pepper (Capsicum annum cv. 11B 14) plants grown in containers under high root‐zone salinity was investigated. Treatments were (1) control, soil only and (2) high salt treatment, as for control plus 3.5 g NaCl kg?1 soil. Above treatments were combined with or without either 0.5 or 1 g supplementary KNO3 kg?1 soil. Plants grown at high NaCl had significantly less dry matter, fruit yield, and chlorophyll than those in the control treatment. Supplementing the high salt soil with 0.5 and 1 g KNO3 kg?1 increased plant dry matter, fruit yield, and chlorophyll concentrations as compared to high salt treatment. Membrane permeability increased significantly with high NaCl application, but less so when supplementary KNO3 was applied. High NaCl resulted in plants with very leaky root systems as measured by high K efflux; rate of leakage was reduced by supplementary KNO3. These data suggest that NaCl status affect root membrane integrity. Sodium (Na) concentration in plant tissues increased in leaves and roots in the elevated NaCl treatment as compared to control treatment. Concentrations of K and N in leaves were significantly lower in the high salt treatment than in the control. For the high salt treatment, supplementing the soil with KNO3 at 1 g kg?1 resulted in K and N levels similar to those of the control. These results support the view that supplementary KNO3 can overcome the effects of high salinity on fruit yield and whole plant biomass in pepper plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号