首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
首次尝试将羧甲基壳聚糖与改性膨润土复合用作除草剂莠去津的载体,制备得到控释型颗粒剂,以延缓莠去津的释放,减少淋溶损失,提高药效及控制其污染。通过水中释放实验研究了制剂配方对莠去津释放速率的影响,并借助半经验方程探讨了其释放机理,采用土壤薄层实验考察了复合载体对降低莠去津淋溶的效果。 结果表明,采用复合载体时莠去津的半数释放时间(t 50)可达700 h 以上,比对照采用单一羧甲基壳聚糖作载体时延长了1倍以上。莠去津由颗粒剂向水相释放的过程主要受费克扩散(Fickian diffusion)控制,且经9次淋洗后莠去津的累计淋出率仅为6.0%,表明该复合载体控释制剂可显著减少莠去津对地下水的污染。  相似文献   

2.
BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment adsorption and degradation are considered to have a secondary effect on the dissipation of both herbicides in paddy fields. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Aldicarb is taken up by earthworms from aqueous solution to give concentrations in the worms comparable to that in the external aqueous solutions. Uptake from waterlogged soils is similar, but much less aldicarb is taken up from drier soils. Aldicarb sulphoxide [2-methyl-2-(methylsulphinylpropionaldehyde O-methylcar-bamoyloxime], aldoxycarb and oxamyl are poorly taken up, giving concentrations in the worm of about 5% of the external aqueous concentration. In worms, aldicarb is rapidly converted to the sulphoxide which has a half-life in worms of 19 h at 15°C, and 50 h at 5°C.  相似文献   

4.
BACKGROUND: The behavior of the termiticide fipronil in soils was studied to assess its potential to contaminate ground and surface water. This study characterizes (1) adsorption of fipronil in three different soils, (2) transport of fipronil through leaching and runoff under simulated rainfall in these soils and (3) degradation of fipronil to fipronil sulfide and fipronil sulfone in these soils. RESULTS: The adsorption experiments showed a Freundlich isotherm for fipronil with Koc equal to 1184 L kg?1. In the leaching experiments, the concentration of fipronil and its metabolites in leachate and runoff decreased asymptotically with time. The concentration of fipronil in the leachate from the three soils correlated inversely with soil organic carbon content. The degradation experiment showed that the half‐life of fipronil in the soils ranged from 28 to 34 days when soil moisture content was 75% of field capacities, and that 10.7–23.5% of the degraded fipronil was transformed into the two metabolites (fipronil sulfide and fipronil sulfone). CONCLUSION: Fipronil showed large losses through leaching but small losses via runoff owing to low volumes of runoff water generated and/or negligible particle‐facilitated transport of fipronil. The half‐life values of fipronil in all three soils were similar. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
莠去津在土壤中的残留动态和淋溶动态   总被引:10,自引:1,他引:10       下载免费PDF全文
利用HPLC法对土壤中莠去津的残留动态、淋溶动态进行了研究。结果显示,莠去津以有效成分2.25 kg/hm2和4.50 kg/hm2的剂量施用时,在土壤中的半衰期分别为19.1 d和18.1 d,即其半衰期与莠去津的施用浓度无关,属于典型的一级动力学反应。在120 d的玉米生长期中,土壤中莠去津在不断降解代谢的同时,逐渐向深层土壤中淋溶,多数莠去津持留在表层土壤中。施用莠去津27 d后,高浓度处理小区莠去津的淋溶深度超过30 cm,深度为10~15 cm处的土壤在施用后27 d莠去津的浓度最大。同一土壤深度,莠去津在高浓度处理小区的残留量要远高于低浓度处理小区。这些结果显示,减小莠去津的用量可以减少莠去津在土壤中的移动,表明低剂量施用莠去津是保护地下水免受污染的一种有效措施。影响莠去津的淋溶作用的主要因素包括使用量和土壤的理化特性。  相似文献   

6.
Bentazon is a widely used herbicide in rice agroecosystems that has commonly been found in water resources. To assess how tillage and water regimes affect sorption/desorption, dissipation and leaching of bentazon in Mediterranean rice‐growing conditions, field experiments were carried out using tillage and flooding (TF), tillage and sprinkler irrigation (TS), no‐tillage and sprinkler irrigation (NTS) and long‐term no‐tillage and sprinkler irrigation (NTS7). After 3 years, the Kd values in TS were 2.3, 1.6 and 1.7 times lower than the values in NTS7, NTS and TF respectively. Greater sorption of bentazon was related to higher contents in total organic carbon and, although to a lesser extent, in humic acids and dissolved organic carbon. The persistence of bentazon was significantly greater under anaerobic (half‐life DT50 = 94.1–135 days) than under aerobic (DT50 = 42.4–91.3 days) incubation conditions for all management regimes. Leaching losses of bentazon were reduced from 78 and 74% in TS and TF to 61 and 62% in NTS7 and NTS respectively. The mid‐ and long‐term implementation of sprinkler irrigation in combination with no‐tillage could be considered a management system that is effective at reducing water contamination by bentazon in Mediterranean rice‐growing agroecosystems. © 2017 Society of Chemical Industry  相似文献   

7.
Residual fate and behaviour of the herbicide oxadiazon in Kalyani soil, paddy straw and grain were studied under subtropical conditions, in West Bengal following application @ 1 kg and 2 kg ha−1. Dissipation of oxadiazon in soil followed first-order kinetics and DT50 values ranged from 44 to 45 days. Residues at harvest in paddy grains and straw were also studied. Degradation of oxadiazon after 60 days of incubation at 28(± 1) °C in alluvial soil at water holding capacity yielded 10 metabolites of which four were characterised by spectroscopy. © 1999 Society of Chemical Industry  相似文献   

8.
Aldicarb was applied to soil columns in the laboratory which were leached by artificial rainfall. Concentrations of aldicarb, its sulphoxide and its sulphone in the effluent were measured by gas-liquid chromatography. The measured results were analysed in some detail using a computation model. Aldicarb and its oxidation products were very mobile in soil, a fact which could be well described after introducing very low sorption coefficients in the computation model. Aldicarb itself was converted at a high rate following first order kinetics (half-life about 2 days). The best approximations obtained for the rate constant of sulphoxide conversion in two soils were about 0.03 and 0.06/day respectively (half-lives 23 and 12 days). Only a rather wide range of possible values could be obtained for the rate at which sulphone was decomposed.  相似文献   

9.
Thirty separate soil samples were taken from different locations at the Brimstone farm experimental site, Oxfordshire, UK. Incubations of isoproturon under standard conditions (15 °C; ?33 kPa soil water potential) indicated considerable variation in degradation rate in the soil, with the time to 50% loss (DT50) varying from 6 to 30 days. These differences were confirmed in a second comparative experiment in which degradation rates were assessed in 11 samples of the same soil in two separate laboratories using an identical protocol. There was a significant negative linear relationship (r2= 0.746) between the DT50 values and soil pH in this group of soils. In a third experiment, degradation rates of the related compound chlorotoluron were compared with those of isoproturon in 12 separate soil samples, six of which had been stored for several months, and six of which were freshly collected from the field. Degradation of both herbicides occurred more slowly in the stored samples than in the fresh samples but, in all of them, chlorotoluron degraded more slowly than isoproturon, and there was a highly significant linear relationship (r2=0.916) between the respective DT50 values.  相似文献   

10.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

11.
BACKGROUND: It is important to understand the degradation of organic molecules in surface waters to ensure that risk assessments, intended to prevent adverse effects on human health and the environment, are robust. One important degradation mechanism in surface waters is photodegradation. This process is generally studied in laboratory test systems, and the significance of the results is then extrapolated to the field. The aim of this work was to assess how fluctuations in the composition of surface water influence the photodegradation rate of chlorotoluron. RESULTS: Photodegradation DT50 values in the lake (mean = 26.0 days) and pond (mean = 26.0 days) were significantly slower than in the river (mean = 6.8 days) and stream (mean = 7.3 days) samples. The DT50 values in the pond and lake samples were similar to the direct photolysis value (mean = 28.6 days). Photodegradation was significantly faster in the stream and river samples, suggesting that indirect photolysis was significant in those waters. Principal component analysis indicated a strong inverse correlation between nitrate concentration and degradation rate. CONCLUSIONS: Nitrate concentration had a strong influence on the rate of photodegradation, with increasing nitrate concentrations sharply reducing the DT50. However, this effect was restricted to a narrow concentration range and levelled off quite quickly, such that further increases in the nitrate concentration had no significant effect on the rate of degradation. Extrapolating photodegradation rates of chlorotoluron from the laboratory to the field should be relatively straightforward, provided the nitrate concentrations in the waters are known. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
Aldicarb was incubated in seven soils at 15°C and its loss was well described by first-order kinetics. Rate constants varied between 0.078 day?1 in a peaty sand to 0.35 day?1 in a clay loam. The concentration-time relationships for aldicarb, its sulphoxide and its sulphone were approximated by a computation model which was used to analyse the importance of the various consecutive and simultaneous reactions. It was computed that 91 to 100% of the aldicarb would be oxidised to its sulphoxide.  相似文献   

13.
采用土柱淋溶法和气相色谱法研究了3种拟除虫菊酯类农药三氟氯氰菊酯、联苯菊酯和高效氯氰菊酯在热带地区主要土壤类型砂土和壤土中的淋溶特性。结果表明:3种拟除虫菊酯类农药在砂土和壤土中主要残留于第1段土壤 (0~5 cm) 中,且驻留量随土壤深度增大而减少。三氟氯氰菊酯、高效氯氰菊酯和联苯菊酯在砂土中的Ri值分别为52.86%、94.73%和83.19%,在壤土中的Ri值分别为54.70%、77.28%和55.33%,均大于50%。根据农药在土壤中的淋溶性等级划分标准,3种药剂均属于难淋溶农药,不易对地下水造成污染。本研究结果可为热带地区土壤和地下水中农药污染修复提供参考。  相似文献   

14.
In laboratory incubations, the times to 50% loss (DT50) of a first application of napropamide were approximately 25, 45 and 75 days in soil incubated at 25, 15 and 5°C respectively. When treated for a second time, the DT50 values were 4, 7 and 15 days at the same temperatures, irrespective of the temperature of the first incubation. This indicates that enhanced degradation of napropamide in soil can be both induced and expressed at low temperature. A mixed microbial culture able to degrade the herbicide to a single degradation product, identified by HPLC retention time as naphthoxypropionic acid, was obtained from a soil capable of rapid degradation. Addition of a sub-sample of this mixed culture to a previously untreated soil introduced rapid degrading ability. When small amounts of soil capable of rapid degradation were added to previously untreated soil, in both the laboratory and the field, the degradation rate of napropamide increased compared with that in unamended soils.  相似文献   

15.
The persistence of tralkoxydim herbicide in wheat crop and in soil was evaluated under Indian sub-tropical field conditions at two application rates (400 g a.i ha ?1 and 800 g a.i ha ?1). At 400 g a.i ha ?1, tralkoxydim persisted up to 28 days in soil but became non-detectable only after 45 days in the crop. However, at 800 g a.i ha ?1, tralkoxydim residues persisted for 45 days in both soil and crop. The dissipation of the herbicide from both soil and crop appeared to occur in two phases at both rates of application. Each phase followed first-order kinetics. The values of DT50 and DT90 for both soil and crop are reported.  相似文献   

16.
Sugar beet plants were grown in the field, after in-furrow application of [14C]aldicarb (3 kg of aldicarb ha?1) at planting. Some plants (the growing plants) were harvested 99 days after sowing and the rest (the ripe plants) 196 days after sowing. The percentages of the weights of [14C]aldicarb equivalents (the total aldicarb plus aldicarb sulphoxide and sulphone, plus all the other metabolites of [14C]aldicarb which contain 14C, expressed as aldicarb equivalents) incorporated into the beet plants, relative to the weight applied to the soil, were 2.8 and 1.8, respectively for the growing and ripe plants. The concentrations of [14C]aldicarb equivalents (mg kg?1 fresh weight) in the growing and ripe plants, respectively were: blades of the external leaves, 3.16 and 0.93; blades of the internal leaves, 0.63 and 0.68; petioles of the external leaves, 0.51 and 0.26; petioles of the internal leaves, 0.15 and 0.05; crowns, 0.14 and 0.15; roots, 0.16 and 0.13. The proportions of the extractable aldicarb plus aldicarb sulphoxide and aldicarb sulphone determined by gas-liquid chromatography (expressed as aldicarb equivalents) relative to [14C]aldicarb equivalents, in the external and internal leaf blades of the growing beets, were 56 and 60%, respectively; these values declined to 25 and 19%, respectively in the ripe plants. The proportion was 21 % or less in all other parts of the growing and ripe plants.  相似文献   

17.
Cotton was grown in loess soil, in rows 1 m apart, and drip-lines were placed in the center of every second space between rows at a distance of 50 cm from the plants. Aldicarb was applied as granules (containing 15% a.i.) to the field on two dates (mid-June and mid-July) and incorporated into the soil(a) 25 cm from the plants,i.e., equidistant from the plants and the drip-lines, on both sides of the drip-lines; and(b) 50 cm from the plants,i.e., in the center of the spaçe between the rows, near the drip-line. Measurements of mortality ofBemisia tabaci larvae, and of the accumulation of aldicarb from the late (mid-July) treatment showed that best control of the pest and the highest aldicarb residues were obtained with the late treatment. The pest control effectiveness was found to depend on both date and location of aldicarb application. Early treatment (mid-June) was more effective if applied close (25 cm distance) to the plant stems, whereas late treatment (mid-July) was more effective if applied at a distance of 50 cm from the plant stems.  相似文献   

18.
Initial attempts to develop a hydroponic bioassay test for tepraloxydim failed due to lack of repeatability. Investigation of the fate of tepraloxydim in test media revealed that small residues of chlorine and chloramines present on distilled water cause fast degradation of the herbicide. Half‐life of tepraloxydim in the presence of a chlorine excess was determined to be DT50 < 5 s. Reaction with chloramines was slower (DT50 = 4.5 h). Finally, when this factor was eliminated by using water completely free of chlorine, the main process that took place was the isomerization of the oxime group (E vs. Z). However, the overall degradation was slow (DT50 = 17 days) and the hydroponic bioassay was optimized in the absence of chlorine.  相似文献   

19.
Residual effects of chlorotriazine herbicides in soil at three Rumanian sites. II. Prediction of the phytotoxicity of atrazine residues to following crops Total and plant-available atrazine residues in the top 10 cm soil were measured 120 days after application of 3 kg ai ha?1 to maize (Zea mays L.) at three sites in Rumania. At one site, similar measurements were made 3?5 years after application of 100 kg ai ha?1. Plant-available atrazine residues were estimated by extraction of soil samples with water, and by bioassay using Brassica rapa as the test plant. It was calculated that between 30 and 120μg atrazine 1?1 was potentially available to plants in the different soils. Dose-response relationships for atrazine and the most important rotational crops with maize in Rumania—sunflower, winter wheat, soybean and flax—were determined in hydroponic culture using herbicide concentrations corresponding with the plant-available fractions measured in the different soils. ED50 values were determined by probit analysis and the results showed that sunflower (ED50, 22μg 1?1) was the most sensitive crop, and soybean (ED50, 78μg 1?1) was the least. The residual phytotoxicity of atrazine to succeeding crops in the different soils was predicted using the appropriate availability and phytotoxicity data, and the results showed good agreement with those observed. The results suggest that measurements of plant-available herbicide residues afford a rapid method of assessing possible phytotoxicity to following crops.  相似文献   

20.
The in-row application of aldicarb granules at 2 lb active ingredient (a.i.)/acre (2·24 kg/ha) at sowing gave complete control of Aphis fabae Scop. on broad beans (Vicia faba L. cv. Seville) up to 7 days before harvest and resulted in a three-fold increase in yield compared with a similar thionazin treatment. Bean plants grown from seeds which were soaked in a gamma-BHC solution at 20 ppm for 24 h prior to planting were protected from this aphid for most of the growing season almost as effectively as with the thionazin treatment. A thin-layer chromatography method was developed for the determination in plants and soil of aldicarb and its two major toxic metabolites, the sulphoxide and sulphone. Gas-liquid chromatography was used to monitor the declining levels of gamma-BHC and thionazin, and simultaneous bioassays were made with Aphis fabae on excised leaf discs from the crop. Analysis of the bean seeds and pods at harvest 90 days after sowing indicated no detectable gamma-BHC, less than 0·01 ppm of thionazin and approximately 0·09 ppm total residue of aldicarb sulphone and sulphoxide. Approximately 22% and 13% of the applied aldicarb, in the form of sulphone and sulphoxide but not the parent compound, remained in the top 6 in (152 mm) of soil at the end of 2 and 4 months respectively. Toxicity studies with Aphis fabae, Acyrthosiphon pisum Harris, and Megoura viciae Buck showed an increasing sensitivity in that order to gamma-BHC at 1 ppm in bean plants. Acute toxicity investigations with feeding Aphis fabae indicated an increasing sensitivity in the order of gamma-BHC < aldicarb sulphone < aldicarb sulphoxide < thionazin < aldicarb. Despite the high acute toxicity of thionazin to Aphis fabae it gave low protection against aphids, possibly owing to its relatively short persistence in both plants and soil when compared with aldicarb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号