首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ion concentrations in relatively low-intensity precipitation were measured in southern Indiana, USA and are presented as a function of their temporal evolution during individual precipitation events with a specific focus on the first 30 min of those events. These data indicate that during individual rain events potassium concentrations in precipitation may decline by up to 70%–80% in the first 30 min of the event. The other ions exhibited less rapid concentration declines during this event which are in rank order (highest to lowest); sodium, chloride, magnesium, nitrate, calcium, sulfate and ammonium. There is some evidence that the initial declines for precipitation accumulations up to 2 mm in the concentrationof chloride, calcium and sulfate in precipitation more closely approximate a power-law dependency on precipitation depth than the commonly applied exponential form which, if confirmed, may have implications for efforts to correct flux networks for under-sampling due to delay in sample collection. Scavenging coefficients (b) derived using an exponential relationship over entire events for sodium, chloride, nitrate, calcium, sulfate and ammonium indicate highest values for sodium and lowest for ammonium, but the uncertainty bounds on ion-specific values of b are sufficiently large that they are statistically indistinguishable.  相似文献   

2.
Continuous monitoring of cloud and rain samples at three mountain sites in the UK has allowed consideration of the long term impact of the enhancement of the wet deposition of pollutants by orographie effects, specifically the scavenging of cap cloud droplets by rain falling from above (the seeder-feeder effects). The concentration of the major pollutant ions in the cloud water is related to the relative proximity of each site to marine and anthropogenic sources of aerosol. In general, the concentrations of major ions in precipitation at summit sites exceed those in precipitation to low ground nearby by 20% to 50%. Concentrations in orographie cloud exceed those in upwind rain by between a factor of five and ten. The results are consistent with seeder-feeder scavenging of hill cloud by falling precipitation in which the average concentration of ions in scavenged hill cloud exceed those in precipitation upwind by a factor of 1.7 to 2.3 for sulphate and nitrate respectively at Dunslair Heights and 1.5 to 1.8 for sulphate and nitrate at Holme Moss. The results suggest that the parameterisation of this relationship with scavenged feeder cloud water concentrations assumed to exceed those in seeder rain by a factor of two for the production of predictive maps of wet deposition in mountainous regions of the U.K. is satisfactory.  相似文献   

3.
The role clouds play as processors of atmospheric aerosols and trace gases was studied along the slope of Mt. Rigi in central Switzerland. Upon cloud formation many aerosols and trace gases are efficiently scavenged by cloud drops. The cloud drops can enhance removal of pollutants from the atmosphere by transferring them to snow or rain which falls rapidly to the ground. This often occurs through a process known as riming, where falling ice crystals capture cloud drops. When ice crystals are grown primarily via water vapor deposition, without significant capture of cloud drops, however, the cloud drops isolate atmospheric pollutants from the precipitation process, thereby inhibiting their deposition. Increased riming results in increased precipitation ion concentrations. The extent of ice crystal riming at times exhibits spatial inhomogeneities with greater riming apparent near the mountain summit. Variations in cloud chemistry with drop size indicate that bulk cloudwater composition is not an accurate predictor for the composition of cloud drops captured by the ice crystals.  相似文献   

4.
Cloudwater and wet precipitation (snow) samples were collected at Mount Sonnblick during two field campaigns in May and November 1991. A newly designed active cloud water samples was used. Concentrations of major anions, cations and carboxylic acids were determined. Cloudwater and wet precipitation samples were generally more acidic in the warm season than in the cold season. Average cloudwater pH was 4.2 in May and 4.5 in November, average pH in snow was 4.4 in May and 5.1 in November. Average levels for sulfate (May: 96 μeq L?1, November: 64 μeq L?1) and nitrate (May: 27 μeq L?1, November: 32 μeq L?1) in cloudwater at SBO (3 km altitude) were considerably lower than at high mountain sites (0.9–2 km altitude) in the Eastern U.S.A. Cold season levels of sulfate in cloud water at SBO were as low as cloud water levels observed in Alaska. Equivalent concentrations of sulfate, nitrate and ammonium in snow precipitation were basically lower or equal compared to cloudwater but showed higher concentrations and stronger acidity in both phases in May than in November. Cloud to snow ratios for major ions were higher in November showing a wider spread than in May. Average cloud to snow ratios for sulfate were 2.4 in May and 3.5 in November. For nitrate the ratio was 1.7 in May and 2.1 in November. The lower cloud to snow ratios for nitrate are explained by the ability of the ice phase to scavenge nitric acid. Cloud to snow ratios were similar to measurements from the Swiss Alps and generally equal or lower than high elevation cloud to rain ratios from the U.S.A. Cloud to snow ratios for sulfate were used to reconstruct the mixing ratio of sublimation grown ice phase and cloud water droplets during the riming process of the ice particles in the seeder-feeder mechanism. The mixing ratio of ice phase and cloud droplets was estimated to be 1.4 in May and 2.5 in November. Sulfate to nitrate ratios were higher in cloud water than in snow and within the range of values found in North America. Generally, sulfate was more concentrated than nitrate at an equivalent basis for both cloudwater and rainwater. Total equivalent concentrations of acetate were generally higher than those of formate which is in contrast to measurements at remote high elevation sites in the U.S.A.  相似文献   

5.
Peroxide Concentrations in Fog Water at Mountainous Sites in Japan   总被引:1,自引:0,他引:1  
Measurements of peroxide concentrations in fog water were conducted near the summit of Mt. Norikura (altitude, 2770m) in central Japan, and at the midslope of Mt. Oyama (altitude, 680m), southwest of the Kanto Plain. The concentrations of peroxide at Mt. Norikura, far from industrial regions, ranged from 3 to 120 µ M during the summer and early autumn in 1993. The potential capacity for SO2 oxidation appears to be very high near the summit of Mt. Norikura. Analysis of the chemical composition of three-stage size-fractionated fog water samples collected at Mt. Norikura showed that the concentrations of peroxide were apparently independent of droplet size, whereas the concentrations of chemical constituents mainly derived from secondary aerosols and the acidity were higher in smaller droplets. Peroxide concentrations in fog water were low (< 5 µ M) at Mt. Oyama, located near heavy industrial areas, and lower than those in rain water sampled simultaneously (0.2–33 µ M). Especially, peroxide was scarcely detected in strongly acidic fogs (< 0.2 µ M). Peroxide might have been decomposed by SO2 (S(IV)) oxidation in the aqueous-phase.  相似文献   

6.
This study was done to evaluate the growth responses of tomato plants (Lycopersicon esculentum Mill.) to foliar application of ammonium sulfate in different concentrations of 0, 50, 100, or 200 mM once per week, as well as 50 mM in every other day under greenhouse and hydroponic culture system. The results showed that foliar application of ammonium restricted the plant height, yield, and vitamin C content of fruits, but it increased the chlorophyll content in treated plants. The highest and the lowest yield were obtained from zero (control) and 200 mM treated plants, respectively. Fruit hardness was not affected by treatments, while blossom end rot disorder was increased by higher concentrations of ammonium sulfate. In general, the result indicated that tomato plant is rather sensitive to foliar application of ammonium sulfate particularly to higher concentrations and application numbers.  相似文献   

7.
Intensive observations of chemical species in aerosols, gases and other samples at the summit of Mt. Fuji and at Tarobo (at 1300m on the mountain'ts southern slope) was performed from July 28 to Aug. 3, 1993 and from July 25 to 30,1994. The most interesting observation was the abrupt increase in the sulfate concentration in aerosol collected in July, 1993 just after the typhoon (number 9306) passed the Japanese archipelago and the wind direction shifted from south to west. Chemical analysis indicated this aerosol was acidic. In contrast, the summit aerosol observed in 1994 was not acidic following a less dramatic rise in sulfate content. Back trajectory analyses were used to extrapolate from these measurement to an inventory of polluted air over the Asian Continent. The concentrations of gaseous SO2 and HCl remained low during both observation periods, with some higher concentrations of NH3.  相似文献   

8.
A physico-chemical sub-cloud rain acidification model is used to simulate the acidification processes of rainwater in ten cities of China, based on the observation data of the chemical components of cloud- and rainwater and the concentrations of gaseous and aerosol species. The results show that there are in-cloud process and below-cloud process in the formation of acid rain, but the relative importance of these two processes is different in various cities. The acidification of rainwater under cloud is very important in Guiyang, Shanghai, Jilin, Beijing, Changsha and Chongqing, and the in-cloud and below-cloud process contribute equally to the acidification in Guilin, however, the acidification of rainwater in cloud is more important in Nanchang and Guangzhou. Overall, the aerosol has an alkalization effect on the rain, about 11%–25% of H+ concentration in the rainwater is neutralized over Southern China and 60%–70% is neutralied over Northern China by aerosol species. The effect of atmospheric SO2 on acidification of rainwater is nonlinear and is different in various regions. The effects of the variation of atmospheric NH3, H2O2 and aerosol species on pH of rainwater are also discussed in detail.  相似文献   

9.
Acker  K.  Möller  D.  Wieprecht  W.  Auel  R.  Kalass  D.  Tscherwenka  W. 《Water, air, and soil pollution》2001,130(1-4):331-336
A measurement method for the continuous and in situ analysis of atmospheric concentration of HNO2 and HNO3 inside and outside of clouds has successfully been established. The approach for a wet effluent diffusion denuder (parallel plate design) was adopted and performed quasi on-line with an ion chromatography unit. The air flow through the denuder was 10 1/min and at 15 minutes of preconcentration we are able to record atmospheric concentrations of 15 ng/m3 of HNO2 and HNO3, respectively. Field measurements using the denuder system were done at the Mt. Brocken summit (1142 m a.s.l., Harz Mountains, Germany) in 1998 and 1999. During day-time and under clear conditions maximum values of HNO3 up to 7000 ng/m3 were observed. Measurements performed during cloud events assess first time our expectation that the comparatively very great specific droplet surface in clouds is a place for a heterogeneous HNO2 formation, after nocturnal accumulation up to 320 ng/m3 were found. Strong positive correlation between HNO2 concentrations and those of NO2 were obtained during and after cloud events to assess the origin of the observed nitrous acid. The HNO2/NO2 ratio reached 10% under humid conditions. The observed surface to volume ratios in investigated clouds were between 0.4 and 0.7. In dependence on the cloud water pH nitrite concentrations between 5–300 µg/l (1–30 ng/m3 air) were observed.  相似文献   

10.
A number of frontal systems passed through the experimental area during the 1984 North Bay Acid Snow Study. Two different cold frontal systems were examined using aircraft instrumented for cloud and air chemistry, and cloud microphysics measurements. A distinct maximum in aerosol particle number concentration was detected near both frontal surfaces. In at least one case, a peak in NOx concentrations was observed simultaneously with the aerosol particle maximum. Using a model of frontogenesis, the aerosol particle layer can be explained in terms of air circulations associated with a front. The model also demonstrates how better flight plans might be designed for air chemistry studies using aircraft.  相似文献   

11.
Cloudwater samples have been collected for the first time at a high-elevation site in the US interior Southwest. Cloud samples were collected at the summit of Mt. Elden near Flagstaff, Arizona. The samples were analyzed for pH, ionic composition, trace metals, organic carbon content, and volatile organic compounds. All of the samples showed high pH values (5.12–6.66), which appear to be the result of soil/crustal acid-neutralizing components. Ammonium and nitrate were the dominant ionic species. Organic carbon concentrations ranged from 3 to 18 mg/l. Volatile aromatic compounds (toluene, ethylbenzene, and xylenes) were detected, although they did not contribute significantly to the dissolved organic matter (<1% of dissolved organic carbon). Still, their aqueous-phase concentrations were substantially higher than equilibrium partitioning from the gas phase would suggest. Metal concentrations were high when compared to other cloud studies in remote areas. Overall, with the exception of pH, the cloud chemistry showed marked inter-event variability. The source of the variability was investigated using NOAA HYSPLIT dispersion calculations. Like the cloud composition, the air mass back trajectories differed widely from event to event, and consistently, air masses that passed over highly urbanized areas had higher trace metal, organic, and ion concentrations than more pristine air masses.  相似文献   

12.
A field program for the measurement of the physical and chemical properties of aerosols and clouds was conducted at Whiteface Mountain, N.Y., during an 8-week period in June, July, and August 1983. Analysis of two-stage Nuclepore filter samples by proton-induced X-ray emission (PIXE) spectroscopy showed that most (85 to 90%) of the aerosol sulfate was in the accumulation mode (modal radius r - 0.1 μm) and that ?90% of total sulfate originated southwest of the Whiteface Mountain site. During a typical pollution episode originating in the Midwest, the total aerosol sulfate concentration was 19 pg m ?3, or 63 of total dry aerosol, which was - 30 gg m? s. Scavenging of sulfate aerosol by clouds was found to be greater than 95% efficient in clouds of 0.5gm?3 liquid water content. Measured pH values when the air mass trajectories were from the southwest were systematically lower than when the trajectories were from the northwest or northeast, i.e., 3.4 vs 4.4 and 4.8. In the southwest sector water samples, S04 ?2 and N03 ? were highly correlated to each other and to free H+, Ca2 ?, Cl?, Pb, and Ba.  相似文献   

13.
To investigate the effect of applying 15N-labeled ammonium sulfate with or without a nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on fertilizer use efficiency and crop productivity of different wheat genotypes, a field trial was conducted at the Nuclear Agricultural Department’s farm of Iran in 2013–2014. The treatments included five wheat genotypes with different 13 C isotope discrimination and three fertilizer treatments, an unfertilized control, 15N-labeled ammonium sulfate, and 15N-labeled ammonium sulfate with DMPP in three replications. Soil samples were taken after 2, 4, and 6 weeks after sowing and also at harvest time. Results from 15N experiment showed that DMPP delayed nitrification of ammonium for 42 days. Genotypes with lower discrimination index had greater uptake of ammonium ions which led to increase crop yield and nitrogen fertilizer use efficiency. The results also suggested that the use of DMPP may not be beneficial in some fast growing wheat genotypes.  相似文献   

14.
This paper presents an analysis of cloud water measurements made during the summers of 1986 and 1987 at Whitetop Mountain, Virginia (36.639° N, 81.605° W). Analysis of cloud water chemistry, cloud type, and air mass origin are made for each cloud event occurring during one 3 to 4 week measurement ‘intensive’ per year. Regional source/receptor relationships are also investigated. Cloud water concentrations of major ions (i.e., H+, SO4 2?, NO3 ?, and NH4 +) are consistently higher during orographically formed ‘cap’ cloud events. Differences in cloud liquid water content between cap and frontal cloud events explains most, but not all, of the cloud water ion concentration differences. The remaining difference can be explained by greater rainfall associated with frontal cloud events. Most of the cloud water sulfate measured at Whitetop Mountain is apparently due to nucleation of aerosol sulfate within cloud droplets and not to local in-cloud aqueous phase SO, oxidation. No strong source/ receptor relationships were evident from this analysis. Most 72 hr air trajectories arriving at Whitetop Mountain during the cloud events described in this paper originated in the southeastern United States. Few came from the Ohio River Valley or the northeastern United States.  相似文献   

15.
Shoot dieback characterized by leaflet, rosette shoots, and dieback of shoot tips is one of the most important problems in red bayberry production in south China. However, the causes of shoot dieback have not been determined. The results of leaf analysis and correction experiment showed that leaf boron (B) concentrations were highly correlated with leaf area (P < 0.01), spring shoot length (P < 0.01), and spring shoot numbers sprouting from one old shoot (P < 0.05). Foliar application of B at 2.0 g L–1 of borax was more effective on correcting shoot dieback than foliar application of Zn at 2.0 g L–1 of zinc sulfate and of molybdenum (Mo) at 2.0 g L–1 of ammonium molybdate. Boron application increased fruit yields by 1.23–2.15 times compared with the control. Shoot dieback resulted mainly from B deficiency in the red bayberry trees.  相似文献   

16.
《Journal of plant nutrition》2013,36(12):2321-2341
Abstract

Three field experiments were conducted to investigate the effects of soil‐applied nitrogen (N) on plant chemical composition, nutrient removal, and the use of plant analysis to assess N status of Australian waxflowers. Experiments were conducted in commercial plantings of Chamelaucium uncinatum cultivar Alba and a Chamelaucium hybrid (C. floriferum × C. uncinatum) known locally as Walpole wax, at 3 sites in South Australia. Nitrogen, as ammonium nitrate, was applied at rates up to 160 g plant?1 over several side dressings during the growing season. To assess plant nutrient status, stem tips (25–40 mm long tips of stems) were sampled during the growing season and whole stems at harvest.

Nitrogen concentration in both stem tips and whole stems was sensitive to variations in N supply; however, the magnitude of the effect varied between sampling times and sites. In stem tips sampled during spring, the increase in N concentrations ranged from 19.8% at site 2 to 74.6% at site 1. Nitrogen concentrations in stem tips were consistently greater than concentrations in whole stems. The application of N decreased phosphorus (P) concentrations in whole stems and copper (Cu) concentrations in stem tips and whole stems. There was no consistent effect of applied N on potassium (K), calcium (Ca), magnesium (Mg), boron (B), zinc (Zn), and manganese (Mn) concentrations in either plant part sampled. Nutrient removal by flowering stems, in order from greatest to least, was N > K > Ca > P > Mg > Mn > B > Zn > Cu.

Based on 1800 plants ha?1, it was estimated that for N, P, and K, 121.9, 15.4, 60.1 kg ha?1, respectively, was removed in harvested stems. Based on poor sensitivity, the lack of a sharp transition zone between deficient and adequate N concentrations and the lack of consistent relationships between N concentration in stem tips and yield response, it is concluded that N concentration in stem tips is not a useful indicator of the N status of waxflower plants.  相似文献   

17.
Volume-weighted pH values in central New Mexico have averaged 3.8 to 5.1 during the period 1979–1985. Samples collected at a high altitude site (3200m) have lower pH values than found for low altitude samples (1400m). Both dry deposition and event-averaged pH values have been higher than the volume-weighted averages due to neutralization by terrestrial material. During the period 1980–1984, changes in pH values and wet sulfate loading have correlated to S02 emissions from regional non-ferrous smelters. Sulfur isotope analyses of sulfate extracted from regional rain samples yielded a δ34SCD(%) of + 3.91 ± 1.1, indicating very little regional differentiation which, in turn, suggests that the regional atmospheric sulfate scavenged by precipitation is well-mixed and relatively homogeneous.  相似文献   

18.
The form of sulfur fertilizer can influence its behavior and crop response. A growth chamber study was conducted to evaluate five sulfur fertilizer forms (ammonium sulfate, ammonium thiosulfate, gypsum, potassium sulfate, and elemental sulfur) applied in seed row at 20 kg S ha?1 alone, and in combination with 20 kg phosphorus pentoxide (P2O5) ha?1, to three contrasting Saskatchewan soils. Wheat, canola, and pea were grown in each soil for 8 weeks and aboveground biomass yields determined. The fate of fertilizer was evaluated by measuring crop sulfur and phosphorus concentration and uptake, and supply rates and concentrations of available sulfate and phosphate in the seed row. Canola was most responsive in biomass yield to the sulfur fertilizers. Sulfate and thiosulfate forms were effective in enhancing soil-available sulfate supplies in the seed row, crop sulfur uptake, and yield compared to the elemental sulfur fertilizer. Combination of sulfur fertilizer with monoammonium phosphate may provide some enhancement of phosphate availability, but effects were often minor.  相似文献   

19.
With respect to the important effects of nitrogen (N) on plant growth and fruit production, a five-year experiment was performed to evaluate the effects of different sources of N fertilization including chemical and organic on the quantity and quality of citrus fruit. Using five-year old trees, different types of fertilization including ammonium sulfate, urea coated with sulfur, ammonium nitrate and manure were tested using seven treatments in five replicates from 2002 to 2007. Different plant quantitative and qualitative parameters were determined. The most effective strategy on fruit yield production was the use of urea coated with sulfur and manure with 92.46 kg ha?1 fruit yield followed by ammonium sulfate and manure (87.06 kg ha?1) and ammonium sulfate (86.43 kg ha?1). The combination of mineral and organic fertilization may be the most suitable fertilization strategy for citrus production.  相似文献   

20.
Several fog episodes occurred in California’s San Joaquin Valley during winter 2000/2001. Measurements revealed the fogs to generally be less than 50 m deep, but to contain high liquid water contents (frequently exceeding 200 mg/m3) and large droplets. The composition of the fog water was dominated by ammonium (median concentration?=?608 μN), nitrate (304 μN), and organic carbon (6.9 ppmC), with significant contributions also from nitrite (18 μN) and sulfate (56 μN). Principal organic species included formate (median concentration?=?32 μN), acetate (31 μN), and formaldehyde (21 μM). High concentrations of ammonia resulted in high fog pH values, ranging between 5.8 and 8.0 at the core measurement site. At this high pH aqueous phase oxidation of dissolved sulfur dioxide and reaction of S(IV) with formaldehyde to form hydroxymethanesulfonate are both important processes. The fogs are also effective at scavenging and removal of airborne particulate matter. Deposition velocities for key solutes in the fog are typically of the order of 1–2 cm/s, much higher than deposition velocities of precursor accumulation mode aerosol particles. Variations were observed in deposition velocities for individual constituents in the order NO2 ??>?fogwater?>?NH4 +?>?TOC ~ SO4 2??>?NO3 ?. Nitrite, observed to be enriched in large fog drops, had a deposition velocity higher than the average fogwater deposition velocity, due to the increase in drop settling velocity with size. Species enriched in small fog drops (NH4 +, TOC, SO4 2?, and NO3 ?) all had deposition velocities smaller than observed for fogwater. Typical boundary layer removal rates for major fog solute species were estimated to be approximately 0.5–1 μg m?3 h?1, indicating the important role regional fogs can play in reducing airborne pollutant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号