首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In three successive years, sward height was maintained at 3, 5, 7 or 9 cm on grass swards receiving a total of 300 kg N ha?1 in six equal monthly dressings from April, and on grass/clover swards receiving 50 kg N ha?1 as a single dressing in early spring. From turnout in April until weaning in July, 64 ewes and their lambs (mean litter size 1·5) were continuously grazed at the four sward surface heights on the two sward types. White clover content of grass/clover swards remained low throughout the experiment ranging from 0·2 to 7·4% of the herbage mass. During the first two years, lamb gains averaged over sward types were 204, 260, 285 and 308 g d?1 up to weaning, while in the third year gains were 238, 296, 296 and 260 g d?1 on 3, 5, 7 and 9 cm swards respectively. Ewes lost live weight on 3 cm swards but apart from this sward height had little effect on performance. During the autumn, weaned lambs gained — 27, 87, 147 and 167 g d?1 on 3, 5, 7 and 9 cm swards respectively. Sward type had only a small effect on the performance of lambs up to weaning but in the autumn, mean gains of weaned lambs were lower on grass/N swards (73 g d?1) than on grass/clover swards (115 g d?1). Relative to 3 cm swards, carrying capacities of 5, 7 and 9 cm swards were 0·76, 0·57 and 0·52 respectively from turnout to weaning and 0·66, 0·52 and 0·44 respectively during autumn. Grass/clover swards carried 0·67 of the ewes carried by grass/N swards from turnout to weaning and 0·51 of the live weight carried by grass/N swards during autumn. The reaction of the two sward types to sward height did not appear to differ but in the third year there was evidence of a reduction in white clover content when swards were grazed at 9 cm. The data suggest that lamb growth rates will increase as sward height increases up to 9 cm and the evidence for this was stronger with weaned lambs in autumn than with suckling lambs in spring.  相似文献   

2.
Extending the grazing season through the production and utilization of high‐quality forage is a key objective in grassland‐based dairy production systems. Grazing swards to a low post‐grazing sward height (PGSH) is a strategy for improving grass utilization. A grazing experiment conducted in Ireland investigated immediate and subsequent effects of PGSH on sward production, utilization and structural characteristics. Swards were grazed to 2·7 cm (severe; S1) or 3·5 cm (moderate; M1) from 10 February to 18 April 2010 (Period 1; P1). From 19 April, each P1 paddock was halved and grazed to either 3·8 cm (S2) or 4·8 cm (M2), until 30 October (Period 2; P2). The first grazing rotation was +7 d on S1 swards compared with M1 swards (45 d), due to greater herbage utilization (+0·22). Herbage production during P1 was not affected by PGSH but a severe PGSH during this period reduced subsequent herbage production: 13·9 (S1) vs. 15·5 t dry matter (DM) ha?1 (M1) by the end of the study. Leaf proportion was increased (+0·10) on S2 swards compared with M2 swards, but M2 swards produced 1·2 t DM ha?1 more herbage during P2. Despite the relatively lower level of sward utilization obtained from moderate grazing in P1 (3·5 cm) and P2 (4·5–5·0 cm), such levels of PGSH increased DM production while maintaining sward quality, compared with severe grazing (2·7 cm in P1 and 3·5–4·0 cm in P2).  相似文献   

3.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

4.
A 2-year experiment was designed to compare the output from a permanent grass sward, either containing clover (GC) or receiving 200kg N ha-1 (GN), when continuously grazed by sheep stocked at 12 and 15 ewes ha-1 on GC and 15 and 18 ewes ha-1 on GN. Sward surface height (SSH) was controlled within designated guidelines by adjusting the size of the grazing area with an electrified ‘buffer’ fence; the herbage surplus to grazing requirement was cut and conserved. A dried grass supplement was offered to the sheep during periods of low herbage availability. The experiment was carried out during 1989 and 1990. No silage was made on GC15 in either year compared with 28 and 90kg DM ewe-1 on GN15 in 1989 and 1990 respectively; supplementation was consistently and significantly greater on GC15 than on GN15. Clover proportion was generally higher on GC12 than GC15 (significant (P <0·01) in September 1989) and reached a maximum level of 14%on GC12 in August 1990. Herbage organic matter digestibility was little affected by the inclusion of clover in the sward. Differences in lamb growth rate were not significant and, at the common stocking rate, there was no difference in lamb output between GC and GN. In 1990, GC12 and GN15 treatments proved to be successful after weaning in balancing the increasing nutritional requirements of the ewes during the period prior to mating, the requirements of a declining lamb population as the lambs satisfied the criteria for slaughter and were sold, and a continuing need to conserve surplus herbage. The metabolizable energy requirements of the ewes and lambs over 2 years were 75·8 and 74· 7 GJ ha-1 for GC15 and GN15 respectively, and the differences in total utilized metabolizable energy output of the two systems were due to the amounts of herbage conserved and supplement consumed. The 2-year mean total UME output on GC15 was 80% of that on GN 15 (67·8 and 84·4 GJ ha-1 for GC15 and GN15 respectively) and the experiment provided further evidence that grass/white clover swards with no fertilizer N applied are capable of producing about 80% of the total output of grass swards receiving 200 kg N ha-1.  相似文献   

5.
In 1988 and 1989, swards of grass (G0), while clover (C0) and grass/white clover (GC0) receiving no N fertilizer, and a grass sward supplied with 420 kg N ha?1 (G420), were grazed by non-lactating sheep to maintain a sward surface height of 6 cm. Herbage organic matter (OM) intakes averaged between 1200 and 1700 g OM ewe?1 d?1. For treatments G0, C0, GC0 and G420 respectively, the ewes' live weight gain was 102, 112, 100 and 110 g d?1 and changes in body condition scores were +0·28, +0·52, +0·36 and +0·44 units season?1. However, the effect of treatment was not significant for either variable. There were similar levels of output of faecal N ewe?1 but significantly more urinary N ewe?1 was excreted on treatments C0 and G420, where the concentrations of N in herbage laminae were also higher. For example, in 1989, total daily N excreted was 39·7, 64·4, 44·0 and 63·3 g N ewe?1 for G0, C0, GC0 and G420 respectively. Taking into account the mean daily stocking rates, which were 19·4, 26·6, 27·2 and 36·5 ewe ha?1, the total faeces and urine returns over the season were 161, 358, 249 and 484 kg N ha?1 for each treatment respectively. The herbage OM intakes ewes?1 d?1 measured in September and October were similar for C0 and G420, and so the intake of herbage OM ha?1 d?1 was related to stocking rate, i. e. the estimated herbage intake ha?1 over the growing season for the white clover monoculture was 73% of that for N-fertilized grass. Excretal nitrogen returns to the pasture from grazed mono-cultures of clover were high, and similar to those from a grass sward receiving 420 kg fertilizer N ha?1. Consequently potential losses of N to the environment are high under these management systems.  相似文献   

6.
The objectives of this experiment were to study the effects of different grazing managements in spring on herbage intake and performance of summer-calving dairy cows and to examine the effects of regrowth in early June on herbage intake and cow performance. Four spring-grazing treatments were applied to predominantly perennial ryegrass swards: Control (C), sward grazed by cows to 6–8 cm sward surface height (SSH); CG16, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to a target SSH of 16cm in early June; CG8, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to 8cm in early June; and SG8, sward grazed by sheep to 2–3 cm SSH in May and allowed to regrow to 8 cm in early June, All swards were continuously stocked by summer-calving (May and July) primiparous and multiparous cows from 16 June to 7 September, to a target SSH of 8–10cm. Spring treatments bad marked effects on herbage intakes and milk production. Estimated in July by n alkane analysis, the mean herbage intake ± s.e.d. of cows on each treatment were 1·8, 1·4, 1·4 and 3·0 ± 0·31 kg dry matter (DM) 100 kg live weight (LW)?1 d?1 (P < 0·01) for treatments C, CG16, CG8 and SG8 respectively. Measured in August, intakes were 1·8, 20, 2·1 and 2·4 ± O·33kg DM 100kg LW?1 d?1 respectively. Severe spring grazing led to increased milk yield and reduced milk fat content from summer-calving cows fed 5·2 kg d?1 of a proprietary concentrate. Average milk yields for the eleven experimental cows on each treatment were 24·3, 23·4, 26·2 and 29·0 ± 1·20 kgd?1 (P < 0·01) for C, CG16, CG8 and SG8, and average milk fat contents were 45·4. 42·4, 43·9 and 40·9 ± 1·02gkg?1 (P<0·05) respectively. The results suggest that severe grazing of swards in early season could improve herbage intake and milk yield of summer-calving cows in mid- and late season. The most favourable spring treatment in this respect was severe grazing by sheep. However, this advantage could be negated in midseason by lax grazing at that time.  相似文献   

7.
The objective of this study was to examine the effect of herbage mass and daily herbage allowance (DHA) on sward characteristics and animal performance, dry‐matter intake, rumen pH and volatile fatty acid production of unsupplemented spring‐calving dairy cows throughout the main grazing season. Sixty‐eight Holstein‐Friesian dairy cows were randomly assigned across four treatments (n = 17) in a 2 × 2 factorial design. Two swards were created with different levels of pre‐grazing herbage mass [allocated above 4 cm (>4 cm); 1700 kg DM ha?1 (medium; M) or 2200 kg DM ha?1 (high; H)] and two levels of DHA (>4 cm; 16 or 20 kg DM per cow d?1). An additional eight lactating ruminally cannulated Holstein–Friesian dairy cows were randomly assigned to each treatment in a replicated 4 × 4 Latin square design. Sward and animal measurements were collected across four periods each of 1 week duration in April and May (PI) and July and August (PII). Maintaining the medium‐mass sward across the season improved the nutritive value of the sward in the latter part of the grazing season compared with high‐mass swards, thus resulting in increased animal intakes and milk production throughout PII. The higher organic matter digestibility of the medium‐compared with high‐masses during PII indicates that grazing severity and herbage mass in the spring to mid‐summer period will determine sward quality parameters in the late summer period.  相似文献   

8.
Abstract Four sward height treatments were imposed by continuous variable stocking using at least ten Suffolk × Greyface lambs per plot from late July to late August: constant 3·5 cm. constant 6·0 cm. 3·5cm increasing to 6·0 cm and 6·0 cm decreasing to 3·5 cm. The treatments were established on two swards given fertilizer N applications over the season of 97 and 160 kg N ha?1 respectively. Animal density was greater on the high fertilizer treatment, at the lower sward height and especially on the decreasing height treatments. Liveweight change of lambs was higher (P <0·001) on the 6-cm than on the 3·5-cm treatments (+159 vs-13g d?1 and was also higher (P <0·001) on the increasing than on the decreasing sward height treatments (+92 vs-26 g d?1). Herbage organic matter intake (OMI), measured on two occasions in the experiment, was greater (P <0·001) on the 6·0 cm than on the 3·5-cm sward heights whereas values for the increasing sward height treatments were much greater than those for the decreasing sward height treatments. There was little difference in the organic matter digestibility of the diet between treatments. Diets were composed largely of lamina, although there was more pseudostem and dead herbage in the diets of Iambs grazing the decreasing than the increasing sward height treatments at the end of the experiment. Bite mass was closely related to OMI but the treatment and period differences were relatively greater than for OMI. Bite mass was more closely related to the depth of the lamina layer (sward height-pseudostem height) than it was to sward height. There was evidence that pseudostem acted as a barrier to defoliation on these short swards and also that the proportion of youngest leaf in the diet was positively related to sward height and to increases in sward height. Sward height and especially the direction of change in sward height, together with associated stock density, were potent influences on lamb growth rate. This was a consequence of differences in herbage intake, which was strongly influenced by bite mass.  相似文献   

9.
The effects of sward surface height (SSH) and daily herbage allowance (HA) on the defoliation pattern and grazing mechanics of early lactation dairy cows grazing on irrigated perennial ryegrass–white clover pasture were studied. The hypothesis tested was that SSH and HA affect intake and diet selection through their effects on the pattern of defoliation which is influenced by the resistance to prehension bites. Factorial combinations of two initial SSH (14 and 28 cm) and two daily HA (35 and 70 kg DM cow?1 d?1) were examined in a replicated experiment. The peak longitudinal tensile force required to break the sward portion encompassed in a 100 cm2 area [bite fracture force (BFF100)] was measured as an index of the resistance to prehension. The volume of herbage defoliated and herbage intake increased with SSH (P < 0·05) and HA (P < 0·01). Corresponding to an increase in HA from 35 to 70 kg DM cow?1 d?1, there was a proportional increase in the total defoliation area (TDA) and intake by 0·24 and 0·55 in the short sward compared with 0·16 and 0·32 in the tall sward respectively. The results of this experiment suggest that a consistent spatial pattern of reduction of the canopy exists during defoliation by cows and that the volume of sward canopy defoliated is the major variable affecting herbage intake. The BFF increased down the sward profile at a rate that was higher (P < 0·05) for the taller sward than for the shorter sward. It is proposed that a relatively lower resistance to prehension in the short sward compared with the tall sward explains the greater proportionate increase in TDA and intake corresponding to an increase in HA. The rate at which BFF100 increases down the sward profile is suggested as a sward physical variable that can influence the defoliation process. The estimated time and energy costs of prehension bites are discussed in the context that larger bites are handled more efficiently than smaller bites.  相似文献   

10.
The objective of this study was to investigate the relationship between level of sward height reduction (SHR) and short-term intake of herbage by lactating dairy cows offered swards differing in initial bulk density (BD). Three experiments were carried out in which cows were presented with swards representing different levels of SHR (nominally described as ungrazed, low, moderate and high). Experiments 1 and 2 differed with respect to initial sward BD [ungrazed sward 1·7 vs. 2·5 kg dry matter (DM) m?3 respectively]. Experiment 3 investigated the interaction between BD and SHR. In each experiment, sixteen Holstein/Friesian cows (fitted with excreta collection bags) grazed for a 1-h period in 200-m2 plots that had been grazed on the previous day to predetermined sward surface heights (SSH) (= levels of SHR). Herbage intake rates were assessed from changes in live weight, with a correction for insensible weight loss (IWL). Biting rates were recorded from visual observation. High levels of SHR were associated with a significant reduction in SSH, herbage mass and leaf fraction, and a significant increase in sward BD, stem and dead fraction, and DM concentration. Herbage intake, expressed either as DM intake per bite or DM intake per hour, declined as level of SHR increased from low to high. The level of SHR generally had no effect on biting rate. Intake rates varied from 1·9 to 4·4 kg DM h?1, whereas DM intake bite?1 ranged from 0·5 to 1·3 g. Pooled regression analysis identified SSH (P < 0·001; r2 = 0·94) as the principal determinant of DM intake bite?1. The regression equation was not significantly improved by the addition of terms for leaf fraction, BD, or herbage mass. In Experiment 3, a significant interaction between level of SHR and sward BD was observed. It is concluded that the principal factor controlling intake (g DM bite?1 or kg DM h?1), as swards are progressively grazed down, is SSH, but at a high level of SHR, sward BD also influences intake bite?1.  相似文献   

11.
The long-term influence of sward height from April to July (Phase 1) and from July to early October (Phase 2) on total herbage and white clover production was measured over four years (1988–1991) as herbage accumulation. A subsidiary experiment to determine the influence of leaf area index (LAI) on gross canopy photosynthesis was conducted to aid interpretation of growth from herbage accumulation data. Target sward heights in 0·5 ha plots in two blocks were 5,7 or 9 cm in Phase 1 and 7 or 9 cm in Phase 2, although mean actual heights per phase were slightly higher. Net herbage accumulation (NHA) was measured within mobile exclosure areas over successive two-week intervals. Gross photosynthesis was measured in circular turves removed from the trial area representing a range of LAIs with an at least reasonable clover content. Despite wide differences in mean sward height and herbage mass, NHA and net clover accumulation for a given phase were not generally affected by treatments. Positive effects of grazing at 5 cm in Phase 1 on NHA and clover accumulation later in the year, and of grazing at 7 cm in Phase 2 on NHA in the following spring were sometimes apparent. Gross canopy photosynthesis (g CO2 m?2 h?1) at 1500 μE m?2 s?1 and 18–21°C was linearly related to LAI described by 1·003 + 1·165 LAI over the LAI range 0·7 to 4·5. Total herbage and clover growth, interpreted from NHA by a previously described model, was predicted to be marginally lower in shorter swards. Similarity in NHA and clover accumulation between treatments was considered to be because of lower senescene and decomposition, and a higher proportion of new tissue being assigned to lamina growth, despite lower LAI and gross photosynthesis in the shorter swards. It was concluded that stocking intensity in swards continuously stocked with cattle did not have a strong influence on net total herbage and clover growth.  相似文献   

12.
Under Irish conditions, the digestibility in May of grass managed for silage production is sometimes lower than expected. In each of two successive years, replicate field plots were established to examine the effects of three defoliation heights (uncut or cut to a stubble height of 10 or 5 cm) applied in winter and/or spring on herbage yields harvested in May and again in July, and on chemical composition and conservation characteristics associated with first‐cut silage. Swards that were not defoliated in December or March had a dry‐matter (DM) yield and in vitro DM digestibility (DMD) in mid‐May of 6597 kg ha?1 and 736 g kg?1, respectively, in Year 1, and corresponding values of 7338 kg ha?1 and 771 g kg?1 in Year 2. Defoliating swards to 5 cm in December reduced (P < 0·001) May DM yields compared to swards that were not defoliated in both December and March, while herbage DMD in May increased (P < 0·001) when defoliated in December or March. There were no clear effects of defoliation height or its timing on herbage ensilability or resultant conservation efficiency characteristics. The effects of defoliation on July yield were the reverse of those observed for May, while the total yield of the December and March defoliations plus the two silage harvests increased as defoliation height was lowered in Year 2 only. It is concluded that defoliation in winter and/or spring can increase herbage digestibility but will likely reduce DM yields in May.  相似文献   

13.
Growth of grass herbage in Ireland is highly seasonal with little or no net growth from November to February. As a result, feed demand exceeds grass supply during late autumn, winter and early spring. At low stocking rates [≤2 livestock units (LU) ha?1], there is potential to defer some of the herbage grown in autumn to support winter grazing. This study examined the effects of four autumn‐closing dates and four winter‐grazing dates in successive years on the accumulation of herbage mass and on tiller density in winter and subsequent herbage production at two sites in Ireland, one in the south and one in the north‐east. Closing swards from grazing in early and mid‐September (north‐east and south of Ireland respectively) provided swards with >2 t DM ha?1 and a proportion of green leaf >0·65–0·70 of the herbage mass above 4 cm, with a crude protein (CP) concentration of >230 g kg?1 DM and dry matter digestibility (DMD) of >0·700. The effects of autumn‐closing date and winter‐grazing date on herbage production in the subsequent year varied between the two sites. There was no significant effect of autumn‐closing date in the north‐eastern site whereas in the south earlier autumn closing reduced the herbage mass in late March by up to 0·34 t DM ha?1 and delaying winter grazing reduced the herbage mass in late March by up to 0·85 t DM ha?1. The effects of later grazing dates in winter on herbage mass continued into the summer at the southern site, reducing the herbage mass for the period from late March to July by up to 2 t DM ha?1. The effects of imposing treatments in successive years did not follow a consistent pattern and year‐to‐year variation was most likely linked to meteorological conditions.  相似文献   

14.
A 2‐year whole‐farm system study compared the accumulation, utilization and nutritive value of grass in spring‐calving grass‐based systems differing in stocking rate (SR) and calving date (CD). Six treatments (systems) were compared over two complete grazing seasons. Stocking rates used in the study were low (2·5 cows ha?1), medium (2·9 cows ha?1) and high (3·3 cows ha?1), respectively, and mean CDs were 12 February (early) and 25 February (late). Each system had its own farmlet of eighteen paddocks and one herd that remained on the same farmlet area for the duration of the study. Stocking rate had a small effect on total herbage accumulation (11 860 kg DM ha?1 year?1), but had no effect on total herbage utilization (11 700 kg DM ha?1 year?1). Milk and milk solids (MS; fat + protein) production per ha increased by 2580 and 196 kg ha?1 as SR increased from 2·5 to 3·3 cows ha?1. Milk production per ha and net herbage accumulation and utilization were unaffected by CD. Winter feed production was reduced as SR increased. Increased SR, associated with increased grazing severity, resulted in swards of increased leaf content and nutritive value. The results indicate that, although associated with increased milk production per ha, grazed grass utilization and improved sward nutritive value, the potential benefits of increased SR on Irish dairy farms can only be realized if the average level of herbage production and utilization is increased.  相似文献   

15.
The objective of this study, which was part of a larger grazing‐systems experiment, was to investigate the cumulative impact of three levels of grazing intensity on sward production, utilization and structural characteristics. Pastures were grazed by rotational stocking with Holstein–Friesian dairy cows from 10 February to 18 November 2009. Target post‐grazing heights were 4·5 to 5 cm (high; H), 4 to 4·5 cm (intermediate; I) and 3·5 to 4 cm (low; L). Detailed sward measurement were undertaken on 0·08 of each farmlet area. There were no significant treatment differences in herbage accumulated or in herbage harvested [mean 11·3 and 11·2 t dry matter (DM) ha?1 respectively]. Above the 3·5 cm horizon, H, I and L swards had 0·56, 0·62 and 0·67 of DM as leaf and 0·30, 0·23 and 0·21 of DM as stem respectively. As grazing severity increased, tiller density of grass species other than perennial ryegrass (PRG) decreased (from 3,350 to 2,780 and to 1771 tillers m?2 for H, I and L paddocks respectively) and the rejected area decreased (from 0·27 to 0·20 and to 0·10 for H, I and L paddocks respectively). These results indicate the importance of grazing management practice on sward structure and quality and endorse the concept of increased grazing severity as a strategy to maintain high‐quality grass throughout the grazing season. The findings are presented in the context of the need for intensive dairy production systems to provide greater quantities of high‐quality pasture over an extended grazing season, in response to policy changes with the abolition of EU milk quotas.  相似文献   

16.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

17.
The effect of sward surface height (SSH) on grazing behaviour and intake by lactating Holstein Friesian cows on continuously stocked grass pastures maintained at mean heights of 5, 7 and 9 cm was studied during the growing season. Intake rate was estimated over periods of 1 h by weighing animals before and after grazing, with a correction made for insensible weight loss. Grazing behaviour during that hour and over 24 h was recorded automatically using sensors to measure jaw movements. Although maintained at the overall mean SSH, swards had a patchy appearance with short, frequently grazed areas interspersed with taller, infrequently grazed areas, which is typical of pastures continuously stocked with cattle. Daily organic matter (OM) intake, calculated as the product of daily grazing time and intake rate, was greater at a SSH of 7 cm than at 5 or 9 cm (14·1 vs. 10·5 and 12·1 kg respectively). On the 5-cm sward, OM intake per grazing jaw movement (GJM) was reduced compared with that on the 7-cm sward (0·182 vs. 0·264 g respectively), and because cows were unable either to increase significantly GJM rate (95·8 vs. 90·1 GJM min?1) or the proportion of GJM that were bites (0·80 vs. 0·81) OM intake rate was reduced (16·9 vs. 23·5 g min?1). Cows were unable to increase their grazing time significantly (628 vs. 604 min d?1) to compensate for the reduction in intake rate, and as a result daily intakes were lower. Cows grazing the 9-cm sward also incurred a reduction in OM intake GJM?1 compared with those on the 7-cm sward (0·237 vs. 0·264 g respectively) and therefore there was a reduction in OM intake rate (21·6 vs. 23·5 g min?1). These animals did not compensate by increasing the time spent grazing (581 min d?1), probably owing to an increased ruminating requirement per kg of herbage ingested compared with those on 7 cm SSH (2264 vs. 1780 ruminating jaw movements respectively). The results show that SSH can significantly influence intake rate, but, while the cow's only effective strategy to compensate for any reduction in intake rate is to increase grazing time, this may be limited by the requirement for ruminating and non-grazing, non-ruminating activities, which is influenced by qualitative and quantitative aspects of the herbage ingested, whereas the cows' only effective strategy to compensate for any reduction in intake rate is to increase grazing time.  相似文献   

18.
This experiment was carried out to improve understanding of sward and soil responses to cattle and/or sheep rotational grazing of low-input (no N fertilizer), natural swards dominated by smooth-stalked meadowgrass (Poa pratensis) syn. Kentucky bluegrass and based on white clover (Trifolium repens). Treatments during two grazing seasons (1989–90) were: cattle grazing alone (C); cattle grazing followed by topping (CT); cattle grazing followed by sheep grazing (CS); and sheep grazing alone (S), Mean target pre- and post-grazing herbage masses were 2200 and 1100 kg dry matter (DM) ha?1. Plants in sheep-grazed swards regrew more quickly and accumulated more herbage (8·28 compared to 5·35 t DM ha?1 for cattle-grazed swards, unadjusted for rejected area) than in other treatments. After 2 years, soil in sheep-grazed areas contained 0·25% N, 5·7 kg available P ha?1, and 379 kg K ha?1, compared to an average of 0·19, 3·9, and 179 respectively for the same soil nutrients in cattle-grazed treatments. Besides differences in manure distribution and sward rejection, differences in soil compaction among treatments also may have affected soil organisms and thus plant growth. After 2 years, soil bulk densities (g cc?1) were 1·37, 1·37, 1·27, and 1·12; soil penetrometer measurements (kg cm sec?1 sec?1) to 20-cm soil depth were 9·8, 9·3, 9·5, and 6·7; soil nematodes per 100 g of soil were: 5333, 8705, 2810, and 15208; soil rotifers per 100 g soil were: 288, 242, 715, and 33; and earthworms m?2 (and their biomass (g m?2)) were 262 (205), 157 (162), 344 (409), and 294 (343) for C, CT, CS, and S treatments, respectively.  相似文献   

19.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

20.
The high nutritive value and persistence under a wide range of climatic and soil fertility conditions make Caucasian clover a potentially useful forage legume but there is little information about the performance of livestock grazing Caucasian clover/grass swards. This study compared liveweight gains of lambs grazing Caucasian clover/perennial ryegrass and white clover/perennial ryegrass swards on high fertility (Olsen P 20 mg L?1, SO4‐S 12 mg kg?1) and low fertility (Olsen P 11 mg L?1, SO4‐S 7 mg kg?1) soils from 1998 to 2001 in the South Island of New Zealand. Mean annual liveweight gains were 1178 kg ha?1 for Caucasian clover/perennial ryegrass and 1069 kg ha?1 for white clover/perennial ryegrass swards at high fertility compared with 1094 kg ha?1 and 1015 kg ha?1, respectively, at low fertility. There was a higher mean proportion of clover in Caucasian clover/perennial ryegrass (0·19) than white clover/perennial ryegrass (0·11) swards, but there were no differences in total herbage production between the two clover/perennial ryegrass swards. The mean concentration of crude protein in the herbage of Caucasian clover (302 g kg DM?1) was higher than that in white clover (287 g kg DM?1) and grass herbage (227 g kg DM?1). Estimated mean metabolizable energy concentrations in the herbage were 12·5 MJ kg DM?1 for the two clovers and 11·6 MJ kg DM?1 for grass herbage. The difference in liveweight gain between swards on soils of high and low fertility was associated with an increase in total herbage production of similar composition and nutritive value, giving a greater number of grazing days for the swards on soils of high than low fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号