首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对池塘养殖中投喂作业需要全塘均匀覆盖的应用场景,存在人工投饲强度大、饲料利用率低的问题,设计一种能够适应不同多边形池塘的养殖船自动导航控制系统。控制系统采用低成本北斗定位模块和高精度电子罗盘进行组合导航,获取池塘养殖船的位置和航向信息作为导航控制器的输入,通过构建基于PD算法的导航控制器,实现航行过程中的路径跟踪。设计一种多边形回纹线导航路径规划算法,能够快速实现多边形池塘的导航路径规划。开展池塘导航试验,试验结果表明:采用所设计的自动导航系统,养殖船能够按照规划的路径航行,在水面行驶速度为0.4~0.5 m/s时,稳定跟踪后最大误差小于2.62 m,平均跟踪误差小于1.30 m,导航精度满足池塘养殖自动投饲要求。  相似文献   

2.
一种河蟹养殖用自动化水草清理作业船   总被引:1,自引:0,他引:1  
为满足河蟹养殖对清理水草的需求,通过研究河蟹养殖水草清理方法,联合设计并制造一种基于ARM控制器利用GPS与INS联合自主导航的河蟹养殖用水草清理作业船,并实现其集手动控制、遥控和自动控制于一体。以水草清理作业船和GPS系统以及惯性导航系统为硬件平台,通过研究船舶自主导航、控制方法,试验验证水草清理作业船有很大的实用价值。  相似文献   

3.
工厂化养殖是现代水产养殖的必然发展趋势,需要重点解决的问题是连续不间断地监测并控制养殖水质.为此.提出了一个远程在线自动测控系统方案,实现并成功应用于水产养殖基地.经实践证明,此系统是一个结构简单、低投入高产出、实用价值较高的工厂化水产养殖远程自动测控系统.  相似文献   

4.
为精准控制无人机航迹稳定、准确进行山地果园的航空植保作业,以四旋翼无人机为载体,设计了基于GNSS与视觉导航融合的山地果园无人机植保航迹控制系统。该系统由无人机飞行平台和地面控制站两部分组成。其中,无人机平台由四旋翼无人机、内环飞控、GNSS移动站、RGB相机、无线视频发射模块和电子罗盘组成;控制站由GNSS基站、飞行控制模块、便携式计算机、无线视频接收模块和视频采集模块组成。基于Python语言,结合Open CV库,设计了果树行识别算法。采用线性组合算法提取目标行作业区域,利用最小二乘法对作业区域中心点进行拟合,得到果树行趋势线,进而计算出偏航角,以实现无人机作业航迹控制。山地苹果园的导航控制试验结果表明,当无人机飞行速度为2 m/s,距离果树冠层高度约2 m,相机倾角为46°,视觉导航控制率为2次/s时,该系统航迹控制误差范围为-47~42 cm,平均误差为-9 cm,系统控制精度较高,可满足无人机对山地果园植保作业的要求。  相似文献   

5.
基于自动巡航无人驾驶船的水产养殖在线监控技术   总被引:4,自引:0,他引:4  
研制了一种由自动巡航无人驾驶船、环境生态监控装置和远程服务平台3部分组成的水产养殖在线监控设备,在提高养殖监控效率和降低监控成本的同时,实现养殖过程的实时在线监测和精准调控。综合应用自动化航向航速控制、自动导航定位和防碰撞技术,实现无人驾驶船的自动巡航功能。利用无人船运载自制的多功能环境生态监控装置,实现水质指标(温度、溶解氧、p H值和氧化还原能力)以及鱼、虾生态信息的实时定点获取,并能根据用户需求调整检测指标。无人船在大幅减少环境生态监控装置数量的同时,有效提高了装置的检测精度。将统计分析、信息融合、组态控制、嵌入式等技术相结合,用于对数据进行处理与分析,实现养殖现场环境调控设备的精准控制。试验表明,该监控设备能满足规模化水产养殖需求,对推广应用精准农业技术与装置、进行水产养殖过程监测与精准调控有积极的促进作用。  相似文献   

6.
实现智能化是提升保护性耕作机具作业质量和效率的重要途径,自动导航与测控技术作为智能化技术的重要组成部分,近年来在保护性耕作中的应用发展迅速。本文首先从接触式、机器视觉式和GNSS式三种免少耕播种自动导航技术入手,阐述了自动导航技术在保护性耕作中的应用现状;然后对作业参数监测技术的发展动态进行了详细介绍,包括地表秸秆覆盖率的快速检测技术、免少耕播种机播种参数监测技术及保护性耕作机具作业面积监测技术;之后阐述了保护性耕作机具作业控制技术的发展现状,主要介绍了免少耕播种机漏播补偿控制技术和作业深度控制技术。最后在总结自动导航与测控技术在保护性耕作中现有应用的基础上,展望了未来保护性耕作机具自动导航技术、作业参数监测技术和保护性耕作机具作业控制技术三者的研究方向。  相似文献   

7.
基于北斗/GNSS星基PPP增强技术的农机自动导航驾驶系统   总被引:1,自引:0,他引:1  
<正>北斗/GNSS星基增强系统作为GNSS广域差分的一类,是卫星导航系统的重要组成部分,通过地球同步轨道卫星信号转发器,向地面用户接收机播发卫星轨道误差、卫星钟差、电离层延迟等多种改正数据,实现对原有卫星导航系统导航定位精度的提升。用户接收机同时接收GNSS数据和星基增强服务数据,通过精密单点定位(Precision Point Position, PPP)获取高精度位置信息。依靠地面站  相似文献   

8.
基于无人船的水产养殖水质动态监测系统设计与实验   总被引:2,自引:0,他引:2  
江先亮  尚子宁  金光 《农业机械学报》2020,51(9):175-185,174
针对传统水产养殖水质监测多使用部署在固定位置的无线监测节点,存在监测范围小、监测位置不灵活和部署成本偏高等问题,设计了基于自动无人船的水产养殖水质动态监测系统。该系统融合无人船和多个传感器进行水质采样,测量水温、p H值和水体浊度等指标,通过岸基控制台将监测数据上传至云服务器。为保证系统的有效性和准确性,提出以自动无人船悬停采样为主的水质监测和低航速下的水质异常检测,结合基于地图解析的路径规划策略,实现无人船自主航行,以提升监测效率。经实验验证,与传统方案相比,动态监测得到的水温相对误差绝对值不大于0.5%,p H值相对误差绝对值不大于1.43%,浊度相对误差绝对值不大于4.9%,均在各传感器精度范围内,可满足监测需求。将该系统部署于水产养殖区,在9 800 m2水域内共采集731组有效数据,测得各水质指标数值均在正常范围内,监测区域覆盖达水域面积的68%。该方法为水产养殖业的水质监测和异常检测提供了解决方案。  相似文献   

9.
为了提高拖拉机在农田环境中自主导航作业的控制精度,设计开发了3种基于不同类型电机的方向盘转向控制系统,在分析步进电机、伺服电机和步进伺服电机3种电机的参数及其性能差异的基础上,设计了拖拉机自动转向执行机构,并配备了工控机PC、PLC控制器、前轮转角检测机构和GNSS定位系统等设备。设计了工控机车载终端软件,能够实现自动导航的嵌套双闭环控制及相应PID控制算法,设计了控制系统的电气原理图和PLC转向程序,在混凝土路面和田间播种作业两种工况下进行了拖拉机自动导航实验。实验结果表明,当拖拉机作业速度为0. 8 m/s时,两种实验条件下,步进电机导航系统的均方根误差分别为8. 81 cm和12. 09 cm,伺服电机导航系统的均方根误差分别为4. 85 cm和10. 55 cm,步进伺服电机导航系统的均方根误差分别为4. 54 cm和5. 53 cm,步进伺服电机在方向盘转向控制系统中自动导航效果较好。  相似文献   

10.
农机自动导航控制决策方法与软件系统   总被引:2,自引:0,他引:2  
魏爽  季宇寒  曹如月  李世超  张漫  李寒 《农业机械学报》2017,48(S1):30-34,171
为实现农机自动导航控制,兼顾系统成本和作业效率,对农机自动导航控制决策方法进行了研究,并设计开发了一种导航软件系统。首先,系统根据获取的农田边界、农田形状及作业需求进行路径规划。其次,采用简化二轮车运动学模型,采用模糊控制进行导航决策控制,模糊控制器的输入参数为农机横向偏差和航向偏差,输出参数为前轮转角信息。最后,导航系统根据转角信息,由PLC控制器控制方向盘转动,从而实现导航控制。导航软件采用模块化设计思想,由串口数据通讯、数据分析与处理、数据与图形显示和数据存储4个模块构成,基于C++/MFC语言编写实现。系统还可在导航结束后,对导航偏差数据进行保存,便于试验后进行误差分析。试验结果表明:农机自动导航控制决策方法可以实现较好的控制精度,软件系统界面友好、通讯稳定、功能较为齐全,满足农机田间自动导航作业的需求。  相似文献   

11.
农业机械导航技术研究进展   总被引:31,自引:0,他引:31  
农业机械自动导航技术是实施精细农业的基础,可有效减轻农机操作人员的劳动强度,提高作业精度与作业效率。经典的农机自动导航关键技术包括定位测姿、路径规划和运动控制,针对这3项关键技术,分别阐述了基于全球导航卫星系统、惯性导航系统、机器视觉导航系统及多传感器信息融合的农机定位测姿方法,总结归纳了农机自动导航系统中的全局路径与局部路径规划算法,以及农机的运动学模型、导航决策控制方法、转向制动控制系统。随着信息技术的发展,农机智能导航技术受到越来越多的关注,保证作业安全与提高作业效率成为农机智能导航不同于传统自动导航的关键技术。以激光雷达和RGB相机为例综述了农机自主避障技术,并从协同导航模式、通信技术、协同控制、远程监控平台等角度阐明了多农机协同作业的关键技术。最后,结合无人农场和智慧农业对农机智能导航技术未来的发展方向进行了展望。  相似文献   

12.
基于IPSO-UKF的水草清理作业船组合导航定位方法   总被引:1,自引:0,他引:1       下载免费PDF全文
在河蟹养殖水草清理过程中,为降低养殖户劳动强度和提高导航定位精度,研究结合DGPS和视觉导航的优点,设计一种用免疫粒子群算法(IPSO)来优化无迹卡尔曼滤波(UKF)的组合导航定位方法,并应用于水草清理作业船。首先通过建立组合导航模型,得到系统的状态方程和量测方程;为解决UKF对导航模型滤波存在的发散问题,再通过粒子群算法(PSO)优化UKF,并引入免疫算法避免PSO的早熟现象;最后得到滤波后新的位置坐标。为获取视觉信息,对采集的图像采用相应的图像处理技术确定导航路径。导航实验结果表明,所提方法相比DGPS导航和组合导航,纬度误差分别下降22.69%、9.14%,工作时间分别减少4.77%、4.32%,进一步提高了作业船工作效率。  相似文献   

13.
明轮驱动虾塘自主导航投饵船设计与可靠性试验   总被引:3,自引:0,他引:3  
基于明轮驱动的虾塘投饵船能够适应养殖池塘复杂的环境、满足全塘抛撒的要求,可靠性是其进行推广的关键。采用滚塑工艺设计了全封闭投饵船体,利用免油脂润滑不锈钢链轮和明轮作为驱动机构,以避免对水体的污染,螺旋输送饵料装置可满足船载投饵过程中重心位置稳定的要求,通过GPS+电子罗盘的方式实现了自主导航定位和姿态控制需求。根据虾塘投饵和控制性能要求,进行投饵船直线运动和转弯运动模型的构建,采用PID航向、航速运动控制算法进行巡航路径控制,池塘测试平均速度为0.72m/s,直行和转弯最大偏航量分别为0.8m和0.5m。40d的养殖塘现场试验结果表明,自主导航投饵船在复杂路径下运行平稳,可满足虾塘饵料投喂要求,同时对强风、大雨等恶劣环境进行了可靠性测试,发现并解决了相关问题。  相似文献   

14.
林下作业机器人设计与试验   总被引:1,自引:0,他引:1  
针对林下生长环境复杂、自动化程度低的问题,设计了林下自主导航机器人。该机器人采用ROS操作系统,搭载激光雷达、IMU惯导及编码器,并采用激光雷达和IMU惯导实现环境地图构建。在导航过程中,使用机器人里程数据在环境中进行定位,实现了自主规划路线和自主避障。室内模拟试验表明:该系统能够自主行走,所建地图完整准确、躲避障碍物及时、规划路线合理,可为林下作业机器人实现自动导航提供了理论依据。  相似文献   

15.
农机自动导航技术作为智能农机与精准农业的一项核心技术,越来越多地应用于多种田间作业场景,有效提高了农机装备的生产效率与作业精度。从定位信息收集方法、路径规划、导航决策控制方法、自主避障、通信技术与远程监控6个方面对农业机械自动导航技术国内外研究现状进行了详细综述,从而全面系统梳理自动导航技术的研究现状。  相似文献   

16.
基于物联网的果园避障除草机定位导航控制系统研究   总被引:1,自引:0,他引:1  
开发具有自主知识产权的智能农业机械,提高农业机械的自动化程度,对推进我国农机科技的进步具有重要意义。除草机是农业作业生产的重要机具,但还处于初试研究阶段,自动程度并不高。为了提高除草机械的自动化和智能化程度,将物联网技术引入到了除草机的自动化设计过程中,并采用无线传感网络节点定位技术,实现了除草机的自主定位和导航,从而可以有效地避开障碍物,对果园除草作业具有重要的作用。为了验证装置的可行性,对除草机的定位和导航性能进行了测试,结果表明:采用物联网定位技术可以成功地实现除草机的定位和避障,定位误差较小,避障准确率较高,可以满足果园自动化除草作业的需求,对于自动化除草机的研究具有重要的意义。  相似文献   

17.
为了满足河蟹养殖对水草定期修剪清理的要求以及提高水草收割的效率,设计了一种基于ARM的中小型智能化GPS自主导航的水草清理船,阐述了其割收一体化的机械结构与工作原理,以及无舵明轮推进器、回旋式切割装置、割深自动调节器的结构特点。采用智能移动机器人PI与PD控制和高精度GPS导航控制等技术,设计了其GPS自主导航控制系统。实验结果表明,该船的直线航迹误差控制在±30cm范围内。在满足收割要求的基础上,能够有效避免偏航导致的重复切割或漏割。  相似文献   

18.
准确、可靠的位置信息是进行农业机械自动导航的前提,为了提高农机自主定位导航的精度,提出了一种基于GPS和机器视觉联合导航的定位系统,并介绍了联合定位导航的方法,最后以实验得方式验证了导航的可行性。农机的GPS和机器视觉组合定位系统采用GPS部分对农机的绝对位置进行实时采集,并跟踪导航角和行驶速度,完成绝对定位;采用机器视觉部分图像处理的方式,获得导航基准线和作业目标信息,完成相对定位;采用光电对管实现了避障功能,并采用无线数据的收发,实现了农机的远程控制。对农机联合导航机制进行了实验验证,结果表明:最大误差不超过0.1m,精度较高,克服了单一定位方式的不足,提高了农机自主导航的定位效果。  相似文献   

19.
农机自动导航系统在我国的发展与展望   总被引:1,自引:0,他引:1  
自动导航系统是农机智能化的关键性控制技术,也是智慧农业发展的基础。当前社会上开展的无人农机作业演示,基本上都是在自动导航系统上融合传感器、人工智能等技术加以改进实现的。根据不同的理论基础,农机自动导航系统有多种类型,如基于全球导航卫星系统(GNSS)的卫星定位导航系统,以及基于视觉、激光、电磁、机械、超声波、触觉等技术的多种导航系统。随着卫星系统在农业上的普及应用,基于GNSS的自动导航技术发展已经成熟,实际应用也最为广泛,是当前农机自动导航系统的代表性产品,其他类型的导航技术尚不成熟,市场上还没有满足农业生产实际需求的可靠产品。  相似文献   

20.
<正>近日,由福田雷沃重工自主研发的带有农机导航及自动作业系统的拖拉机首次在新疆建设兵团应用于春耕作业。自动驾驶拖拉机集全球卫星定位、自动导航、油门自动控制、机具高度自动调节等多项功能为一体,其中直线导航跟踪精度小于5 cm,自动对行精度小于8 cm,由此实现了拖拉机在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号