首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighteen triterpene saponins (1-18) from Medicago arborea leaves have been isolated and their structures elucidated by spectroscopic, spectrometric (1D and 2D NMR, FAB-MS, ESI-MS/MS), and chemical methods. They have been identified as glycosides of medicagenic, zanhic, and 2beta-hydroxyoleanolic acids, soyasapogenol B, bayogenin, and 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid. Twelve of them, identified as 3-O-beta-D-glucopyranosyl-28-O-[alpha-L-arabinopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid (3), 3-O-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranosyl-(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid (4), 3-O-[alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl(1-->2)-beta-D-glucopyranosyl]-2beta-hydroxyoleanolic acid (5), 3-O-beta-D-glucuronopyranosyl-28-O-[alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]medicagenic acid (6), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]bayogenin (9), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]-2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (10), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (12), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranoside(1-->3)]-alpha-L-rhamnopyrano-syl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (13), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyrano-syl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (14), 3-O-[alpha-L-arabinopyranosyl-(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofurano-syl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (16), 3-O-[beta-D-glucopyrano-syl(1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranosyl(1-->3)]-alpha-L-rhamno-pyranosyl (1-->2)-alpha-L-arabinopyranoside]zanhic acid (17), and 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyrano-side]medicagenic acid (18), are reported as new natural compounds. The presence of the aldehydic group on the sapogenin moiety of saponin 10 is discussed in the framework of a possible elucidation of the biosynthesis of these metabolites.  相似文献   

2.
Nine flavones and adenosine have been identified in aerial parts of alfalfa, and their structures were established by spectral (FABMS and NMR) techniques. Five of the identified compounds, including apigenin 7-O-[beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[2-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[2-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], apigenin 7-O-[2-O-p-coumaroyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], and luteolin 7-O-[2-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, have not been reported before in the plant kingdom. Additionally, five known compounds, including apigenin 7-O-beta-D-glucuronopyranoside, apigenin 4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[beta-D- glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], luteolin 7-O-beta-D-glucuronopyranoside, and adenosine, were identified.  相似文献   

3.
Twenty-four saponins have been identified in alfalfa roots, including 13 medicagenic acids, 2 zanhic acids, 4 hederagenins, 1 soyasapogenol A, 2 soyasapogenol B's, 1 soyasapogenol E, and 1 bayogenin glycoside. Ten of the identified compounds, including 3-O-[beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl]-28-O-beta-D- glucopyranoside medicagenate, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta -D-glucopyranoside] medicagenic acid, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-beta- D-glucopyranoside medicagenate, 3-O-[beta-D-glucuronopyranosyl methyl ester]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1--> 2)-alpha-L-arabinopyranoside] medicagenate, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-galactopyranosyl(1-->2)-be ta-D-glucuronopyranosyl]-21-O-alpha-L-rhamnopyranoside soyasapogenol A, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)glucopy ranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl (1- ->2)-alpha-L-arabinopyranoside] medicagenate, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)glucopy ranosyl]-28-O-?beta-D-xylopyranosyl(1-->4)-)-[beta-D-apiofurano syl-(1 -->3)]- alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside? medicagenate, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyra nosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-O-?beta-D-xylopyranosyl(1-->4)-[beta-D-apiofurano side-(1-->3)]- alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside?zanhic acid, and 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28- O-b eta-D-glucopyranoside bayogenin, were not reported before, and their structures were established by spectral (FAB-MS and NMR) techniques. In addition, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-galactopyranosyl(1-->2)-be ta-D-glucuronopyranoside] soyasapogenol E was identified in the roots for the first time.  相似文献   

4.
Three new furostanol saponins named capsicoside E (1), capsicoside F (2), and capsicoside G (5) were obtained from the seeds of Capsicum annuum L. var. acuminatum along with known oligoglycosides (3, 4, and 6-10). On the basis of chemical and spectroscopic analyses, the structures of these new furostanol oligoglycosides were elucidated as 26-O-beta-D-glucopyranosyl-22-O-methyl-5alpha-furost-25(27)-en-2alpha,3beta,22xi,26-tetraol-3-O-beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (1), 26-O-beta-D-glucopyranosyl-(25R)-5alpha-furost-20(22)-en-2alpha,3beta,26-triol-3-O-beta-D-glucopyranosyl (1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (2), and 26-O-beta-D-gluco-pyranosyl-(25R)-5alpha-furosta-3beta,22xi,26-triol-3-O-beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (5). The isolated saponins showed higher antimicrobial activity against yeasts than against common fungi. Data indicated that the antiyeast activity was related to the combination of the oligosaccharide chain (S1, S2, or S3) with an O-methyl group at R(3) and the presence of a hydroxyl group at the C-2 position.  相似文献   

5.
Ten flavone glycosides have been isolated and identified in aerial parts of alfalfa. These included six tricin, one 3'-O-methyltricetin, and three chrysoeriol glycosides. Most of these compounds were acylated with ferulic, coumaric, or sinapic acids, and acylation occurred on the terminal glucuronic acid. Eight of these compounds, including 7-O-beta-D-glucuronopyranosyl-3'-O-methyltricetin, 7-O-beta-D-glucuronopyranosyl-4'-O-beta-D-glucuronopyranosidechrysoeriol, 7-O-[2'-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]chrysoeriol, 7-O-[2'-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]chrysoeriol, 7-O-[2'-O-sinapoyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, 7-O-[2'-O- feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, 7-O-[2'-O-p-coumaroyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, and 7-O-[2'-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, have not been reported previously in the plant kingdom. Two previously identified alfalfa flavones, 7-O-beta-D-glucuronopyranosidetricin and 7-O-[beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, were also isolated.  相似文献   

6.
Eight steroidal saponins have been isolated from Yucca schidigera Roezl. trunk, and their structures were established by spectral (MS and NMR) techniques. These included three novel furostanol glycosides including 3-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-5 beta(25R)-furostan-3 beta,22 alpha,26-triol 26-O-beta-D-glucopyranoside, 3-O-beta-D-glcopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-5 beta(25R)-furost-20(22)-en-3 beta,26-diol-12-one 26-O-beta-D-glucopyranoside, 3-O-beta-D-glcopyranosyl-(1-->2)-beta-D-glucopyranosyl-5 beta(25R)-furostan-3 beta,22 alpha,26-triol 26-O-beta-D-glucopyranoside, and five known spirostanol glycosides. On the basis of the extraction efficiency, furostanol glycosides made up only 6.8% of total saponins isolated.  相似文献   

7.
Twenty-three flavonoids have been identified in the aerial parts of barrel medic, and their structures were established by spectrometric and spectroscopic (ESI-MS/MS and NMR) techniques. Eight of the identified compounds, including apigenin 7-O-beta-D-glucuronopyranosyl-(1-->3)-O-beta-D-glucuronopyranosyl-(1-->2)-O-beta-D-glucuronopyranoside, apigenin 7-O-[2'-O-sinapoyl-beta-D-glucuronopyranosyl-(1-->2)-O-beta-D-glucuronopyranoside], apigenin 7-O-{2-O-feruloyl-[beta-D-glucuronopyranosyl-(1-->3)]-O-beta-D-glucuronopyranosyl-(1-->2)-O-beta-D-glucopyranoside}, chrysoeriol 7-O-[beta-D-glucuronopyranosyl-(1-->2)-O-beta-D-glucuronopyranoside, chrysoeriol 7-O-{2'-O-p-coumaroyl-[beta-D-glucuronopyranosyl-(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside}, tricin 7-O-beta-D-glucuronopyranosyl-4'-O-glucopyranoside, tricin 7-O-[2'-O-feruloyl-beta-D-glucuronopyranosyl-(1-->2)-O-beta-D-glucopyranoside], and tricin 7-O-{2'-O-p-coumaroyl-[beta-D-glucuronopyranosyl-(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside}, have not been reported before in the plant kingdom. Additionally, the presence of two luteolin, three apigenin, one chrysoeriol, and six tricin glycosides, previously identified in alfalfa (Medicago sativa), was confirmed in M. truncatula. Moreover, besides the above flavones, the aerial parts of this species contained three flavonols including rutin, laricitrin 3,7,5'-triglucoside, and laricitrin 3,5'-diglucoside.  相似文献   

8.
Anthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juices were isolated and purified by means of high-speed countercurrent chromatography and preparative high-performance liquid chromatography. Structures of the pigments were then elucidated by electrospray ionization multiple mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The major anthocyanins of the juice were characterized as cyanidin 3-glucoside and cyanidin 3-(6"-malonylglucoside). Furthermore, six minor anthocyanins were detected and identified as cyanidin 3,5-diglucoside, delphinidin 3-glucoside, cyanidin 3-sophoroside, delphinidin 3-(6"-malonylglucoside), peonidin 3-(6"-malonylglucoside), and cyanidin 3-(6"-dioxalylglucoside). The occurrence of the latter compound in blood oranges is reported here for the first time, together with full NMR spectroscopic data. Further investigations revealed the presence of four anthocyanin-derived pigments, which are formed through a direct reaction between anthocyanins and hydroxycinnamic acids during prolonged storage of the juice. These novel pyranoanthocyanins were identified as the 4-vinylphenol, 4-vinylcatechol, 4-vinylguaiacol, and 4-vinylsyringol adducts of cyanidin 3-glucoside through comparison of their mass spectrometric and chromatographic properties with those of synthesized reference compounds.  相似文献   

9.
Three new furostanol oligoglycosides, 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosyl-22alpha-methoxy-25R-furost-5-ene-3beta,17alpha,26-triol (1), 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosylfurost-5-ene-3beta,17alpha,22alpha,25,26-pentol (2), and 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosylfurost-5-ene-3beta,22alpha,25,26-tetrol (3), named lycianthosides A-C, together with known flavone glycosides were isolated from Lycianthes synanthera leaves, an edible plant of the Solanaceae family that grows naturally in Guatemala. The nutrient composition of the raw leaves was also evaluated.  相似文献   

10.
Six triterpenoid saponins were isolated from the edible grain quinoa, which is seeds of Chenopodium quinoa (Chenopodiaceae). Following are their structures: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (2); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->3' ')-beta-D-xylopyranosyl-(1' '-->2')-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->2' ')-beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (4); oleanolic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (5); and oleanolic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (6). The oleanane-type saponins (5, 6) were isolated for the first time in this plant, two of the phytolaccagenane (1, 3) were new compounds and two (2, 4) were previously found in quinoa. The structures were characterized on the basis of hydrolysis and spectral evidence, including 1D- and 2-D NMR (HMQC and HMBC) and ESI-MS analyses.  相似文献   

11.
Six triterpenoid saponins were isolated from the seeds of Chenopodium quinoa (Chenopodiaceae). Their structures were as follows: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); spergulagenic acid 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranoside (2); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (4); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (5); and spergulagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (6). Saponins 5 and 6 are new. The structures were characterized on the basis of hydrolysis and spectral evidence, including IR, UV, optical rotations, 1D- and 2D-NMR (HMQC and HMBC), ESIMS, and FABMS analyses.  相似文献   

12.
Fourteen triterpene saponins (1-14) have been isolated from the roots of Medicago hybrida and their structures elucidated by FAB-MS and NMR analysis. Two of them are new compounds and were identified as hederagenin 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (7) and oleanolic acid 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28-O-[alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranoside] (14). Seven saponins being mono- and bidesmosides of hederagenin (1, 5, 6, 9), one bidesmoside of bayogenin (2), and two bidesmosides of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (11) and oleanolic acid (13) are known compounds but not previously reported as saponin constituents of Medicago, whereas five other saponins, being mono- and bidesmosides of medicagenic acid (3, 4, 8, 10, 12), and one monodesmoside of hederagenin (8) have been previously isolated from other Medicago species. The presence of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid might represent an interesting intermediate in the biosynthesis of these substances.  相似文献   

13.
Four steroidal glycosides including deltoside and nolinofuroside D and two novel saponins were isolated from underground parts of Allium nutans L. On the basis of the spectral (LSIMS and NMR) analysis, the structures of the new compounds were established as 25R Delta(5)-spirostan 3beta-ol-3-O-?alpha-L-rhamnopyranosyl(1-->2)-[beta-D-glucopyranosyl(1 -->4)]-O-beta-D-galactopyranoside? and 25R Delta(5)-spirostan 1beta, 3beta-diol 1-O-beta-D-galactopyranoside. On the basis of the extraction efficiency, the concentration of saponins was established to be about 4% of dry matter, which makes this species a good source of steroidal saponins for commercial use.  相似文献   

14.
Six compounds, 1-O-(2,3, 4-trihydroxy-3-methyl)butyl-6-O-feruloyl-beta-D-glucopyranoside, ethyl beta-D-glucopyranosyl tuberonate, p-hydroxybenzoic acid, (-)-hydroxyjasmonic acid, caffeic acid, and 4-hydroxyacetophenone 4-O-[5-O-(3, 5-dimethoxy-4-hydroxybenzoyl)-beta-D-apiofrunosyl]-(1-->2)-beta-D- glu copyranoside, were isolated from the n-butanol-soluble fraction of sage leaf extracts. Their structures were determined by spectral methods (MS, NMR, and 2D-NMR), and their antioxidant activities were measured. Among them, two new glycosides were elucidated. All of these compounds showed DPPH free radical scavenging activity at the concentration of 30 mM, and caffeic acid was the most active compound.  相似文献   

15.
Four acetophenone glycosides were isolated from the butanol-soluble fraction of thyme extracts. Their structures were determined by spectral methods (MS, NMR, and 2D-NMR). Among them, two new compounds, 4-hydroxyacetophenone 4-O-[5-O-(3, 5-dimethoxy-4-hydroxybenzoyl)-beta-D-apiofuranosyl]-(1-->2)-beta-D -gl ucopyranoside (1) and 4-hydroxyacetophenone 4-O-[5-O-(4-hydroxybenzoyl)-beta-D-apiofuranosyl]-(1-->2)-beta-D-+ ++gluc opyranoside (2), were determined. Compound 1 showed weak cytotoxicity, inhibiting DNA synthesis of human leukemia cells.  相似文献   

16.
Carotenoid metabolites are common plant constituents with significant importance for the flavor and aroma of fruits. Three new carotenoid derivatives, (2E,4E)-8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 1-O-beta-D-glucopyranosyl ester (1), (2Z,4E)-8-beta-D-glucopyranosyloxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid (3), and 3,9-dihydroxymegastigmast-5-ene-3-O-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (5), as well as three known compounds, have been isolated from the ethanolic extract of peels of Cydonia vulgaris, the fruit of a shrub belonging to the same family as the apple. All the compounds were identified by spectroscopic techniques, especially 1D and 2D NMR. Antioxidant activities of all the isolated metabolites were assessed by measuring their ability to scavenge DPPH radical and superoxide radical (O2*-) and to induce the reduction of Mo(VI).  相似文献   

17.
Droplet countercurrent chromatography and high-performance liquid chromatography fractionation of the aqueous infusion from Maytenus aquifolium Martius leaves afforded two flavonoid tetrasaccharides: quercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-O-[beta-D-glucopyranosyl(1-->3)-O- alpha-L-rhamnopyranosyl(1-->2)-O-beta-D-galactopyranoside and kaempferol 3-O-alpha-L-rhamnopyranosyl(1-->6)-O-[beta-D-glucopyranosyl(1-->3)-O- alpha-L-rhamnopyranosyl(1-->2)-O-beta-D-galactopyranoside. All structures were elucidated by spectroscopic methods. Pharmacological essays of the infusion showed antiulcer activity in rats.  相似文献   

18.
A reverse phase HPLC and electrospray interface with ion trap mass spectrometer method was developed for the characterization of anthocyanins in Concord, Rubired, and Salvador grape juices. Rubired and Salvador grapes are hybrids from Vitis vinifera and Vitis rupestris. Concord grape is a grape from the native American cultivar Vitis labrusca. Individual anthocyanins in these three varieties were identified on the basis of UV-vis and MS spectra and further elucidated by MS/MS spectra. Anthocyanins in Salvador and Concord grapes were 3-O-glucosides, 3-O-(6' '-O-p-coumaroyl)glucosides, 3-O-(6' '-O-p-acetyl)glucosides, 3,5-O-diglucosides, and 3-O-(6' '-O-p-coumaroyl)-5-O-diglucosides of delphinidin, cyanidin, petunidin, peonidin, and malvidin. Vitisin B was detected in Salvador grape juice. Anthocyanins in Rubired grape juice were primarily anthocyanin diglucosides: peonidin 3,5-O-diglucoside, malvidin 3,5-O-diglucoside, peonidin 3-O-(6' '-O-p-coumaroyl)-5-O-diglucoside, and malvidin 3-O-(6' '-O-p-coumaroyl)-5-O-diglucoside are the four major anthocyanins. The presence of pelargonidin 3-O-glucoside, not previously reported, has been established for the first time in all three juices.  相似文献   

19.
Four anthocyanin-pyruvic adducts were synthesized through the reaction of cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-sophoroside, and cyanidin 3-O-sambubioside with pyruvic acid, structurally characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), and their chromatic properties were studied (pH and SO2 stability assays). Overall, these pigments were shown to have a higher resistance to discoloration toward pH variations and also in the presence of SO2, being that this resistance to discoloration was explained by a higher protection of the chromophore group against the water or bisulfite nucleophilic attack that gives rise to the colorless hemiacetal form. Only slight differences in the protection against the nucleophilic attack of water and bisulfite were found to occur between all of the cyanidin-pyruvic acid adducts studied. Indeed, anthocyanin-pyruvic acid adducts with glucose or sambubiose attached to the 3-O position of the flavylium moiety were shown to have smaller bleaching constants compared with similar pigments that possess a rutinosyl or sophorosyl moiety. The study of the pigments (A-D and cyanidin-3-O-glucoside) color parameters, namely, chroma (C), lightness (L), and the hue angle (h(a,b)), obtained from the CIELAB system, revealed that different patterns of sugars in the anthocyanin-pyruvic acid adduct moiety affected the referred three parameters of color. The loss of saturation (DeltaC < 0) and the increase of lightness (DeltaL > 0) presented by the cyanidin-pyruvic acid adduct solutions at acidic pH values (1.0 and 2.0) showed that they are much less colored than the cyanidin-3-O-glucoside. For higher pH values (5.0 and 7.0), the reverse trend was observed. This means that the cyanidin-pyruvic acid adducts A-D are much more colored than the anthocyanin at these pH values. The higher coloring capacity of these pigments at higher pH values may be an important feature, indicating a putative application of these compounds in food products.  相似文献   

20.
An extensive phytochemical analysis of the polar extracts from bulbs of shallot, Allium ascalonicum Hort., led to the isolation of two new furostanol saponins, named ascalonicoside A1/A2 (1a/1b) and ascalonicoside B (4), respectively, along with compounds 2a and 2b, most likely extraction artifacts. On the basis of 2D NMR and mass spectrometry data, the structures of the novel compounds were elucidated as furost-5(6)-en-3beta,22alpha-diol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (1a), its epimer at position 22 (1b), and furost-5(6),20(22)-dien-3beta-ol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (4). This is the first report of furostanol saponins in A. ascalonicum. High concentrations of quercetin, isorhamnetin, and their glycosides were also isolated and described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号