共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured from experimental dung and urine patches placed on boreal pasture soil during two growing seasons and one autumn period until soil freezing. N2O emissions in situ were studied by a static chamber method. NO was measured with a dynamic chamber method using a NO analyser in situ. Mean emissions from the control plots were 47.6±4.5 μg N2ON m−2 h−1 and 12.6±1.6 μg NON m−2 h−1. N2O and NO emissions from urine plots (132±21.2 μg N2ON m−2 h−1 and 51.9±7.6 μg NON m−2 h−1) were higher than those from dung plots (110.0±20.1 μg N2ON m−2 h−1 and 14.7±2.1 μg NON m−2 h−1). There was a large temporal variation in N2O and NO emissions. Maximum N2O emissions were measured a few weeks after dung or urine application, whereas the maximum NO emissions were detected the following year. NO was responsible on average 14% (autumn) and 34% (summer) of total (NO+N2O)N emissions from the pasture soil. NO emissions increased with increasing soil temperature and with decreasing soil moisture. N2O emissions increased with increasing soil moisture, but did not correlate with soil temperature. Therefore we propose that N2O and NO were produced mainly during different microbial processes, i.e., nitrification and denitrification, respectively. The results show that the overall conditions and mechanism especially for emissions of NO are still poorly understood but that there are differences in the mechanisms regulating N2O and NO production. 相似文献
2.
Nathalie Jarosz Yves Brunet Eric Lamaud Mark Irvine Jean-Marc Bonnefond Denis Loustau 《Agricultural and Forest Meteorology》2008,148(10):1508-1523
Carbon dioxide, water vapour and energy fluxes were measured above and within a maritime pine forest during an atypical year with long-lasting reduced soil water availability. Energy balance closure was adequately good at both levels. As compared with what is usually observed at this site the ecosystem dissipated less energy via latent heat flux and more via sensible heat flux. The understorey canopy was responsible for a variable, significant component of the whole canopy fluxes of water vapour and carbon dioxide. The annual contribution of the understorey was 38% (154 mm) of the overall evaporation (399 mm) and 32% (89 mm) of the overall sensible heat flux (274 mm). The participation of the understorey reached 45% of the overall evaporation and 30% of the daytime overall assimilation during significant soil water deficit periods in summertime. Even during winter, understorey photosynthesis was consistent as it compensated soil and understorey respiration. The ecosystem behaved as a sink of carbon, with a negative annual carbon budget (−57 g C m−2). However, due to high soil water deficit, the annual ecosystem GPP was 40% less than usually observed at this site. This budget resulted from a sink of −131 g C m−2 for the overstorey and a source of +74 g C m−2 for the understorey. Moreover, on an annual basis the overstorey layer contributed to almost two-thirds of the ecosystem respiration. Finally, the effect of long-lasting soil water deficit on the maritime pine forest was found more important than the effect of the heat wave and drought of summer 2003. 相似文献
3.
Soil heterotrophic respiration fluxes at plot scale exhibit substantial spatial and temporal variability. Within this study secondary information was used to spatially predict heterotrophic respiration. Chamber-based measurements of heterotrophic respiration fluxes were repeated for 15 measurement campaigns within a bare 13 × 14 m2 soil plot. Soil water contents and temperatures were measured simultaneously with the same spatial and temporal resolution. Further, we used measurements of soil organic carbon content and apparent electrical conductivity as well as the prior measurement of the target variable. The previous variables were used as co-variates in a stepwise multiple linear regression analysis to spatially predict bare soil respiration. In particular the prior measurement of the target variable, the soil water content and the apparent electrical conductivity, showed a certain, even though limited, predictive power. In the first step we applied external drift kriging and regression kriging to determine the improvement of using co-variates in an estimation procedure in comparison to ordinary kriging. The improvement using co-variates ranged between 40 and 1% for a single measurement campaign. The difference in improving the prediction of respiration fluxes between external drift kriging and regression kriging was marginal. In a second step we applied sequential Gaussian simulations conditioned with external drift kriging to generate more realistic spatial patterns of heterotrophic respiration at plot scale. Compared to the estimation approaches the conditional stochastic simulations revealed a significantly improved reproduction of the probability density function and the semivariogram of the original point data. 相似文献
4.
Atmospheric sulfur deposition for a red soil broadleaf forest in southern China 总被引:5,自引:0,他引:5
下载免费PDF全文

A two-year study in a typical red soil region of Southern China was conducted to determine 1) the dry deposition velocity (Vd) for SO2 and particulate SO4^2- above a broadleaf forest, and 2) atmospheric sulfur fluxes so as to estimate the contribution of various fractions in the total. Using a resistance model based on continuous hourly meteorological data, atmospheric dry sulfur deposition in a forest was estimated according to Va and concentrations of both atmospheric SO2 and particulate SO2^4-. Meanwhile, wet S deposition was estimated based on rainfall and sulfate concentrations in the rainwater. Results showed that about 99% of the dry sulfur deposition flux in the forest resulted from SO2 dry deposition.In addition, the observed dry S deposition was greater in 2002 than in 2000 because of a higher average concentration of SO2 in 2002 than in 2000 and not because of the average dry deposition velocity which was lower for SO2 in 2002. Also,dry SO2 deposition was the dominant fraction of deposited atmospheric sulfur in forests, contributing over 69% of the total annual sulfur deposition. Thus, dry SO2 deposition should be considered when estimating sulfur balance in forest ecological systems. 相似文献
5.
Digestates vary in composition and studies regarding their impact on C and N dynamics in soils are scarce. The objective was to analyse the C and N dynamics of digestates originating from various substrates applied to a sandy Cambisol and a silty Anthrosol. In three laboratory experiments (4–6 weeks), the effects of digestate properties, N rate and water content were tested. Averaged over both soils, 21% of the C supplied was emitted as CO2. Potential NH3 emissions during the first week ranged between 6% and 12% of NH4+ present in the digestates. The emission factors in the sandy Cambisol were on average 1.2 and 2 times higher for CO2 and potential NH3, respectively, compared to the silty Anthrosol. Similarly, net nitrogen mineralization in the sandy Cambisol was approximately twice the N mineralized in the silty Anthrosol. Net nitrification was not influenced by soil texture or different digestates, but increased with increasing application rates and had highest values at 75% of water holding capacity. Our results indicate that the type of substrate input for anaerobic digestion influences the properties of the digestate and therefore the dynamics of C and N. However, soil texture can affect these dynamics markedly. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):1875-1883
Abstract Accurate estimates of soybean root productivity are needed to estimate carbon (C) inputs to soil. Soil excavation and coring methods were compared where soybean was subject to ambient, elevated carbon dioxide (CO2) and ozone (O3) treatments. We evaluated within‐season changes in biomass and shoot–root production, labor requirements, and damage to plots. Estimates of root biomass were similar, but excavation‐based estimates required less total time. Core‐based estimates provided similar levels of precision, allowed sampling of deeper depths, and reduced both plot disturbance and the amount of effort devoted to tasks performed in the field. Correlations between root and shoot biomass were weak and varied with time of sampling. Collectively, results suggest caution should be exercised when making predictions about C allocation to roots or soils based on shoot–root ratios or when scaling up field‐based findings to predict larger or longer‐scale trends. 相似文献
7.
8.
The effects of NO2 and O3 exposure alone or in combination were investigated with respect to the amino acid content and composition in kidney bean. The short-term exposure (up to 8 h) to NO2 at a concentration of 4.0 ppm alone or in combination with O3 at a concentration of 0.4 ppm induced a rapid increase in the total amino acid content among which glutamine accounted for most of the part. Total amino acid content was also increased by O3 exposure at 0.4 ppm after 2 hours’ lag period. Ammonium level became higher in the case of combined exposure to NO2 and O3, while it remained constant in the case of exposure to NO2 and O3 alone. When the exposure period was extended to 2 to 7 days (long-term exposure), the increase in the content of the total amino acids was observed in most of treatments. Roots of the plants exposed to various concentrations of NO2 and O3 showed the most remarkable increase in the content of total amino acids. Asparagine, in place of glutamine, became a major amino acid. The percentage of asparagine was especially increased by the mixed exposure to NO2 and O3 These results indicate that glutamine which accumulates considerably in the early phase of the gas exposure (short-term exposure) seems to be gradually converted into other amino acids, mainly asparagine. The correlation between the content of each amino acid, ammonium and total amino acids was calculated using data from the above experiment. Most of the amino acids in the primary and trifoliate leaves showed a high correlation with the total amino acids, suggesting that the changes in the amount of total amino acids caused by the air pollutants may be reflected not only by a particular amino acid, but also by an individual amino acid composing soluble metabolite pool. A high correlation was obtained among amino acids belonging to the serine family such as glYCine, serine, and cysteine. 相似文献
9.
David T. Tingey Mark G. Johnson Claudia Wise David M. Olszyk Kelly K. Donegan 《Soil biology & biochemistry》2006,38(7):1764-1778
Soil respiration represents the integrated response of plant roots and soil organisms to environmental conditions and the availability of C in the soil. A multi-year study was conducted in outdoor sun-lit controlled-environment chambers containing a reconstructed ponderosa pine/soil-litter system. The study used a 2×2 factorial design with two levels of CO2 and two levels of O3 and three replicates of each treatment. The objectives of our study were to assess the effects of long-term exposure to elevated CO2 and O3, singly and in combination, on soil respiration, fine root growth and soil organisms. Fine root growth and soil organisms were included in the study as indicators of the autotrophic and heterotrophic components of soil respiration. The study evaluated three hypotheses: (1) elevated CO2 will increase C assimilation and allocation belowground increasing soil respiration; (2) elevated O3 will decrease C assimilation and allocation belowground decreasing soil respiration and (3) as elevated CO2 and O3 have opposing effects on C assimilation and allocation, elevated CO2 will eliminate or reduce the negative effects of elevated O3 on soil respiration. A mixed-model covariance analysis was used to remove the influences of soil temperature, soil moisture and days from planting when testing for the effects of CO2 and O3 on soil respiration. The covariance analysis showed that elevated CO2 significantly reduced the soil respiration while elevated O3 had no significant effect. Despite the lack of a direct CO2 stimulation of soil respiration, there were significant interactions between CO2 and soil temperature, soil moisture and days from planting indicating that elevated CO2 altered soil respiration indirectly. In elevated CO2, soil respiration was more sensitive to soil temperature changes and less sensitive to soil moisture changes than in ambient CO2. Soil respiration increased more with days from planting in elevated than in ambient CO2. Elevated CO2 had no effect on fine root biomass but increased abundance of culturable bacteria and fungi suggesting that these increases were associated with increased C allocation belowground. Elevated CO2 had no significant effect on microarthropod and nematode abundance. Elevated O3 had no significant effects on any parameter except it reduced the sensitivity of soil respiration to changes in temperature. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(1):21-26
Abstract The availability of soil Mn to corn in relation to extractability of soil Mn by EDTA, Mg(NO3)2, CH3COONH4, hydroquinone, H3PO4, and NH4H2PO4 as affected by liming was evaluated under field conditions on a single soil type. EDTA, Mg(NO3)2 and CH3COONH4‐extractable Mn were related inversely to available Mn. No useful relationships were found between hydroquinone, H3PO4, and NH4H2PO4‐extractable soil Mn and Mn uptake by sweet corn. 相似文献
11.
Jens-Arne Subke Ilaria Inglima Gemini Delle Vedove 《Soil biology & biochemistry》2004,36(6):1013-1015
A new principle for measuring soil CO2 efflux at constant ambient concentration is introduced. The measuring principle relies on the continuous absorption of CO2 within the system to achieve a constant CO2 concentration inside the soil chamber at ambient level, thus balancing the amount of CO2 entering the soil chamber by diffusion from the soil. We report results that show reliable soil CO2 efflux measurements with the new system. The novel measuring principle does not disturb the natural gradient of CO2 within the soil, while allowing for continuous capture of the CO2 released from the soil. It therefore holds great potential for application in simultaneous measurements of soil CO2 efflux and its δ13C, since both variables show sensitivity to a distortion of the soil CO2 profile commonly found in conventional chamber techniques. 相似文献
12.
Soil respiration is an important component of terrestrial carbon cycling and can be influenced by many factors that vary spatially. This research aims to determine the extent and causes of spatial variation of soil respiration, and to quantify the importance of scale on measuring and modeling soil respiration within and among common forests of Northern Wisconsin. The potential sources of variation were examined at three scales: [1] variation among the litter, root, and bulk soil respiration components within individual 0.1 m measurement collars, [2] variation between individual soil respiration measurements within a site (<1 m to 10 m), and [3] variation on the landscape caused by topographic influence (100 m to 1000 m). Soil respiration was measured over a two-year period at 12 plots that included four forest types. Root exclusion collars were installed at a subset of the sites, and periodic removal of the litter layer allowed litter and bulk soil contributions to be estimated by subtraction. Soil respiration was also measured at fixed locations in six northern hardwood sites and two aspen sites to examine the stability of variation between individual measurements. These study sites were added to an existing data set where soil respiration was measured in a random, rotating, systematic clustering which allowed the examination of spatial variability from scales of <1 m to 100+ m. The combined data set for this area was also used to examine the influence of topography on soil respiration at scales of over 1000 m by using a temperature and moisture driven soil respiration model and a 4 km2 digital elevation model (DEM) to model soil moisture. Results indicate that, although variation of soil respiration and soil moisture is greatest at scales of 100 m or more, variation from locations 1 m or less can be large (standard deviation during summer period of 1.58 and 1.28 μmol CO2 m−2 s−1, respectively). At the smallest of scales, the individual contributions of the bulk soil, the roots, and the litter mat changed greatly throughout the season and between forest types, although the data were highly variable within any given site. For scales of 1-10 m, variation between individual measurements could be explained by positive relationships between forest floor mass, root mass, carbon and nitrogen pools, or root nitrogen concentration. Lastly, topography strongly influenced soil moisture and soil properties, and created spatial patterns of soil respiration which changed greatly during a drought event. Integrating soil fluxes over a 4 km2 region using an elevation dependent soil respiration model resulted in a drought induced reduction of peak summer flux rates by 37.5%, versus a 31.3% when only plot level data was used. The trends at these important scales may help explain some inter-annual and spatial variability of the net ecosystem exchange of carbon. 相似文献
13.
Understanding the spatial variation of temperature sensitivity (i.e. Q10) of soil respiration (Rs) and its controlling factors, is critical to improve the precision of carbon budget estimations at regional scales. In this study, data from 2-3 continuous years of Rs measurements over 15 ecosystems of ChinaFLUX were summarized to analyze the response of Rs to soil temperature. Moreover, we improved our dataset by collecting previously published Q10 values from 34 ecosystems in China. The ecosystems studied were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Spatial variations of Q10 and its controlling factors were analyzed. The results showed that soil temperature at a 5 cm depth satisfactorily explained the seasonal variations in Rs of the 15 ChinaFLUX ecosystems (R2 varying from 0.37 to 0.83). Based on the overall data, the Q10 values of Rs in China ranged from 1.28 to 4.75. The spatial variations in Q10 were primarily determined by soil temperature during measurement periods, soil organic carbon (SOC) content, and ecosystem type. Ecosystems in colder regions and with higher SOC content had relatively higher Q10 values. Moreover, ecosystems of different vegetation types showed different Q10 values. A temperature- and SOC-dependent function for Q10 is suggested, which could be a valuable reference for improving the regional-scale models of Rs and ecosystem carbon cycles. 相似文献
14.
M.R.K Manasa Naveen Reddy Katukuri 《Communications in Soil Science and Plant Analysis》2020,51(13):1707-1724
ABSTRACT Amelioration of saline soil is a requisite in order to increase crop productivity. A soil incubation study was performed for 60 days using digestate, humic acid, calcium humate and their combinations to investigate the influence on physical, chemical, microbial and enzyme activities of saline soil. Overall, digestate combined with calcium humate followed by humic acid treatments have shown their potency in decreasing the soil pH, electrical conductivity (EC), and sodium ion (Na+) concentration, and increase in potassium ion (K +), calcium ion (Ca 2+), magnesium ion (Mg 2+), mean weight diameter (MWD), soil enzyme activities, microbial biomass carbon (MBC), MBC: microbial biomass nitrogen (MBN) and soil respiration than control. The digestate, humic acid individually and their amalgamation evidenced greater MBN among all the treatments. The digestate alone efficiently improved the soil properties than humic acid and calcium humate individual groups except for the MWD where it is pronounced more in the latter groups. The greater metabolic quotient (qCO2) was observed in control than organic matter amended treatments indicating the stress conditions. The increase in water-extractable organic matter (WEOM) with minimal aromaticity (specific ultraviolet absorbance at 254 nm-Suva 254) in integrated amendments comprising groups, laid the ground reason to improve the properties of saline soil. Therefore, this study concludes that the fusion of fresh and humified substrates could facilitate reclamation. 相似文献
15.
Mathias Herbst Thomas FriborgRasmus Ringgaard Henrik Soegaard 《Agricultural and Forest Meteorology》2011,151(7):841-853
The eddy flux of methane (CH4) was measured over 14 months above a restored wetland in western Denmark. The average annual daily CH4 flux was 30.2 mg m−2 d−1, but the daily emission rates varied considerably over time. Several factors were identified that explained some of this variation. (1) Grazing cattle moving through the source area of the eddy flux mast increased the measured emission rates by one order of magnitude during short time periods. (2) Friction velocity exerted a strong control on the CH4 flux whenever there were water pools on the surface. (3) An exponential response of the daily CH4 flux to soil temperature at 20 cm depth was found for most of the study period, but not for parts of the summer season that coincided with a low water level in the river flowing through the wetland. (4) Additional variations in the CH4 emission rates were related to the spatial heterogeneity of the source area. This area covered not only different plant communities but also a gravel road and a river surface, and it had a microtopography that visibly induced a large spatial variability in the wetness of the top soil. It is shown that the control mechanisms for the methane emission from restored wetlands are more complex than those reported for natural wetlands, since they include both management activities and slow adaptive processes related to changes in vegetation and hydrology. On the basis of eddy fluxes of carbon dioxide measured at the same site it is finally demonstrated that the variability in the CH4 fluxes strongly affects the greenhouse gas sink strength of the restored wetland. 相似文献
16.
Susana Díaz Don Nelson Guillermo Deferrari Carolina Camilin 《Agricultural and Forest Meteorology》2003,120(1-4):69
In the last two decades as a consequence of ozone depletion there has been an increasing interest in the study of biological effects of ultraviolet radiation (UV). Spectral instruments, which provide detailed information on UV environmental conditions, have been in use systematically only for little more than a decade. These time series are still relatively short and information on spectral historical irradiance levels is not available. Many efforts have been carried out in inferring this information from other available data sets. One of them has been the use of statistical models. Spectral irradiances are available at South Pole (90°00′S 0) and Barrow (71°18′N, 156°47′W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 reflecting the beginning of the ozone depletion. Historical maximums of daily-integrated DNA weighted irradiance at South Pole (90°00′S, 0°00′) are about as large as summer maximums at San Diego (32°45′N, 117°11′W). 相似文献
17.
Fixation of N by biological soil crusts and free-living heterotrophic soil microbes provides a significant proportion of ecosystem N in arid lands. To gain a better understanding of how elevated CO2 may affect N2-fixation in aridland ecosystems, we measured C2H2 reduction as a proxy for nitrogenase activity in biological soil crusts for 2 yr, and in soils either with or without dextrose-C additions for 1 yr, in an intact Mojave Desert ecosystem exposed to elevated CO2. We also measured crust and soil δ15N and total N to assess changes in N sources, and δ13C of crusts to determine a functional shift in crust species, with elevated CO2. The mean rate of C2H2 reduction by biological soil crusts was 76.9±5.6 μmol C2H4 m−2 h−1. There was no significant CO2 effect, but crusts from plant interspaces showed high variability in nitrogenase activity with elevated CO2. Additions of dextrose-C had a positive effect on rates of C2H2 reduction in soil. There was no elevated CO2 effect on soil nitrogenase activity. Plant cover affected soil response to C addition, with the largest response in plant interspaces. The mean rate of C2H2 reduction in soils either with or without C additions were 8.5±3.6 μmol C2H4 m−2 h−1 and 4.8±2.1 μmol m−2 h−1, respectively. Crust and soil δ15N and δ13C values were not affected by CO2 treatment, but did show an effect of cover type. Crust and soil samples in plant interspaces had the lowest values for both measurements. Analysis of soil and crust [N] and δ15N data with the Rayleigh distillation model suggests that any plant community changes with elevated CO2 and concomitant changes in litter composition likely will overwhelm any physiological changes in N2-fixation. 相似文献
18.
Haizhen Sun Terry L. Clark Roland B. Stull T. Andrew Black 《Agricultural and Forest Meteorology》2006,140(1-4):352
We apply a high-resolution atmospheric model to assess the influence of mesoscale advection of CO2 on the estimation of net ecosystem exchange (NEE) using eddy-covariance CO2 flux measurements at a Fluxnet-Canada forest site located on sloping terrain on Vancouver Island, Canada. The numerical simulation is performed for fair-weather conditions over an idealized two-dimensional mountain bounded by water. The model is enhanced to include a CO2 budget with a treatment of canopy photosynthesis and soil respiration.The simulation captures the transport of CO2 by nocturnal drainage flows and weak land breezes. The resulting vertical profiles and time evolution of CO2 concentration show a significant variation near the ground, associated with stability changes in the atmospheric boundary layer. The simulated vertical CO2 gradients are found to be large around sunset and sunrise. The decrease of CO2 concentration over land after midnight and the CO2 accumulation over the neighboring water surface indicate CO2 advection.A CO2 budget analysis of the numerical-model output shows that the mean horizontal and vertical advection have significant fluctuations and opposite signs during daytime, with the net result that they largely counteract each other. At night, mean advection results in the underestimation by 20% of the nocturnal respiration. The estimated NEE at night is dominated by sub-grid-scale vertical flux in this simulation. Further evaluation using 3D simulations with higher resolution is needed to see if our results hold where vertical fluxes are much better resolved. 相似文献
19.
The mechanism of SO2 inhibition of photosynthesis in intact leaves of tomato and maze was studied to evaluate SO2 inhibition of photorespiration. Leaf tissues were fumigated with SO2 under photorespiratory (low CO, and/or high O, concentrations) and non-photo-respiratory conditions. When tomato leaf disks were fumigated with 10 ppm SO2 at 2, 21 and 100° o O., SO2 inhibited photosynthesis at 2% O2 in the same degrees as at 21% O2. SO2 inhibition of photosynthesis was depressed at higher CO2 concentrations when the disks were fumigated with SO2 at different CO2 concentrations. High CO2 concentrations also reduced the photosynthesis inhibition of maize leaf disks. These results suggest that SO2 inhibits photosynthesis through other mechanisms than photorespiration inhibition and confirm the view that SO2 competes with CO2 for the carboxylating enzymes in photosynthesis 相似文献
20.
The interactive effects of moisture and organic amendments (farmyard manure (FYM), crop residue (CR) and green manure (GM) (Sesbania aculeata) on gaseous carbon (C) emission, soil labile C fractions, enzymatic activities and microbial diversity in tropical, flooded rice soil were investigated. The amendments were applied on equal C basis in two moisture regimes, that is, aerobic and submergence conditions. The CO2 production was significantly higher by 22% in aerobic than in submergence condition; on the contrary, the CH4 production was 27% higher under submergence condition. The labile C fractions were significantly higher in GM by 26% under aerobic and 30% under submergence conditions, respectively, than control (without any kind of fertilizer or amendments). Eubacterial diversity identified by PCR-DGGE method (polymerase chain reaction coupled with denaturant gradient gel electrophoresis) was higher under GM followed by FYM, CR, and control and it is pronounced in submerged condition. GM favored the labile C accumulation and biological activities under both submergence and aerobic conditions, which makes it most active for soil–plant interactions compared to other organic amendments. Considering environmental sustainability, the use of GM is the better adoptable option, which could enhance labile C pools, microbial diversities in soil and keep soil biologically more active. 相似文献