首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
Many plant species are characterized by pronounced sensitivity to sole ammonium supply and exhibit growth depression and particularly reduced leaf growth rates. Stress symptoms under sole ammonium supply may be related to perturbation of photosynthetic processes, e.g., low rates of net CO2 assimilation, low quantum yield, reduced stomatal conductance, and carboxylation capacity. The results of three experiments with French bean plants supplied with an N concentration of 5 mM illustrate significantly lower dry mass and specific leaf area, reduced leaf expansion, and higher chlorophyll and N content of ammonium‐ compared to nitrate‐supplied plants. Light‐saturated rates of CO2 assimilation (Amax) per unit leaf area were higher under ammonium compared to nitrate supply while no significant effects of N form on quantum yield and Amax per unit leaf weight and chlorophyll were found. Maximal carboxylation (Vcmax) and electron‐transport (JMax) rates were significantly higher under ammonium supply only in one of three experiments. Vcmax was linearly related to total leaf N, the slope of the regression was similar with both N forms, the x‐axis intercept was significantly higher for ammonium‐ compared to nitrate‐supplied plants. The ratio Vcmax : JMax was not affected by N form. It is concluded that ammonium supply had no negative effects on the operation of photosynthetic protein‐enzyme complexes.  相似文献   

2.
Savanna landscapes across north Australia are characterised by limited topographic variation, and in the Northern Territory, by a relatively constant decline in rainfall with distance inland. The North Australian Tropical Transect (NATT) traverses this 1000 km gradient of largely intact vegetation which provides an ideal ‘living laboratory’ and framework to investigate the influence of vegetation structural and floristic change and climate drivers on land-atmosphere exchange at a regional scale. We conducted a multidisciplinary program examining carbon, water and energy fluxes as a function of climate and vegetation change along a sub-continental environmental gradient. Initial findings are reported in this Special Issue. During the program, an intensive field campaign was undertaken during the dry season to characterise vegetation and soil properties of eight flux tower sites used to describe spatial and temporal dynamics of fluxes across this gradient. This paper provides an overview of the savanna landscapes of north Australia detailing vegetation structural and physiological change along this gradient. Above-ground woody biomass, stem density, overstorey LAI and canopy height declined along sites that spanned an 1100 mm annual rainfall gradient. Biomass ranged from 35 to 5 t C ha−1 with dry season LAI ranging from ∼1 to 0.05 across savanna sites both intact and cleared for grazing. Across open-forest and woodland savanna, basal area ranged from 9.7 to 5.3 m2 ha−1. While structural change was significant and correlated with rainfall, leaf scale physiological properties (maximal photosynthesis, Vcmax, ci/ca, light use efficiency) of the dominant woody species showed little variation, despite the significant environmental gradient. It is likely that changes in structural properties dominate spatial patterns of flux as opposed to physiological plasticity or species differences along this gradient.  相似文献   

3.
Two Picea asperata Mast. populations originating from wet and dry climate regions of China were subjected to enhanced UV-B radiation, drought and their combination in a greenhouse for 3 years. Drought treatment caused a significant decrease in photosynthesis, mesophyll conductance (gm), carbon isotope discrimination (Δ) and growth characteristics when compared with well-watered treatment. In contrast to the great effects of drought stress, enhanced UV-B radiation showed some but not as substantial negative effects on these parameters. Little interaction effect between drought and UV-B radiation was detected, and the drought effect in combination with enhanced UV-B was not more pronounced than with no enhanced UV-B radiation. These results suggest that enhanced UV-B radiation does not aggravate the drought effect on P. asperata seedlings. The results also showed that the proportional role of the intercellular CO2 (Ci) decreased, while the role of chloroplastic concentration (Cc) became increasingly important in explaining the high values of carbon isotope composition (δ13C), when the water stress progressed in time. In addition, multivariate causal models proposed that there is a direct causal relationship between specific leaf area (SLA) and gm, which is not mediated by leaf N. Besides, there are functional links between gm and photosynthetic capacity (Vcmax). On the other hand, the study showed that net assimilation rate (NAR) is the main driving force for changes in relative growth rate (RGR), especially in low-water environments, and the degree of acclimation of respiration in the light (RL) is of central importance to the greater role played by NAR in determining variation in RGR.  相似文献   

4.
Effects of carbon dioxide (CO2) enrichment on plant growth and on nitrogen partitioning were examined in tobacco (Nicotiana tabacum L. cv. ‘Samsun’). Dry matter, leaf area and specific leaf weight were unchanged (P > 0.05) by CO2 enrichment. Total soluble protein, soluble amino acids and inorganic nitrate also were unaffected by CO2 enrichment (P > 0.05). Leaf chlorophyll (a + b) levels decreased 13% (P ≤ 0.05) in response to CO2 enrichment. The diurnal accumulation of soluble amino acids was delayed and the initial slope of the A/C i response curve was decreased 14% in the elevated compared to the ambient CO2 treatment. The above findings showed that CO2 enrichment affected leaf chlorophyll levels, diurnal soluble amino acid metabolism and photosynthetic responses to low intercellular CO2 concentrations even though the plants were nitrogen sufficient. Inadequate nitrogen fertility cannot explain all of the effects of CO2 enrichment on photosynthesis by tobacco leaves.  相似文献   

5.

Purpose

This study analysed tree-ring stable carbon isotope composition (δ13C) of Pinus tabulaeformis Carr. and Pinus taiwanensis Hayata, from a subtropical forest located in central China for the last 130 years, to obtain the long-term trends of δ13C, carbon isotope discrimination by plants (Δ), leaf internal carbon dioxide (CO2) concentration (c i ) and intrinsic water-use efficiency (iWUE) in response to elevated atmospheric CO2 concentration (c a ) and climate change and explore how environmental changes affected long-term tree physiological responses and growth.

Materials and methods

Tree-ring cores were taken in Dabie Mountains, the border of Hubei, Henan and Anhui Provinces of China. δ13C was undertaken at every 3-year interval, and Δ, c i , iWUE and basal area increment (BAI) were determined. Regression analysis was used to quantify the trends in climate and the relationships of c i , iWUE and BAI with elevated c a and climate. Partial correlation analysis was used to distinguish the effects of c a and climate on c i and iWUE.

Results and discussion

δ13C of P. tabulaeformis and P. taiwanensis decreased in the past 130 years, but Δ had no obvious change over time for the two tree species. Both c i and iWUE increased significantly with the calendar year. BAI of P. tabulaeformis continuously increased during 1897–1993, but decreased slightly in the recent 20 years. However, BAI of P. taiwanensis did not present obvious change in the period 1882–2010. The c i and iWUE of P. tabulaeformis and P. taiwanensis also increased linearly with elevated c a in the past 130 years and with mean annual temperature during 1960–2007. Partial correlation analysis showed that elevated c a , not temperature, induced the changes in c a and iWUE. BAI of P. tabulaeformis since 1897 and that of P. taiwanensis during 1975–2010 responded quadratically to elevated c a . Warming-deduced drought in the study area in the recent 30 years resulted in increases in iWUE and decreases in BAI.

Conclusions

This study showed that while iWUE increased in the past 130 years, tree growth of two subtropical tree species in central China responded to rising c a non-linearly. Negative effects of some factors on tree growth, such as climate change (particularly warming-induced drought), nutrient limitation and physiological long-term acclimation to elevated c a , have overridden the CO2 fertilization effects in the past 30 years.  相似文献   

6.
In this study, the norms for Vitis Vinifera have been derived and compared using the Compositional Nutrient Diagnosis (CND) and Deviation from Optimum Percentage (DOP) diagnose methods to determine the nutrient deficiency in Vineyards at Central Alborz region, Iran. A total of 200 leaf samples were collected during two years from Vitis Vinifera trees and nutrient concentrations of Mn, Zn, Fe, Mg, Ca, K, P, N, B, and Cu were measured. The results showed that there are differences between DOP and CND diagnosis methods. According to mean DOP indices for nutrient elements, the priority of the deficiency of elements was as follows: Mn > P > Ca > Fe > Cu. In addition, the CND standard norms were determined as Fci(VN) = 32.34, Fci(VP) = 34.49, Fci(VK) = 48.58, Fci(VCa) = 54.39, Fci(VMg) = 64.11, Fci(VMn) = 19.71, Fci(VZn) = 47.64, Fci(VFe) = 53.32, Fci(VCu) = 32.44, Fci(VB) = 41.59, and Fci(Rd) = 39.19 ton.ha?1. The results also showed that there is the deficiency of manganese, nitrogen, iron, and phosphorus in vineyards. Therefore, the field observations due to the implications of apparent deficiencies of nutrient elements in the gardens of the region are more consistent with the DOP method.  相似文献   

7.
The ecosystem fluxes of mass and energy were quantified for a riparian cottonwood (Populus fremontii S. Watson) stand, and the daily and seasonal courses of evapotranspiration, CO2 flux, and canopy conductance were described, using eddy covariance. The ecosystem-level evapotranspiration results are consistent with those of other riparian studies; high vapor pressure deficit and increased groundwater depth resulted in reduced canopy conductance, and the annual cumulative evapotranspiration of 1095 mm was more than double the magnitude of precipitation. In addition, the cottonwood forest was a strong sink of CO2, absorbing 310 g C m−2 from the atmosphere in the first 365 days of the study. On weekly to annual time scales, hydrology was strongly linked with the net atmosphere-ecosystem exchange of CO2, with ecosystem productivity greatest when groundwater depth was ∼2 m below the ground surface. Increases in groundwater depth beyond the depth of 2 m corresponded with decreased CO2 uptake and evapotranspiration. Saturated soils caused by flooding and shallow groundwater depths also resulted in reduced ecosystem fluxes of CO2 and water.  相似文献   

8.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

9.
[目的]探究干旱区不同降雨模式对藻结皮覆被区土壤碳释放的影响,为精确估算干旱区生态系统土壤碳释放量提供科学依据。[方法]以乌兰布和沙漠为例,通过人工增雨和改变降雨频率来模拟全球气候变化,对藻结皮覆被区土壤碳释放量进行长期野外监测。[结果]降雨能够刺激藻结皮覆被区土壤呼吸速率迅速大幅度提升,并在1 h内达到峰值,12 h左右降至较低水平。但随着干湿交替次数的不断增大,土壤再湿润后所产生的呼吸脉冲逐渐减弱,最后1次降雨与第1次相比土壤呼吸峰值降低了40%~60%。在降雨后16 h累积碳释放量、总碳释放量都随着降雨量的增大而增大,但当降雨量增大到一定程度后,其对土壤碳释放量的促进作用不再明显。就单次降雨而言,低频率、大雨量的降雨事件所引起的碳释放量明显高于高频率、小雨量的降雨事件。但总降雨量一致的情况下,则是高频率的小降雨事件所释放的总碳量最高,其次为低频率的大降雨事件,正常降雨频率下最小。[结论]气候变化所引起的降雨量增加和降雨频率的变化将会增加藻结皮覆被区的碳排放量,在预测碳收支时,也应将藻结皮的碳排放量变化作为考虑因素之一。  相似文献   

10.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

11.
Soybean (Glycine max L. Merr.) cv. Bragg and its supernodulating mutant nts 1007 were grown in pots containing vermiculite with a N-free nutrient solution in order to examine the effect of elevated CO2 concentration (100+20 Pa CO2 ) on biomass production, photosynthesis, and biological nitrogen fixation. The whole plant weight increase in Bragg was higher than in the mutant at a high CO2 concentration. Apparent photosynthetic activities of the upper leaves in both Bragg and the mutant increased up to 14 d after treatment initiation by the CO2 enrichment and thereafter decreased to some extent. Both leaf area and leaf thickness of Bragg increased more than in nts 1007. With the elevated CO2 concentration, biological nitrogen fixation (BNF) also responded in the same manner as biomass production in both Bragg and nts 1007. The increase of BNF in Bragg was largely due to an increase in nodule weight. Starch contents in the leaves of both Bragg and the mutant increased significantly by CO2 enrichment, with a higher increase in Bragg than in its mutant. Sugar content in leaf differed only slightly in both Bragg and the mutant. N content in leaf decreased in both Bragg and its mutant, with the decrease being more pronounced in Bragg. However, in other plant parts (roots, stem, and petiole + pods), N content increased in the mutant while in Bragg, it decreased in the pod. N accumulation rate was higher in Bragg than in the mutant and increased more in Bragg than in the mutant by CO2 enrichment. The ureide content in leaf decreased in Bragg but increased in the mutant by elevated CO2 concentration. In the nodules, ureide content increased in both Bragg and the mutant by CO2 enrichment. Based on these results, it is suggested that in terms of biomass production and photosynthetic rate, Bragg responded more to elevated CO2 concentration than its mutant nts 1007. The alleviation of the stunted vegetative growth of the mutant by CO2 enrichment was limited despite the significant increase in the photosynthetic activity, presumably due to the limitation of sink activity in the growing parts and not to insufficient supply of N through BNF.  相似文献   

12.
R. Lal 《Geoderma》1983,31(3):185-193
The effects of 5, 10, 15 and 20 m slope lengths were investigated on runoff for natural slope gradients of about 1, 5, 10 and 15%. These studies were conducted on field runoff plots on natural slopes and under natural rainfall conditions at Ibadan in western Nigeria. The runoff, based on individual rainfall events, was not significantly correlated with either of three erosivity indices (EI30, KE > 1, AIm) and only a maximum of 36% of variability in runoff could be attributed to rainfall erosivity. Runoff per unit area decreased with increase in slope length. The mean annual runoff was of the order of 100, 87, 80 and 69 for 1977 and 100, 66, 49 and 35 for 1978 for 5, 10, 15 and 20 m slope lengths, respectively. Regression analyses indicated that the annual runoff was related to slope length according to the regression equation W = 773 L?0?53, where W is annual runoff in mm and L is slope length in meters. When fitted to data from all plots on a given slope steepness, for individual years the numerical value of length exponent b ranged from 0.153 to ?0.865.  相似文献   

13.
《CATENA》2005,64(1):103-116
The relationships between precipitation, vegetation and erosion are important and are unsolved issues in the field of earth surface processes. Based on data from the Loess Plateau of China, some non-linear relationships between forest cover (Cf), mean annual rainfall erosivity (Re) and annual precipitation (Pm) have been found. A threshold has been identified at Pm = 450 mm, that is, when Pm is < 450 mm, Cf is low and basically does not vary with Pm; when Pm exceeds 450 mm, Cf increases rapidly. Furthermore, two thresholds are identified in the relationship between rainfall erosivity and annual precipitation. When Pm is < 300 mm, Re is low and basically does not vary with Pm. When Pm exceeds 300 mm, Re increases rapidly; when Pm becomes > 530 mm, the rate at which Re increases with Pm becomes higher. Based on these relationships, the non-linear relationship between erosion intensity and annual precipitation (i.e., the erosion intensity increases with annual precipitation to a peak and then declines) is explained. The implication of these thresholds for erosion control on the Loess Plateau is discussed.  相似文献   

14.
高温、高CO2对农作物影响的试验研究   总被引:18,自引:0,他引:18  
在人工气候室试验研究高温和高CO2浓度对农作物的影响结果表明,高温、高CO2浓度使农作物生育进程加快,作物生育期缩短,作物的光合作用速率升高,蒸腾速率下降和气孔阻力增加;在相同的发育期使作物叶面积、根、茎、叶生长量不足,生物量下降;对不同作物产量结构的影响有差异,对小麦的影响主要是小穗数和穗粒数下降,而对玉米的影响主要是籽粒百粒重下降。高温、高CO2浓度可使农作物叶片中微量元素含量发生显著变化。  相似文献   

15.
Nitrogen controls, on the seasonal and inter-annual variability of net ecosystem productivity (NEP) in a western temperate conifer forest in British Columbia, Canada, were simulated by a coupled carbon and nitrogen (C&N) model. The model was developed by incorporating plant–soil nitrogen algorithms in the Carbon-Canadian Land Surface Scheme (C-CLASS). In the coupled C&N-CLASS, the maximum carboxylation rate of Rubisco (Vcmax) is determined non-linearly from the modelled leaf Rubisco-nitrogen, rather than being prescribed. Hence, variations in canopy assimilation and stomatal conductance are sensitive to leaf nitrogen status through the Rubisco enzyme. The plant–soil nitrogen cycle includes nitrogen pools from photosynthetic enzymes, leaves and roots, as well as organic and mineral reservoirs from soil, which are generated, exchanged, and lost by biological fixation, atmospheric deposition, fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. Model output was compared with eddy covariance flux measurements made over a 5-year period (1998–2002). The model performed very well in simulating half-hourly and monthly mean NEP values for a range of environmental conditions observed during the 5 years. C&N-CLASS simulated NEP values were 274, 437, 354, 352 and 253 g C m−2 for 1998–2002, compared to observed NEP values of 269, 360, 381, 418 and 264 g C m−2, for the respective years. Compared to the default C-CLASS, the coupled C&N model showed improvements in simulating the seasonal and annual dynamics of carbon fluxes in this forest. The nitrogen transformation to soil organic forms, mineralization, plant nitrogen uptake and leaf Rubisco-nitrogen concentration patterns were strongly influenced by seasonal and annual temperature variations. In contrast, the impact of precipitation was insignificant on the overall forest nitrogen budget. The coupled C&N modelling framework will help to evaluate the impact of nitrogen cycle on terrestrial ecosystems and its feedbacks on Earth's climate system.  相似文献   

16.
In the present study, plant traits related to the photosynthetic capacity at the whole plant level were compared during grain filling in two maize genotypes with different nitrogen (N) efficiency. The plants were grown in a greenhouse in large root containers and supplied either with suboptimal or optimal rates of N fertilizer. Suboptimal N supply reduced total plant biomass at maturity (47 days (d) after flowering) by 29 % for the efficient genotype and by 36 % for the inefficient genotype. Suboptimal N supply reduced leaf growth of both genotypes. The reduction of leaf area was less severe in the N‐efficient genotype, despite of lower N content in the leaves. This indicates lower sensitivity of leaf growth towards internal N limitation in the efficient genotype. At low N supply, the green leaf area per plant gradually decreased after flowering in both genotypes, because of loss of chlorophyll during leaf senescence. The rate of net photosynthesis per unit leaf area (A) was reduced at low in comparison with high N supply. The ratio of A/leaf N content or leaf chlorophyll content was higher in the efficient genotype, indicating more efficient utilization of internal N for photosynthesis. At the end of grain filling, low N supply led to enhanced intercelluar CO2 concentrations (Ci) in the leaves, indicating limitation of CO2 assimilation by carboxylation rather than by stomatal resistance. The N deficiency‐induced increase of Ci was less pronounced in the efficient genotype. Furthermore, higher photosynthetic rate of the efficient genotype at suboptimal N supply was associated with lower contents of reducing sugars and sucrose in the leaves, whereas starch content was higher than in the inefficient genotype. The ability to avoid excessive sugar accumulation in the leaves under N deficiency might be related to higher photosynthetic N efficiency.  相似文献   

17.
Assessment of C budget for grasslands and drylands of the world   总被引:1,自引:0,他引:1  
Intergovernmental Panel on Climate Change (IPCC) estimates indicate that potential changes in seasonal rainfall and temperature patterns in central North America and the African Sahel will have a greater impact on biological response (such as plant production and biogeochemical cycling) and feedback to climate than changes in the overall amount of annual rainfall. Simulation of grassland and dryland ecosystem responses to climate and CO2 changes demonstrates the sensitivity of plant productivity and soil C storage to projected changes in precipitation, temperature and atmospheric CO2. Using three different land cover projections, changes in C levels in the grassland and dryland regions from 1800 to 1990 were estimated to be ?13.2, ?25.5 and ?14.7 Pg, i.e., a net source of C due to land cover removal resulting from cropland conversion. Projections into the future based on a double-CO2 climate including climate-driven shifts in biome areas by the year 2040 resulted in a net sink of +5.6, +27.4 and +26.8 Pg, respectively, based upon sustainable grassland management. The increase in C storage resulted mainly from an increase in area for the warm grassland sub-biome, together with increased soil organic matter. Preliminary modeling estimates of soil C losses due to 50 yr of regressive land management in these grassland and dryland ecoregions result in a 11 Pg loss relative to current conditions, and a potential loss of 37 Pg during a 50 yr period relative to sustainable land-use practices, an average source of 0.7 Pg C yr?1. Estimates of the cost of a 20 yr rehabilitation program are 5 to 8×109 US$ yr?1, for a C sequestering cost of approximately 10 US$ per tC.  相似文献   

18.
Dry matter production, net photosynthetic rate, leaf nutrient status and trunk anatomical characteristics of Fagus crenata seedlings grown in brown forest soil acidified by adding H2SO4 solution were investigated. The soil acidification leaded to decreased (Ca+Mg+K)/Al molar ratio in the soil solution. Dry mass per plant of the seedlings grown in the soil treated with H+ at 120 mg·L?1 was significantly reduced compared with the control value at 0 mg·L?1. When net photosynthetic rate was reduced in the seedlings grown in the soil treated with H+ at 120 mg·L?1, the carboxylation efficiency and maximum net photosynthetic rate at saturated CO2-concentration were lower than the control values. The addition of H+ to the soil at 120 mg·L?1iinduced a reduction in the concentration of Ca in the leaf. By contrast, the concentration of Al in the leaf was increased with increasing the amount of H+ added to the soil. The annual ring formed in the seedlings grown in the soil treated with H+ at 120 mg·L?1 was significantly narrower than that at 0 (control), 10, 30, 60 or 90 mg·L?1. Based on the results obtained in the present study, we conclude that Fagus crenata is relatively sensitive to a reduction in the (Ca+Mg+K)/Al molar ratio of soil solution compared with Picea abies.  相似文献   

19.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity.  相似文献   

20.
The formation of soil surface crusts leads to increased mechanical and hydraulic resistances. In this study, changes and relationships of both resistances under simulated sprinkle irrigation (or rainfall), and sprinkle followed by flooding, were examined. Results indicated that a silt-loam soil developed a thicker surface crust than a clay soil for any given kinetic energy (KE). Crusts as thick as 3.9 and 2.6 mm formed on the silt-loam and clay soils, respectively. Mechanical resistance, Rm, increased with increasing KE, where the effect was greater in the silt-loam and was attributed to intrinsic resistance and crust thickness. Steady-state infiltration rate (i) was much lower in crusted clay than crusted silt-loam soil. Changes of both Rm, and i closely followed changes in crust thickness (zc). Thicker crusts showed more resistance against external force than thinner crusts, due to more extended particle interlocking. Obtained functions indicated that the effect of thickness on strength was more significant in the lower range of crust thickness. The effect of zc on i strongly followed a negative power function for both soils, with higher i in the silt-loam soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号