首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical forests play an important role in the global carbon cycle. Despite an increasing number of studies have addressed carbon storage in tropical forests, the regional variation in such storage remains poorly understood. Uncertainty about how much carbon is stored in tropical forests is an important limitation for regional-scale estimates of carbon fluxes and improving these estimates requires extensive field studies of both above- and belowground stocks. In order to assess the carbon pools of a tropical seasonal forest in Asia, total ecosystem carbon storage was investigated in Xishuangbanna, SW China. Averaged across three 1 ha plots, the total carbon stock of the forest ecosystem was 303 t C ha−1. Living tree carbon stocks (both above- and belowground) ranged from 163 to 258 t C ha−1. The aboveground biomass C pool is comparable to the Dipterocarp forests in Sumatra but lower than those in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1–2 t C ha−1 to the total carbon stock. The mineral soil C pools (top 100 cm) ranged from 84 to 102 t C ha−1 and the C in woody debris from 5.6 to 12.5 t C ha−1, representing the second and third largest C component in this ecosystem. Our results reveal that a high percentage (70%) of C is stored in biomass and less in soil in this tropical seasonal forest. This study provides an accurate estimate of the carbon pool and the partitioning of C among major components in tropical seasonal rain forest of northern tropical Asia. Results from this study will enhance our ability to evaluate the role of these forests in regional C cycles and have great implications for conservation planning.  相似文献   

2.
The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET) and water use efficiency (WUE) (i.e., NPP/ET) in the SUS by employing an integrated process-based ecosystem model (Dynamic Land Ecosystem Model, DLEM). The results indicated that the average ET in the SUS was 710 mm during 1895–2007. As a whole, the annual ET increased and decreased slightly during the first and second half of the study period, respectively. The mean regional total NPP was 1.18 Pg C/yr (525.2 g C/m2/yr) during 1895–2007. NPP increased consistently from 1895 to 2007 with a rate of 2.5 Tg C/yr or 1.10 g C/m2/yr, representing a 27% increase. The average WUE was about 0.71 g C/kg H2O and increased about 25% from 1895 to 2007. The rather stable ET might explain the resulting increase in WUE. The average WUE of different biomes followed an order of: forest (0.93 g C/kg H2O) > wetland (0.75 g C/kg H2O) > grassland (0.58 g C/kg H2O) > cropland (0.54 g C/kg H2O) > shrubland (0.45 g C/kg H2O). WUE of cropland increased the fastest (by 30%), followed by shrubland (17%) and grassland (9%), while WUE of forest and wetland changed little from the period of 1895–1950 to the period of 1951–2007. NPP, ET and WUE showed substantial inter-annual and spatial variability, which was induced by the non-uniform distribution patterns and change rates of environmental factors across the SUS. We concluded that an accurate projection of the regional impact of climate change on carbon and water resources must consider the spatial variability of ecosystem water use efficiency across biomes as well as the interactions among all stresses, especially land-use and land-cover change and climate.  相似文献   

3.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

4.
Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental Forest (MEF), in northern Minnesota, USA, using a network of plots that were evenly spaced across a heterogeneous 1-km2 mosaic composed of a mix of upland forests and peatlands. Using a nested plot design, we estimated the standing C stock of vegetation, coarse detrital wood and soil pools. We also estimated aboveground net primary production (ANPP) as well as coarse root production. Additionally we evaluated how vegetation cover types within the study area differed in C storage. The total ecosystem C pool did not vary significantly among upland areas dominated by aspen (160 ± 13 Mg C ha−1), mixed hardwoods (153 ± 19 Mg C ha−1), and conifers (197 ± 23 Mg C ha−1). Live vegetation accounted for approximately 50% of the total ecosystem C pool in these upland areas, and soil (including forest floor) accounted for another 35–40%, with remaining C stored as detrital wood. Compared to upland areas, total C stored in peatlands was much greater, 1286 ± 125 Mg C ha−1, with 90–99% of that C found in peat soils that ranged from 1 to 5 m in depth. Forested areas ranged from 2.6 to 2.9 Mg C ha−1 in ANPP, which was highest in conifer-dominated upland areas. In alder-dominated and black spruce-dominated peatland areas, ANPP averaged 2.8 Mg C ha−1, and in open peatlands, ANPP averaged 1.5 Mg C ha−1. In treed areas of forest and peatlands, our estimates of coarse root production ranged from 0.1 to 0.2 Mg C ha−1. Despite the lower production in open peatlands, all peatlands have acted as long-term C sinks over hundreds to thousands of years and store significantly more C per unit area than is stored in uplands. Despite occupying only 13% of our study area, peatlands store almost 50% of the C contained within it. Because C storage in peatlands depends largely on climatic drivers, the impact of climate changes on peatlands may have important ramifications for C budgets of the western Great Lakes region.  相似文献   

5.
There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

6.
Forest succession contributes to the global terrestrial carbon (C) sink, but changes in C sequestration in response to varied harvest intensities have been debated. The forests of the Central Appalachian region have been aggrading over the past 100 years following widespread clear-cutting that occurred in the early 1900s and these forests are now valuable timberlands. This study compared the history of ecosystem C storage in four watersheds that have been harvested at different frequencies and intensities since 1958. We compared NPP, NEP, and component ecosystem C fluxes (g C m−2 year−1) in response to the four different harvest histories (no harvest, clear-cutting, single tree selection cutting, and 43 cm diameter-limit cutting). Clear-cutting had short-term negative effects on NEP but harvest did not significantly impact long-term average annual C sequestration rates. Average plant C (g C m−2) since 1950 was about 33% lower in response to a clear-cut event than plant C in an un-harvested forest, suggesting that the C sequestration associated with clear-cutting practices would decline over time and result in lower C storage than diameter-limit cut, selective cut, or un-harvested forests. Total C stored over a 55-year period was stimulated ∼37% with diameter-limit cutting and selective cutting relative to un-harvested forests.  相似文献   

7.
8.
Decomposing stumps could significantly increase soil resource heterogeneity in forest ecosystems. However, the impact of these microsites on nutrient retention and cycling is relatively unknown. Stump soil was defined as the soil fraction directly altered by the decomposition of the primary rooting system (e.g. taproots) and aboveground stumps. Study sites were located in mature hardwood stands within the Jefferson National Forest in the Ridge and Valley Physiographic region of southwest Virginia. The objectives of this study were to: (i) determine the total soil volume altered by the decomposition of stumps and underlying root system, (ii) compare and contrast total C and N, extractable ammonium (NH4+) and nitrate (NO3), potentially mineralizable N, microbial biomass C (MBC), root length and root surface area between the bulk soil (i.e. O, A, B and C horizons) and stump soil and (iii) evaluate how nutrient concentrations and fine-root dynamics change as stumps decompose over time using a categorical decay class system for stumps. Potentially mineralizable N was 2.5 times greater in stump soil than the A horizon (103 mg kg−1 vs. 39 mg kg−1), 2.7 times greater for extractable NH4+ (16 mg kg−1 vs. 6 mg kg−1) and almost 4 times greater for MBC (1528 mg kg−1 vs. 397 mg kg−1). Approximately 19% of the total fine-root length and 14% of fine-root surface area occurred in the stump soil. Significant differences occurred in C and N concentrations between all four decay classes and the mineral soil. This validated the use of this system and the need to calculate weighted averages based on the frequency and soil volume influenced by each decay class. In this forest ecosystem, approximately 1.2% of the total soil volume was classified as stump soil and contained 10% and 4% of soil C and N. This study illustrates that including stump soil in soil nutrient budgets by decay class will increase the accuracy of ecosystem nutrient budgets.  相似文献   

9.
In all, 48 sites of subalpine coniferous forest that had undergone natural regeneration for 5-310 years were selected as study locations in the Southwest China. We compared species richness (S), plant diversity (Shannon-Wiener index, H′; Margalef index, R), and above- and below-ground ecosystem carbon (C) pools of six plant communities along a chronosequence of vegetation restoration, and we also examined evidence for a functional relationship between plant diversity and C storage. Our results showed that above-ground C increased significantly (over 52-fold), mainly due to the increase of C in aboveground living plants and surface litter. Soil organic carbon (SOC) content increased from the herb community type (dominated by Deyeuxia scabrescens, P1) to mixed forest type (dominated by Betula spp. and Abies faxoniana, P4), which constituted the main C pool of the system (63-89%), but decreased thereafter (communities P5-P6). The mean C stock in the whole ecosystem - trees, litter layer and mineral soil - ranged from 105 to 730 Mg C ha−1 and was especially high in the spruce forest community type (dominated by Picea purpurea, P6). On the other hand, the relationships between C stocks (soil, aboveground) and mean annual temperature or altitude were generally weak (P > 0.05). Moreover, we did not detect a relationship between S and aboveground C storage, while we found a significant negative relationship between H′, R and aboveground C storage. In addition, our experiment demonstrated that total root biomass and litter C/N ratio were significant functional traits influencing SOC, while S, R, and H′ had little effect. Path analysis also revealed that litter C/N ratio predominantly regulated SOC through changes in the quantity of microorganisms and soil invertase enzyme activity.  相似文献   

10.
Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0–10 cm) across 6–8-year-old silvicultural canopy gaps in three 50–70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3) pools, net N mineralization and nitrification rates, and NH4+ and NO3 ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3 pools, net N mineralization and nitrification rates, and NH4+ and NO3 IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6–8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.  相似文献   

11.
Harvest impacts on soil carbon storage in temperate forests   总被引:1,自引:0,他引:1  
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of variation in soil C responses to harvest, we used meta-analysis to test a database of 432 soil C response ratios drawn from temperate forest harvest studies around the world. Harvesting reduced soil C by an average of 8 ± 3% (95% CI), although numerous sources of variation mediated this significant, overall effect. In particular, we found that C concentrations and C pool sizes responded differently to harvesting, and forest floors were more likely to lose C than mineral soils. Harvesting caused forest floor C storage to decline by a remarkably consistent 30 ± 6%, but losses were significantly smaller in coniferous/mixed stands (−20%) than hardwoods (−36%). Mineral soils showed no significant, overall change in C storage due to harvest, and variation among mineral soils was best explained by soil taxonomy. Alfisols and Spodosols exhibited no significant changes, and Inceptisols and Ultisols lost mineral soil C (−13% and −7%, respectively). However, these C losses were neither permanent nor unavoidable. Controls on variation within orders were not consistent, but included species composition, time, and sampling depth. Temporal patterns and soil C budgets suggest that forest floor C losses probably have a lesser impact on total soil C storage on Alfisols, Inceptisols, and Ultisols than on Spodosols, which store proportionately large amounts of C in forest floors with long C recovery times (50–70 years). Mineral soil C losses on Inceptisols and Ultisols indicate that these orders are vulnerable to significant harvest-induced changes in total soil C storage, but alternative residue management and site preparation techniques, and the passage of time, may mitigate or negate these losses. Key findings of this analysis, including the dependence of forest floor and mineral soil C storage changes on species composition and soil taxonomic order, suggest that further primary research may make it possible to create predictive maps of forest harvesting effects on soil C storage.  相似文献   

12.
Chinese fir [(Cunninghamia lanceolata (Lamb.) Hook (Taxodiaceae)] plantations are helping to meet China's increasing demands for timber, while, at the same time, sequestering carbon (C) above and belowground. The latter function is important as a means of slowing the rate that CO2 is increasing in the atmosphere. Available data are limited, however, and even if extensive, would necessitate consideration of future changes in climatic conditions and management practices. To evaluate the contribution of Chinese fir plantations under a range of changing conditions a dynamic model is required. In this paper, we report successful outcome in parameterizing a process-based model (3-PG) and validating its predictions with recent and long-term field measurements acquired from different ages of Chinese fir plantations at the Huitong National Forest Ecosystem Research Station. Once parameterized, the model performed well when simulating leaf area index (LAI), net primary productivity (NPP), biomass of stems (WS), foliage (WF) and roots (WR), litterfall, and shifts in allocation over a period of time. Although the model does not specifically include heterotrophic respiration, we made some attempts to estimate changes in root C storage and decomposition rates in the litterfall pool as well as in the total soil respiration. Total C stored in biomass increased rapidly, peaking at age 21 years in unthinned stands. The predicted averaged above and belowground NNP (13.81 t ha−1 a−1) of the Chinese fir plantations between the modeling period (from 4 to 21-year-old) is much higher than that of Chinese forests (4.8–6.22 t ha−1 a−1), indicating that Chinese fir is a suitable tree species to grow for timber while processing the potential to act as a C sequestration sink. Taking into account that maximum LAI occurs at the age of 15 years, intermediate thinning and nutrient supplements should, according to model predictions, further increase growth and C storage in Chinese fir stands. Predicted future increases (approximately 0–2 °C) in temperature due to global warming may increase plantation growth and reduce the time required to complete a rotation, but further increases (approximately 2–6 °C) may reduce the growth rate and prolong the rotational age.  相似文献   

13.
Land-use and land cover strongly influence carbon (C) storage and distribution within ecosystems. We studied the effects of land-use on: (i) above- and belowground biomass C, (ii) soil organic C (SOC) in bulk soil, coarse- (250–2000 μm), medium- (53–250 μm) and fine-size fractions (<53 μm), and (iii) 13C and 15N abundance in plant litter, bulk soil, coarse-, and medium- and fine-size fractions in the 0–50 cm soil layer in Linaria AB, Canada between May and October of 2006. Five adjacent land-uses were sampled: (i) agriculture since 1930s, (ii) 2-year-old hybrid poplar (Populusdeltoides × Populus × petrowskyana var. Walker) plantation, (iii) 9-year-old Walker hybrid poplar plantation, (iv) grassland since 1997, and (v) an 80-year-old native aspen (Populus tremuloides Michx.) stand. Total ecosystem C stock in the native aspen stand (223 Mg C ha−1) was similar to that of the 9-year-old hybrid poplar plantation (174 Mg C ha−1) but was significantly greater than in the agriculture (132 Mg C ha−1), 2-year-old hybrid poplar plantation (110 Mg C ha−1), and grassland (121 Mg C ha−1). Differences in ecosystem C stocks between the land-uses were primarily the result of different plant biomass as SOC in the 0–50 cm soil layer was unaffected by land-use change. The general trend for C stocks in soil particle-size fractions decreased in the order of: fine > medium > coarse for all land-uses, except in the native aspen stand where C was uniformly distributed among soil particle-size fractions. The C stock in the coarse-size fraction was most affected by land-use change whilst the fine fractions the least. Enrichment of the natural abundances of 13C and 15N across the land-uses since time of disturbance, i.e., from agriculture to 2- and then 9-year-old hybrid poplar plantations or to grassland, suggests shifts from more labile forms of C to more humified forms of C following those land-use changes.  相似文献   

14.
Wastewater bioremediation has been practised successfully in several forests without significant adverse effect on water quality of adjacent aquatic systems. However, long-term success of wastewater irrigation systems depends on an overall positive response of the forest ecosystem to substantial amounts of added water and nutrients over time. Municipal wastewater irrigation effects on the fate of added nitrogen in a mature Appalachian hardwood forest were investigated during the first 2 years of irrigation. Wastewater was secondarily treated, chlorinated, and sprayed on the study site at five rates. Forest litter N decreased on irrigated sites due to increased litter decomposition rates. Nitrogen mineralization potential (N0) decreased greatly in soils irrigated at a rate of 140 cm year−1 for 2 years. Net nitrification and relative nitrification (the amount of NO3-N as a proportion of the total mineral N) increased proportionally with irrigation rate. The highest irrigation rates increased denitrification activity and contributed significantly to the bioremediation process by removing nitrate that otherwise would have been subject to leaching. The increase in NO3 production in the soil and limited N sequestration by the forest system nevertheless resulted in a net loss of N via leaching. Nitrate concentrations of soil water increased owing to irrigation, with the highest rate at 11 mg 1−1 on sites receiving 70 cm year−1. During the 2-year period, the forest ecosystem experienced a net leaching loss of N that ranged from 14.8 to 105 kg N ha−1 year−1, depending on the application rate. It is likely that this mature hardwood forest will continue to lose N, and that little or no additional N will be sequestered.  相似文献   

15.
Carbon (C) accreditation of forest development projects is one approach for sequestering atmospheric CO2, under the provisions of the Kyoto protocol. The C sequestration potential of reforested mined land is not well known. The purpose of this work was to estimate and compare the ecosystem C content in forests established on surface, coal-mined and non-mined land. We used existing tree, litter, and soil C data for fourteen mined and eight adjacent, non-mined forests in the Midwestern and Appalachian coalfields to determine the C sequestration potential of mined land reclaimed prior to the passage of the Surface Mining Control and Reclamation Act (1977). We developed statistically significant and biologically reasonable models for ecosystem C across the spectrum of site quality and stand age. On average, the highest amount of ecosystem C on mined land was sequestered in pine stands (148 Mg ha−1), followed by hardwood (130 Mg ha−1) and mixed stands (118 Mg ha−1). Non-mined hardwood stands sequestered 210 Mg C ha−1, which was about 62% higher than the average of all mined stands. Our mined land response surface models of C sequestration as a function of site quality and age explained 59, 39, and 36% of the variation of ecosystem C in mixed, pine, and hardwood stands, respectively. In pine and mixed stands, ecosystem C increased exponentially with the increase of site quality, but decreased with age. In mined hardwood stands, ecosystem C increased asymptotically with age, but it was not affected by site quality. At rotation age (60 yr), ecosystem C in mined hardwood stands was less on high quality sites, but similar for low quality sites compared to non-mined hardwood stands. The overall results indicated that the higher the original forest site quality, the less likely C sequestration potential was restored, and the greater the disparity between pre- and post-mining C sequestration stocks.  相似文献   

16.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

17.
Soil surface CO2 flux (Sflux) is the second largest terrestrial ecosystem carbon flux, and may be affected by forest harvest. The effects of clearcutting on Sflux have been studied, but little is known about the effect of alternative harvesting methods such as selective tree harvest on Sflux. We measured Sflux before and after (i) the creation of forest canopy gaps (simulating group tree selection harvests) and (ii) mechanized winter harvest but no tree removal (simulating ground disturbance associated with logging). The experiment was carried out in a sugar maple dominated forest in the Flambeau River State Forest, Wisconsin. Pre-treatment measurements of soil moisture, temperature and Sflux were measured throughout the growing season of 2006. In January–February 2007, a harvester created the canopy gaps (200–380 m2). The mechanization treatment consisted of the harvester traveling through the plots for a similar amount of time as the gap plots, but no trees were cut. Soil moisture and temperature and Sflux were measured throughout the growing season for 1 year prior to harvest and for 2 years after harvest. Soil moisture and temperature were significantly greater in the gap than mechanized and control treatments. Instantaneous Sflux was positively correlated to soil moisture and soil temperature at 2 and 10 cm, but temperature at 10 cm was the single best predictor. Annual Sflux was not significantly different among treatments prior to winter 2007 harvest, and was not significantly different among treatments after harvest. Annual (+1 std. err.) Sflux averaged 967 + 72, 1011 + 72, and 1012 + 72 g C m−2 year−1 in the control, mechanized and gap treatments, respectively, for the 2-year post-treatment period. The results from this study suggest selective group tree harvest significantly increases soil moisture and temperature but does not significantly influence Sflux.  相似文献   

18.
Long-term management impacts on carbon storage in Lake States forests   总被引:2,自引:0,他引:2  
We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of similar ages, providing a unique opportunity to evaluate long-term management impacts on carbon pools in two major North American forest types. Management resulted in total ecosystem carbon pools of 130-137 Mg ha−1 in thinned red pine and 96-177 Mg ha−1 in managed northern hardwoods compared to 195 Mg ha−1 in unmanaged red pine and 224 Mg ha−1 in unmanaged northern hardwoods. Managed stands had smaller tree and deadwood pools than unmanaged stands in both ecosystems, but management had limited impacts on understory, forest floor, and soil carbon pools. Total carbon storage and storage in individual pools varied little across thinning intensities in red pine. In northern hardwoods, selection cuttings stored more carbon than the diameter-limit treatment, and selection cuttings generally had larger tree carbon pools than the shelterwood or diameter-limit treatments. The proportion of total ecosystem carbon stored in mineral soil tended to increase with increasing treatment intensity in both ecosystems, while the proportion of total ecosystem carbon stored in the tree layer typically decreased with increasing treatment intensity. When carbon storage in harvested wood products was added to total ecosystem carbon, selection cuttings and unmanaged stands stored similar levels of carbon in northern hardwoods, but carbon storage in unmanaged stands was higher than that of thinned stands for red pine even after adding harvested wood product carbon to total ecosystem carbon. Our results indicate long-term management decreased on-site carbon storage in red pine and northern hardwood ecosystems, but thinning intensity had little impact on carbon storage in red pine while increasing management intensity greatly reduced carbon storage in northern hardwoods. These findings suggest thinning to produce different stand structures would have limited impacts on carbon storage in red pine, but selection cuttings likely offer the best carbon management options in northern hardwoods.  相似文献   

19.
Considerable research efforts have been devoted to determining what forest management practices most affect stream ecosystems, and how those impacts might be mitigated. Recent studies have stressed the relevance of litter decomposition to assess the conditions of headwater streams affected by riparian and upland forest harvest. Here we specifically examined whether litter decomposition can detect ecological effects of clearcutting to stream edges on headwater streams eight years after logging and if large (30 m) and narrow (10 m) riparian reserves (8-year post-harvest), and selection logging at 50% removal of basal area of riparian trees (1-year post-harvest), are effective protection measures for streams. We measured decomposition rates of red alder (Alnus rubra) leaf litter in sixteen stream reaches, including reference reaches in a 70-year-old forest. We further examined assemblages of two main litter consumer groups, shredder invertebrates in riffles and aquatic hyphomycete fungi developing on decaying alder leaves. Alder decay rate was significantly lower in clearcut reaches than in reference reaches, and we found no evidence that any alternative riparian management practices examined in this study were able to mitigate against such an effect of logging. In unlogged reaches, rapid litter decomposition (0.0050–0.0118 day−1) was associated with high density and diversity of shredders (up to ten taxa). Slower litter decomposition in wide and narrow reserve reaches (0.0019–0.0054 day−1) and clearcut reaches (0.0024–0.0054 day−1) was attributed to lower density and richness of shredders. By contrast, the low decay rate in recently established thinned reaches (0.0031–0.0049 day−1) was not associated with a numerical response of shredders. Smothering of submerged leaves by sediments may have caused the reduction in alder decay rate in thinned reaches. Across all forest treatments fungal biomass or diversity remained fairly similar. Our findings suggest that stream ecosystems are extremely sensitive to small changes in riparian and upland forest cover. We propose that litter decomposition as a key ecosystem function in streams could be incorporated into further efforts to evaluate and improve forestry best management practices.  相似文献   

20.
Nitrogen (N) deposition in the tropics is predicted to increase drastically in the next decades. The sparse information on N cycling in tropical forests revealed that the soil N status of an ecosystem is the key to analyze its reactions to projected increase in N input. Our study was aimed at (1) comparing the soil N availability of forest sites across an Ecuadorian Andosol toposequence by quantifying gross rates of soil N cycling in situ, and (2) determining the factors controlling the differences in soil N cycling across sites. The toposequence was represented by five old-growth forest sites with elevations ranging from 300 m to 1500 m. Our results provide general insights into the role of elevation-mediated factors (i.e. degree of soil development and temperature) in driving patterns of soil N cycling. Gross rates of N transformations, microbial N turnover time, and δ15N signatures in soil and leaf litter decreased with increasing elevation, signifying a decreasing N availability across the toposequence. This was paralleled by a decreasing degree of soil development with increasing elevation, as indicated by declining clay contents, total C, total N, effective cation exchange capacity and increasing base saturation. Soil N-cycling rates and δ15N signatures were highly correlated with mean annual temperature but not with mean annual rainfall and soil moisture which did not systematically vary across the toposequence. Microbial immobilization was the largest fate of produced NH4+ across all sites, and nitrification activity was only 5–11% of gross NH4+ production. We observed a fast reaction of NO3 to organic N and its role for N retention deserves further attention. If projected increase in N deposition will occur, the timing and magnitude of gaseous N losses may follow the pattern of N availability across this Andosol toposequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号