首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Harvester operators that decide about tree removal during thinnings have currently no instruments to measure stand density continuously before and after the operation. We tested whether basal area can be measured rapidly for this purpose with a 2D terrestrial laser scanner. An algorithm was developed, which automatically detects trees from laser scanner point clouds, measures their position and diameter, and calculates basal area. A field test included 18 laser scans in two Norway spruce stands with a wide range of stand densities, representing situations before and after thinning. Occlusion is a problem of single laser scans, and about one-third of the trees within the scanning range were not detected. Occlusion varies with stem density and branchiness. We therefore applied a flexible scanning range, which is detected automatically based on the laser hit density distribution for each scan. Scanning ranges were between 5.5 and 8.4 m (mean = 7.3 m) in the test scans, which is below the reach of the harvester crane, but still large enough to estimate local stand density. Basal area measured with the laser scanner was unbiased only in one of the two stands. Trees not detected or trees falsely detected caused only small bias of the basal area measurement in one of the two stands. Measurement errors for individual scans were, however, often around 10 m2 ha?1.  相似文献   

2.
Airborne laser scanner (ALS)-based forest inventory method usuallyadopt a laser canopy height distribution approach in which forestcharacteristics are predicted using measures such as percentilesof the distribution of laser canopy heights across a fixed area.The method requires a ground-truth sample of accurately measuredfield plots. One possibility for reducing the costs lies inthe use of existing field plots for ground-truth purposes. Themost obvious alternative in Finland would be to use truncatedangle count sample plots of the National Forest Inventory ormore locally data of checking of inventory by compartments.Due to the lack of suitable angle count ground-truth data andcorresponding laser data, we tested this possibility using dataon fixed-area sample plots, in which tree locations were simulated.The trees for a truncated angle count sample plot were thenchosen and the resulting data together with the characteristicsof an ALS-based canopy height distribution were used to constructregression models to predict stem volume, basal area, stem number,basal area median diameter and height. The accuracy of the standattributes was found to be almost as good as in the case ofmodels of fixed-area plots.  相似文献   

3.
The purpose of this study was to test a method for delineating individual tree crowns based on a fully automated recognition methodology. The study material included small-footprint time-of-flight laser scanner data acquired in the spring and summer of 2002. The data were collected with a Toposys II airborne laser system flown over the Norway spruce (Picea abies) and European beech (Fagus sylvatica) dominated forests of the Bavarian Forest National Park, Germany. The applied algorithm, which earlier had been validated for Swedish forest conditions, is a watershed algorithm that is based on the use of laser scanning data. 2584 trees in a total of 28 representative reference stands, each 0.1–0.25 ha in area, were included in the investigation. With the algorithm, 76.9% of the trees in the upper layer could be recognised. This corresponds to 85.2% of the timber volume determined by ground measurements. The results for conifers were more accurate in this respect than for deciduous trees. A negative aspect was the number of falsely identified trees, the percentage of which was 5.4%.  相似文献   

4.
Abstract

This research reports the major evaluation results from an operational stand-based forest inventory using airborne laser scanner data carried out in Norway. This is the first operational inventory in which data from two separate districts are combined. Laser data from two forest areas of 65 and 110 km2 were used to predict six biophysical stand variables used in forest planning. The predictions were based on regression equations estimated from 250 m2 field training plots distributed systematically throughout the two forest areas. Test plots with a size of 0.1 ha were used for validation. The testing revealed standard deviations between ground-truth values and predicted values of 0.58–0.85 m (3.4–5.6%) for mean and dominant heights, 2.62–2.87 m2 ha?1 (9.3–14.3%) for basal area, and 18.7–25.1 m3 ha?1 (10.8–12.8%) for stand volume. No serious bias was detected. For 10 of the 12 estimated regression models there were no significant effects of district.  相似文献   

5.
Climate change towards a warmer and dryer vegetation period may negatively impact growing conditions for Scots pine monocultures situated on dry, sandy soils in Central Europe. The purpose of the study was to evaluate the effect of thinning on precipitation throughfall in young Scots pine stands on typical pine sites. In 1992, observation of precipitation and throughfall started at the Tyniště research site (lowland of Eastern Bohemia) in a 7-year-old pine stand planted in rows at a stocking of ca 10,000 trees ha−1. Throughfall was measured at weekly intervals during the growing season (April-September) by gauges randomly located in two treatments - variant 1C - Control without thinning and variant 2T - Thinned - and compared to precipitation at an open space outside of the canopy. The results demonstrated the positive effects of heavy low thinning (removal of 47% of the total number of trees and 31% of total pre-treatment basal area) on the water supply of young Scots pine stands. On the Thinned treatment, throughfall increased by 2-8% compared to Control plot. This positive effect persisted for six years after the first canopy reduction and the differences were significant for the first four years after thinning. After the second treatment (high thinning), throughfall on the Thinned treatment showed a nominal, but statistically insignificant increase. The likely reason for this result is that the application of a different type of thinning increased the variability of the canopy and, consequently, the effect of released crowns could not be detected.  相似文献   

6.
A conceptual model describing why laser height metrics derived from airborne discrete return laser scanner data are highly correlated with above ground biomass is proposed. Following from this conceptual model, the concept of canopy-based quantile estimators of above ground forest biomass is introduced and applied to an uneven-aged, mature to overmature, tolerant hardwood forest. Results from using the 0th, 25th, 50th, 75th and 100th percentiles of the distributions of laser canopy heights to estimate above ground biomass are reported. A comparison of the five models for each dependent variable group did not reveal any overt differences between models with respect to their predictive capabilities. The coefficient of determination (r 2 ) for each model is greater than 0.80 and any two models may differ at most by up to 9%. Differences in root-mean-square error (RMSE) between models for above ground total, stem wood, stem bark, live branch and foliage biomass were 8.1, 5.1, 2.9, 2.1 and 1.1 Mg ha?1, respectively.  相似文献   

7.
Abstract

The aim of this study was to assess the accuracy of basal area distributions of sample plots in coniferous forest derived from small-footprint airborne laser scanner data, and to compare the accuracy of two methods for derivation of such distributions based on: (1) two percentiles of a two-parameter Weibull and parameter recovery, and (2) a system of 10 percentiles defined across the range of observed diameters. The 12 percentiles were derived from the empirical basal area distributions of 141 plots with size 300–400 m2. Regression analysis was used to relate the percentiles to various canopy height and canopy density metrics derived from the laser data. On average, the distance between transmitted laser pulses was 0.9 m on the ground. The plots were divided into three strata according to age class and site quality. The stratum-specific regressions explained 7–91% of the variability. Total plot volume predicted from the estimated distributions was used to assess the accuracy of the regressions. Cross-validation of the regressions revealed a bias of ?1.2 to 2.1% between predicted and ground-truth values of plot volume. The standard deviations of the differences between predicted and ground-truth values of plot volume were 15.1–16.4%. Neither bias nor standard deviation differed significantly between the two validated methods.  相似文献   

8.
Mean tree height, dominant height, mean diameter, stem number, basal area and timber volume of 116 georeferenced field sample plots were estimated from various canopy height and canopy density metrics derived by means of a small-footprint laser scanner over young and mature forest stands using regression analysis. The sample plots were distributed systematically throughout a 6500 ha study area, and the size of each plot was 232.9 m2. Regressions for coniferous forest explained 60–97% of the variability in ground reference values of the six studied characteristics. A proposed practical two-phase procedure for prediction of corresponding characteristics of entire forest stands was tested. Fifty-seven test plots within the study area with a size of approximately 3740 m2 each were divided into 232.9 m2 regular grid cells. The six examined characteristics were predicted for each grid cell from the corresponding laser data using the estimated regression equations. Average values for each test plot were computed and compared with ground-based estimates measured over the entire plot. The bias and standard deviations of the differences between predicted and ground reference values (in parentheses) of mean height, dominant height, mean diameter, stem number, basal area and volume were ?0.58 to ?0.85 m (0.64–1.01 m), ?0.60 to ?0.99 m (0.67–0.84 m), 0.15–0.74 cm (1.33–2.42 cm), 34–108 ha?1 (97–466 ha?1), 0.43–2.51 m2 ha?1 (1.83–3.94 m2 ha?1) and 5.9–16.1 m3 ha?1 (15.1–35.1 m3 ha?1), respectively.  相似文献   

9.
Damage to residual stand after partial harvesting or thinning may lead to serious economic losses in terms of both timber quality at the final harvest, and tree growth reduction. Logging damages and their effect on tree growth were studied in a long term experiment on Corsican pine in central Italy. Damage frequency, agent (felling, skidding), position (root damage, stem base, between 0.3 and 1 m a.g.l., >1 m a.g.l.) and severity (light, severe) and tree growth were measured after selective thinning from below and at 10 years after the treatment. In detail, we aimed at: monitoring mechanical damages to trees at the end of thinning and after 10 years; and assessing stand stability, growing stock, ring width and basal area at 10 years after the thinning. The thinning removed about 20% of volume, 38% of trees and 26% of basal area. The basal area decreased from 56 m2 ha−1 to 42 m2 ha−1 but after 10 years it increased again to 56 m2 ha−1. Immediately after thinning, 13.6% of the standing trees was damaged, out of these 36.17% showed severe injuries. Damages to standing trees were mainly due to skidding. Ten years after thinning, the percentage of damaged trees was about 17%, out of which 86.67% showed severe wounds. An increase of damaged trees and of trees with severe wounds was observed suggesting that a deeper knowledge on long-term effect of logging damages is needed. This study did not highlight any effect of logging damage on tree growth. In fact, no difference in ring width was recorded between damaged and undamaged trees.  相似文献   

10.
重庆是我国酸雨发生最早且其污染最严重的地区之一。由于长期遭受酸雨影响,这里的森林受害明显,经济和环境损失巨大。马尾松(Pinus massonianaLamb.)和木荷(Schima superbaGardn.etChamp.)都属于重庆的重要乡土树种,马尾松在造林中被广泛使用,木荷是优良的生物防火树种,并因  相似文献   

11.
This research reports the major results from an evaluation of the first Nordic operational stand-based forest inventory using airborne laser scanner data. Laser data from a forest area of 250 km2 were used to predict six biophysical stand variables used in forest planning. The predictions were based on regression equations estimated from 250 m2 field training plots distributed systematically throughout the forest area. Test plots with an approximate size of 0.1–0.4 ha were used for validation. The testing revealed standard deviations between ground-truth values and predicted values of 0.36–1.37 m (1.9–7.6%) for mean height, 0.70–1.55 m (3.0–7.6%) for dominant height, 2.38–4.88 m2 ha?1 (7.8–14.2%) for basal area and 13.9–45.9 m3 ha?1 (6.5–13.4%) for stand volume. No serious bias was detected.  相似文献   

12.
WARING  R.H.; NEWMAN  KEN; BELL  JOHN 《Forestry》1981,54(2):129-137
Variation in the unit leaf rate in trees, i.e. the weight ofwood increment per unit of leaf area, arises from disproportionatechanges in their rates of net photosynthesis and in the allocationof carbohydrates. Changes in unit leaf rate in response to variationsin canopy density were investigated in a thinning experimentestablished in a 36 year-old Douglas fir forest. Tree growthwas estimated from increment cores and leaf area by linear correlationwith sapwood basal area. Net assimilation and mean growth ofindividual trees expressed as basal area and volume decreasedin direct proportion to increase in canopy density from 3.6to 12.0 m2m–2 of projected leaf area. These relationshipswere linear with multiple correlation coefficients (r2)0.97. Net stand increment, in contrast to unit leaf rate, culminatedas projected leaf area approached 6 m2m–2 and decreasedat the higher canopy densities due to mortality. The approachdeveloped in this paper could be applicable in predicting growthin response to various silvicultural treatments.  相似文献   

13.
Interspecific competition is a key process determining the dynamics of mixed forest stands and influencing the yield of multispecies tree plantations. Trees can respond to competitive pressure from neighbors by crown plasticity, thereby avoiding competition. We employed a high-resolution ground-based laser scanner to analyze the 3-dimensional extensions and shape of the tree crowns in a near-natural broad-leaved mixed forest in order to quantify the direction and degree of crown asymmetry of 15 trees (Fagus sylvatica, Fraxinus excelsior, Carpinus betulus) in detail. We also scanned the direct neighbors and analyzed the distance of their crown centres and the crown shape with the aim to predict the crown asymmetry of the focal tree from competition-relevant attributes of its neighbors. It was found that the combination of two parameters, one summarizing the size of the neighbor (DBH) and one describing the distance to the neighbor tree (HD), was most suitable for characterizing the strength of the competitive interaction exerted on a target tree by a given neighbor. By summing up the virtual competitive pressure of all neighbors in a single competitive pressure vector, we were able to predict the direction of crown asymmetry of the focal tree with an accuracy of 96° on the full circle (360°).The competitive pressure model was equally applicable to beech, ash and hornbeam trees and may generate valuable insight into competitive interactions among tree crowns in mixed stands, provided that sufficiently precise data on the shape and position of the tree crowns is available. Multiple-aspect laser-scanning proved to be an accurate and practicable approach for analyzing the complex 3-dimensional shape of the tree crowns, needed to quantify the plasticity of growth processes in the canopy. We conclude that the laser-based analysis of crown plasticity offers the opportunity to achieve a better understanding of the dynamics of canopy space exploration and also may produce valuable advice for the silvicultural management of mixed stands.  相似文献   

14.
Competition for canopy space is a process of major importance in forest dynamics. Although virgin and old-growth European beech (Fagus sylvatica L.) forests in Europe have been studied for many years, there are to date no studies of individual-tree crown plasticity and the way this is influenced by local neighborhood interactions in these forests. In this study, we analyzed crown plasticity and local neighborhood interactions of individual trees in the upper canopy of the old-growth beech forests of Serrahn, northeast Germany. In a 2.8-ha sample plot, we measured crown radii of all upper canopy trees and analyzed the direction and extent of crown asymmetry. Size, relative position, and distance of neighboring trees were used to construct vectors of neighborhood asymmetry within different distances from target trees. The crowns of beech trees showed strong morphological plasticity. Mean absolute and relative displacement of crown centers from the stem base were 1.95 m and 0.37, respectively. Circular–circular rank correlation coefficients between the direction of crown displacement and the direction of neighborhood pressure showed that trees strongly positioned their crowns away from local neighbors. Highest correlation coefficients were obtained when basal area and relative position of neighboring trees within a radial distance of 12 m were considered. Clark and Evans index and Ripley’s K-function showed that crowns were more regularly distributed than stems. Projected canopy cover was about 10% higher than canopy cover with simulated circular crowns. We conclude that the crowns of older beech trees have a high ability to plastically respond to changes in the local canopy conditions, enabling very effective exploitation of canopy space.  相似文献   

15.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

16.
Lianas are often overlooked in temperate ecological studies even though they are important components of forest communities. While lianas have been shown to damage tropical canopy trees and reduce the growth of juvenile trees, the impact of lianas on canopy tree growth in temperate systems is largely unknown. Growth of trees ≥8 cm dbh was examined over a 9-year period within 50-year old post-agricultural secondary forests in the Piedmont region of New Jersey, USA. Five lianas, Celastrus orbiculatus, Lonicera japonica, Parthenocissus quinquefolia, Toxicodendron radicans, and Vitis species, occurred throughout the forest. Total liana basal area, number of stems, and percent cover within host trees were evaluated to assess liana burdens on 606 previously censused trees. These data were related to tree growth to assess liana impacts. Forest trees were separated based on their dominance in the canopy to determine whether lianas had the potential to influence forest composition. In general, lianas in the forests were fairly abundant, with 68% of the trees having at least one liana present. On average, each tree supported 9.7 cm2 of liana basal area and 23% of the canopy was covered by lianas. Most of the variation in tree growth was related to the dominance of trees within the canopy, with canopy dominant and co-dominant trees growing 2.5× more than suppressed trees. Liana basal area and number of lianas stems were not related to tree growth, but liana canopy cover decreased tree growth. However, not all trees were equally affected as canopy cover of lianas only reduced growth in dominant and co-dominant trees. Lianas were most influential on host tree growth in unsuppressed trees when occupying a majority of the canopy, only a minority of forest trees. This suppression was not related to differential liana colonization of canopy trees as all canopy classes supported equivalent liana burdens. Though lianas impacted only a minority of the trees in this system, some liana species, C. orbiculatus and Vitis spp., are still increasing and may pose future risks to forest growth and development.  相似文献   

17.
Natural mortality in a 30-year period was examined in thinning and fertilisation experiments with 48 blocks in Scots pine (Pinus sylvstris L.) and 23 blocks in Norway spruce (Picea abies (L.) Karst.) with up to 12 different treatments. Of about 90,000 living trees at start of the experiments 18.7% were registered as dead by natural mortality in the 30-year observation period. In non-thinned stands about 20% of the volume growth disappeared by natural mortality, in thinned stands about 10%. In normally thinned pine stands (repeated thinning from below with moderate intensity) the annual mortality of the basal area at start of an average 7-year period was 0.34%. In spruce stands, on more fertile sites, the corresponding figure was about 0.6%. In an effort to model the mortality, severe damage not leading to final felling was identified in 1.7% of the observation periods. It was assumed that this part of the mortality, representing 24% of the total volume mortality, could be recovered by active thinning. The probability for severe damage increased sharply with stand top height, as shown in a logistic regression. The more sparse mortality was expressed as a function of site fertility, stand density, disturbance by thinning and form of treatment (thinned from above or below or non-thinned). The naturally dead trees were approximately of mean size in normally thinned stands while the self-thinning in non-thinned stands tended to occur amongst smaller than average trees. Diagrams were presented for basal area development and stem number reduction in the non-thinned stands.  相似文献   

18.

Introduction and statement of the research questions

Gap dynamics have been widely studied in forests of Abies spp. from temperate and boreal regions. The local microclimate and competition for light have been identified as the main factors controlling changes in species composition and canopy structure, however little is known on dynamics of such forests in Mediterranean.

Experimental design and aims

We studied forest structure and dynamics of Abies pinsapo stands in southern Spain, in contrasting habitats and successional status. In addition past regeneration patterns and their relationship to canopy structure, disturbances and forest-use history were investigated.

Results

Stands structure attributes were within the range described for temperate conifer biomes. The age structure revealed two main cohorts comprised of a few > 100 year-old trees and abundant younger trees established in a single recruitment event after the stands were protected in the 1950s. Initial growth-rate analyses indicated that A. pinsapo regenerated mainly in small canopy gaps, while only 15% recruited from the forest understorey. For the last ten years, basal area increment was lower than 10 cm2 y?1 in 91% of studied trees and growth rate differences between trees narrowed.

Conclusion

Stand dynamics in A. pinsapo forests maintain general features of temperate fir forests. Tree establishment over time and current stand structure fit to known changes in forest use. Widespread growth decline trends might be linked to stand stagnation and global warming.  相似文献   

19.
We examined 5-year basal area growth of nearly 2600 trees in stem-mapped plots at five locations differing in site characteristics, species composition, and management history on the Olympic Peninsula in Western Washington, USA. Our objectives were to determine if internal edges, the boundaries within the stand between components of the variable-density thinning, influenced individual tree growth, and whether incorporation of individual tree local competition indices in growth prediction models could account for treatment and edge effects. Treatment significantly affected tree growth at all sites, with trees in the thinned matrix displaying on average over 25% greater basal area growth than trees in unthinned patches. Proximity to canopy gaps created as part of the variable-density thinning increased basal area growth of trees in the thinned matrix by nearly 11%. In addition, growth of trees close to skid trails was 11% greater than trees located away from the trails. Past thinning history, and its effect on initial stocking rate, appeared to affect the magnitude of the edge effects. Blocks that had received earlier commercial thinnings, and thus had lower stocking at the onset of the study, displayed lower growth responses than previously unthinned blocks. Including local competition indices in the models generally reduced growth prediction error; however, the indices examined did not fully account for treatment or edge effects. Our results suggest that not accounting for internal edges in spatially complex stands could result in errors in projected growth of trees, although these edge effects are highly variable. Failure to account for the effects of internal edges could affect not just estimates of future stand yield, but also projections of future stand structure.  相似文献   

20.
Several heavy wet snowfalls occurred during 2007-2009 across a broad-scale thinning and fertilization experiment to bring overstocked juvenile lodgepole pine (Pinus contorta var. latifolia) in the foothills of Alberta, Canada into an intensive management regime. We examined the bending and breakage of trees in relation to thinning and fertilization and used a multimodel information-theoretic approach to model stand and tree level predictors of snow damage. Fertilized stands suffered the greatest amount of snow damage, and this was most noteworthy when stands were also thinned; here 22% (17% broken stems) of trees were damaged compared to 8% (4% broken stems) in the thinned and unfertilized stands. At the stand level, needle weight and crown cover were reliable predictors of snow damage. At the tree level, separate models were developed for each combination of thinning and fertilization. All models used total tree volume; usually the smaller trees in the stands were more susceptible to damage but in the thinned and fertilized stands larger but slender trees with large asymmetrical crowns tended to be damaged. Also, trees with lower total stem volume were more susceptible to damage. Only in the thinned and fertilized stands were variables related to crown shape and asymmetry important predictors of snow damage. We conclude that snow damage is an important agent for self-thinning in unthinned stands and fertilization tends to exacerbate damage because of increase in foliage size. In areas with regular occurrence of heavy snow, we do not recommend fertilization at the same time as thinning, as the larger and more economically important trees in the stand are at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号