首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Appropriate management of sewage sludge is an important worldwide issue due to the still growing amount of wastewaters. In the study we examined to what extent the addition of dairy sewage sludge compared with mineral fertilization affects porosity, repellency index, and hydraulic conductivity of variously sized aggregates from two soil depths of Eutric Cambisol derived from loess: 5–15 cm and 25–35 cm. The repellency index was calculated as a ratio of ethanol and water sorptivity. Data on water and ethanol sorptivities of initially air‐dry soil aggregate fractions were obtained from steady state flow measurements using an infiltration device. Hydraulic conductivity was determined by measuring water infiltration at five pressure heads: –8, –6, –4, –2, and 0 cm of water column with the same device as for sorptivity determination. Addition of sewage sludge to the soil decreased the soil repellency index by an average of 27% in topsoil and 32% in subsoil for both aggregate sizes, respectively, and increased hydraulic conductivity about four times in both layers. Smaller aggregates (15–20 mm diameter) from soil amended with sewage sludge, in comparison with larger ones (30–35 mm diameter), had a higher repellency index by 36 and 24% in topsoil and subsoil, respectively. As for aggregates from soil with mineral fertilization, those differences were smaller and equal to 15% in subsoil, in topsoil smaller aggregates even had slightly lower repellency index (by 5%). Aggregates taken from the upper soil layer were more water repellent and had smaller hydraulic conductivity than those taken from subsoil, regardless of soil treatment and aggregate size.  相似文献   

2.
A small increase in soil organic matter (SOM) content can change soil hydrological properties from a completely wettable to a partially water‐repellent state. Although considerable research describes hydrophobic compounds as a primary driver of this shift, the influence of pore shape has only been considered in a few studies and none of these has emphasized the role of different carbon compounds. Using a capillary bundle model of non‐cylindrical (wavy) capillaries, we described measured hydrological properties of five agricultural soils that have a small degree of water repellency and textures ranging from coarse sand to heavy clay. To isolate the influence of SOM, it was removed by combustion to provide an SOM‐free treatment. Water and methanol sorptivities quantified infiltration rates and soil‐water wetting angles in packed soil cores. Different cores were sectioned to measure wetting profiles and calculate diffusivity. The results from natural soils were supplemented by measurements carried out on model ‘soils’ consisting of quartz particles (50–200 µm) with four different hydrophobic states. Soil organic matter removal increased water sorptivity from about 60% for a coarse sandy soil (Haplic Arenosol) to about 290% for a heavy clay soil (Haplic Leptosol), corresponding to a decreased apparent wetting angle of 20–30°. Application of the wavy pore model suggests that the apparent wetting angle resulting from SOM removal can be several times smaller than its Young value. Generally, SOM removal increased water diffusivity values by one to two orders of magnitudes. The SOM components having the greatest impact on contact angle were hexanedioic acid and heneicosanoic acid (both hydrophilic) and docosane (hydrophobic).  相似文献   

3.
The role of structure for nutrient sorptivity of soils The influence of the aggregation in 2 differently textured and structured soils (Haplumbrept and Chromudert) on the cation exchange capacity CEC was investigated. The results clearly demonstrated, that from the total soil (< 2 mm), natural and disturbed aggregates (Ø 5–8 mm) and the separated outer and inner part of those aggregates, the undisturbed aggregates had the lowest CEC. Furthermore, the aggregate skin was more chargeable than the inner part, due to a higher amount of silt and clay in that part. Because of higher bulk densities of the aggregates and theoretically increased tortuosity, the solution of elements in percolating water, especially in clay soils, is limited to the interaggregate pores. Thus, measured differences between the element distribution in different compartments can be explained.  相似文献   

4.
利用圆盘入渗仪测定不同土地利用类型土壤吸渗率   总被引:5,自引:1,他引:4  
探讨利用圆盘入渗仪测定不同利用类型土壤吸渗率的适用性,该文选用盘径分别为10和20 cm的圆盘入渗仪对3种利用土壤(菜地、草地和茶园)在0、-3、-6、-9 cm 4个压力水头下的吸渗过程进行测定。研究以Vandervaere法为参考方法,对Philip法、Haverkamp三维吸渗法、Haverkamp三维吸渗改进法的适用性进行比较分析。结果表明:吸渗率的不同计算公式所适应的吸渗过程时间尺度不同,且Haverkamp三维吸渗法所得吸渗率值与参考方法最接近。盘径对吸渗率测定差异的影响不显著。除0 cm压力水头外,不同利用类型土壤吸渗率差异显著,且不同压力水头下测得3种土壤吸渗率大小排序不同。当压力水头为-9和-6 cm时,菜地吸渗率(0.0104和0.0119 cm/s0.5)显著高于茶园(0.0017和0.0025 cm/s0.5)(P0.05);当压力水头为-3 cm时,茶园吸渗率(0.0370 cm/s0.5)显著高于菜地和草地(0.0147和0.0132 cm/s0.5)(P0.05)。该研究可为南方丘陵区土壤水力参数的测定提供理论依据。  相似文献   

5.
The Green & Ampt infiltration analysis is applied to the problem of the water uptake by aggregates when they are surrounded by water. Two situations are analysed, namely, when there is free escape of the displaced air and when there is no escape of the air. These extreme situations provide bounds for estimating the water uptake for the practical case when some air escapes through the aggregate's surface in the form of bubbles as the aggregate wets up. It is shown that the rate of water uptake is directly proportional to the square of the sorptivity of the aggregate material and inversely proportional to the square of the final water uptake. Experiments on spherical stabilized clay aggregates of different radii were in agreement with the theoretical analysis that predicted the observed very rapid wetting up. The analysis also showed that when there was free escape of air, the rate of advance of the wetting front into cylindrical and spherical aggregates decreased from an initially infinite value to a minimum value and then increased to an infinitely large value when the front reached the centre of the aggregate, in contrast to the continually decreasing rate into plate-like aggregates. This was demonstrated in experiments on the radial water movement into a fine sand contained in a cone. The analysis and experimental results indicate that preferential macropore flow in aggregated soils can be initiated very rapidly when air entrapment occurs within the aggregates.  相似文献   

6.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

7.
《CATENA》2001,44(1):47-67
Soil aggregation in relation to other soil properties was studied along a climatological transect in the Southeast of Spain. Three sites were selected along this transect ranging from semiarid to subhumid climatological conditions. The aggregate size distribution, the macro and microaggregate stability of the superficial soil horizon and their relations with other soil properties were analysed. Large aggregates (>10, 10–5, 5–2 mm) were present in highest proportions in the most arid of the studied areas. These large aggregates were associated with high values of water-stable microaggregates; however, they did not improve soil structure and are related to high bulk densities and low water retention. Aggregates 1–0.105 mm were positively correlated to medium, fine, very fine sand and silt fractions and to organic matter. Aggregates <0.105 mm were positively correlated to organic matter and clay content. Small aggregate sizes (1–0.105 and <0.105 mm) had a positive influence on soil water retention and they seem a good indicator of soil degradation.Water stability of microaggregates showed a positive correlation with clay content while the stability of the macroaggregates depended on the organic matter content when the organic matter content was greater than 5 or 6%. Below that threshold the carbonate content was strongly correlated with aggregate stability. A general conceptual scheme of associations between aggregate size distribution, water-stable microaggregation and textural characteristics for the area was developed.The land use history affecting soil overlaps the pattern of climatological situations and has to be taken into account. Aggregate size distribution and stability can be used as indicator of soil degradation, but not as a unique parameter.  相似文献   

8.
泥沙粒度组成对浑水间歇入渗特性的影响研究   总被引:10,自引:5,他引:5  
利用大田浑水间歇入渗试验资料,探讨了浑水间歇入渗特性及其减渗效果;研究了不同泥沙粒度组成对浑水连续和间歇入渗规律的影响;在此基础上,提出了泥沙粒度组成对浑水入渗的影响主要取决小于0.01mm的物理性粘粒含量,且用物理性粘粒含量能较好反映浑水泥沙粒度组成对浑水入渗的影响  相似文献   

9.
采用干、湿筛法研究了种植苎麻和花生对红壤旱地土壤团聚体及其特性的影响,并比较分析了土壤团聚体及土壤理化性质与地表径流和土壤侵蚀量的关系。结果表明:(1)与花生地相比,苎麻地有机质、田间持水量、总孔隙度、沙粒分别升高了28.44%,10.06%,5.65%和53.13%,土壤容重、粉粒和黏粒则分别降低了7.20%,14.85%和34.95%,均达显著性差异水平(p0.05)。(2)团聚体平均重量直径(MWD)、稳定性指数(ASI)显著升高(p0.01),苎麻地土壤团聚体稳定性优于花生地;(3)两处理均以0.25~1mm粒径团聚体保存几率最大,抗水蚀能力最强。(4)地表径流量和土壤侵蚀量与土壤有机质、沙粒含量、1mm的干团聚体、0.5mm的水稳性团聚体、MWD以及ASI呈极显著负相关关系(p0.01),而与粉粒、黏粒、0.25mm干团聚体、0.053mm的水稳性团聚体、呈极显著正相关关系(p0.01)。  相似文献   

10.
[目的]研究滇西北高原碧塔海流域湿地保护区不同植被类型条件下的土壤入渗特性及影响因素,为该流域湿地综合治理及保护提供科学参考。[方法]采用双环法进行测定,利用相关分析和主成分分析法分析数据。[结果](1)不同覆被土壤入渗性能存在较大差异,针叶林样地入渗性能最好,其次为阔叶林地,旱地最弱;(2)利用3种模型对入渗速率与时间进行模拟,考斯加科夫公式拟合效果为最佳;拟合结果表明,各地类初始入渗率和入渗速率大小均表现为:针叶林阔叶林灌丛草甸旱地;(3)有机质、容重、孔隙度、5mm水稳性大团聚体、砂黏比与土壤入渗性能关系显著,其中有机质、容重、5mm水稳性大团聚体是影响碧塔海湿地保护区入渗性能的最重要的3个因子。[结论]有林地具有较强的水土保持功能,应重视宜林旱地的育林造林工作。  相似文献   

11.
《CATENA》1998,32(2):101-114
Soil surface crusting has a major impact on water infiltration and erosion in many soils. Considerable progress has been made in describing crusting processes and in modelling the impact of crusting on infiltration. Most studies, however, have neglected the high spatial variability in crust characteristics observed in the field. The objective of this experiment was to determine the influence of runoff depth on infiltration rate in the presence of a surface seal varying in hydraulic characteristics with microtopography. The Blosseville silt loam has a low aggregate stability and forms crusts readily. The Villamblain silty clay loam has a greater aggregate stability due to its greater clay and organic matter contents, and it is more resistant to aggregate breakdown processes under rainfall. Samples of the soils were sieved to retain aggregates less than 2.0 cm and packed in 50×50×15 cm soil trays. The trays were surrounded by a 10 cm soil border to compensate for splash loss. After molding the surface into a mound and depression microtopography, the samples were subjected to simulated rainfall at an intensity of 22.8 mm h−1. Hourly measurements of surface roughness showed that the original roughness was smoothed out due to the infilling of depressions by sediments detached from the mounds. For the final hour, runon was added to the top of the soil tray to increase the runoff rate and depth. For both soils, infiltration rate increased more than could be attributed to the increased ponding pressure head. The change in infiltration rate was particularly great for Villamblain. The measurements of hydraulic resistance showed that structural crusts had a lower hydraulic resistance than sedimentary crusts. They also showed that the crusts formed on Villamblain were of a lower hydraulic resistance than those of Blosseville. It appears that small changes in runoff depth can significantly increase infiltration rate when structural crusts of lower hydraulic resistance are inundated. The effect was less important in Blosseville which formed seals of relatively high hydraulic resistance everywhere. The results provide a suitable explanation for field observations of increasing infiltration rate with either increasing rainfall intensity or runoff rate. The results also have implications for the relationships between surface roughness, surface water storage, and infiltration.  相似文献   

12.
湿润速率和粘粒含量对红壤沟间侵蚀的影响   总被引:4,自引:0,他引:4  
An aggregate stability test and a simulated rainfall test were conducted on four representative Ultisols from southeastern China. The soils selected, with clay contents ranging between 117 and 580 g kg-1 , were derived from shale and Quaternary red clay. The stability of aggregates (2–5 mm in diameter) obtained from the soil samples were determined by the Le Bissonnais method. For determination of infiltration, runoff, and erosion, the soil samples were packed in 30 cm × 60 cm trays, wetted at rates of 2, 10, and 60 mm h-1 , and then exposed to simulated rainfall at 60 mm h-1 for 1 h. The results indicated that both aggregate stability and slaking caused by fast wetting increased with increasing clay content. The effect of wetting rate (WR) on infiltration and seal formation varied with clay contents. In the soil with low clay content (sandy loam), the infiltration rate was affected slightly by WR due to low aggregate stability and slaking. In the soils with medium clay content (silt clay loam and clay), WR affected infiltration significantly due to the high aggregate slaking force. In the soil with high clay content, the effect of WR on infiltration was significant, but not as evident as in the soils with medium clay content, which may be related to high aggregate stability by wetting partially compensating for slaking force. The effect of WR on soil loss was similar to that of runoff, but more pronounced. The findings from this study indicated that the relationship between wetting rate and clay content should be considered when predicting interrill erosion in Ultisols.  相似文献   

13.
This article reports on variation in infiltration rates of soil aggregates as a result of phenomenon known as air slaking. Air slaking is caused by the compression and subsequent escape of air captured inside soil aggregates during water saturation. Although it has been generally assumed that it occurs mostly when dry aggregates are rapidly wetted, the measurements used for this paper have proved that it takes place even if the wetting is gradual, not just immediate. It is a phenomenon that contributes to an infiltration variability of soils. In measuring the course of water flow through the soil, several small aggregates of five agricultural soils were exposed to distilled water at zero tension in order to characterize their hydraulic properties. Infiltration curves obtained for these aggregates demonstrate the effect of entrapped air on the increase and decrease of infiltration rates. The measurements were performed under various moisture conditions of the A-horizon aggregates using a simple device.  相似文献   

14.
该文主要讨论了在陕、甘、宁境内作为黄土风成成因的主要颗粒组成从北向南或从西向东的分布规律,以砂粒、粗粉粒、粘粒及物理性粘粒四种粒级作为黄土风成成因的主要指标粒级,并讨论了随着土壤颗粒的变化,而产生的土壤一系列物理性质的变化:土壤比重愈向南愈大;土壤容重则是最南部及最北部最大,而中间过渡地带较小;对于破坏土壤(无结构的土壤),土壤质地愈粘重,渗透性能愈差,质地愈轻则渗透性能愈好,而对于有结构的原状土壤则恰好相反。另外,黄土地区的土壤水分常数如最大吸湿水、凋萎湿度、自然含水量及田间持水量亦是从北向南相应的逐渐递增变大,然而毛管持水量则是最南部及最北部较小,而中间过渡地带最大,和土壤粗粉粒分布规律恰相吻合。  相似文献   

15.
推求土壤水分运动参数的简单入渗法──Ⅱ.实验验证   总被引:18,自引:0,他引:18  
预报土壤中水分流动需要的土壤导水特性可通过观察水平土柱的入渗过程来确定,这一观测过程的分析是基于对Richards方程求积分解。土壤水分特征曲线中的参数由观测的水平土柱和特征湿润长度和吸力为确定,非饱和土壤导水率由已确定的特征曲线中的参数和测定的饱和导水率导出。供试土壤有三种,它们的质地从砂壤到粘壤。由这种方法所确定的这三种土壤的水分特征曲线与实测的特征曲线符合良好,所确定的砂壤的非饱和导水率与实  相似文献   

16.
为了研究沙漠干旱区降雨对砂层非饱和带水分的贡献,该文对风积砂层水分入渗过程中的水分存在形式和运移机理进行了理论和力学分析。通过以触点水为主要储水单元的立方布局颗粒模型推导出水分入渗过程中湿润深度的解析表达式,并进行验证。物理和力学分析表明,砂颗粒表面很难形成较厚的薄膜水,砂层非饱和带水分大部分以触点水的形式存在。模型计算结果表明,水分入渗的湿润深度与入渗水量和触点水湿润角有关。模型验证表明,水分入渗湿润深度的解析表达式在风积砂层入渗深度计算中具有一定的适用性,但触点水湿润角与砂颗粒粒径的函数关系还有待进一步研究当设定触点水湿润角为π/4时,比例常数为11.5。该研究可为干旱区农业规划提供依据。  相似文献   

17.
The difference between the cumulative infiltration occurring during three‐dimensional axisymmetric and one‐dimensional vertical flow is a linear function of time. The slope of this line is a function of the source radius, initial and final volumetric soil water contents and the soil sorptivity. This allows the determination of the sorptivity and saturated conductivity of the soil from data of axisymmetric flow in a single ring of small diameter under negligible head of water. The method is based on the optimization of the sorptivity and saturated conductivity on the one‐dimensional vertical cumulative infiltration inferred from axisymmetric flow data. To examine the reliability of the method to determine these parameters, numerical three‐ and one‐dimensional data are generated on soils with known hydrologic properties from the literature. The linearity versus time of the difference of the two types of flow is verified. Several physically based expressions for the vertical cumulative infiltration as a function of time are considered. The optimized values of the sorptivity and saturated conductivity are compared to the their real known values. Despite the large errors on the optimized parameters, namely the saturated conductivity, the error on the vertical predicted cumulative infiltration is limited to 10%. This makes possible the application of this method on a large scale for hydrological modelling purposes.  相似文献   

18.
Abstract. Field measurements of cumulative infiltration and of the matric potential prior to infiltration were made with double-ring infiltrometers and tensiometers, respectively, on two sandy loams in north-east Scotland. The time to ponding for constant-rate infiltration was also measured in the same infiltrometers by applying water at a constant rate until ponding commenced. Under the range of initial potentials studied (-2 to - 17 kPa), an exponential relation was adequate to describe the relation between sorptivity and initial matric potential. The time to ponding was also strongly dependent on initial matric potential and increased dramatically as the soil became drier. Measurements of time to ponding were in good agreement with values predicted from the theory of Clothier et al. (1981) using values for sorptivity and the A parameter obtained from the cumulative infiltration experiments. Measurements and predictions clearly showed the importance of the sorptivity versus initial matric potential relation in controlling the time to ponding of such sandy soils. These results have implications for determining the generation of runoff and the establishment of stream flows, as well as determining optimum rates and design of irrigation.  相似文献   

19.
石羊河尾闾黏土质夹层结构土壤对降雨入渗的响应   总被引:1,自引:0,他引:1  
为探明该种土壤结构如何影响降雨在土壤中再分配及其影响效果,采用自然降雨背景下的人工试验方法开展了黏土质夹层对降雨入渗影响效果的试验研究。结果表明:(1)降雨后经过相同时间水分再分布后的土壤末期含水率主要受控于降雨初期含水率、降雨入渗所能达到的最高含水率及其黏土夹层厚度;(2)黏土质夹层表层沙土土壤含水率在降雨条件下经过长期水分再分布后表现出黏土层厚度越小,表层含水率越低的特征;黏土层及黏土层下部的沙土层初始含水率越高,在降水初期水分增加量、增加速度以及水分流失量、流失速度与初始含水率具有一定的正相关关系。因此,黏土质夹层结构土壤阻滞水分入渗到植物难以利用到的深层,将水分固持于黏土层及黏土层上下部,在表层覆沙20 cm情景下,10,20,30 cm厚度的黏土质夹层以10 cm处理总体水分保持效果最好。  相似文献   

20.
河套灌区不同掺沙量对重度盐碱土壤水盐运移的影响   总被引:4,自引:2,他引:4  
采用室内土柱模拟试验,研究不同掺沙量对土壤入渗特征与水盐运移的影响。共设置了CK(不掺沙)、S1(掺沙2%)、S2(掺沙4%)、?、S15(掺沙30%)16个试验处理,测定不同处理试验期间土壤含水率和含盐量的变化。结果表明:1)随着土壤表层掺沙量的增加,土壤的累积入渗量与湿润峰运移速度都呈逐渐增加的趋势;当掺沙比例为18%~24%时,土壤稳定入渗速率在0.065~0.091 mm/min之间;掺沙比例为26%~30%时,土壤稳定入渗速率大于0.1 mm/min,土壤持水能力较低。2)不同处理在7、11、15 d的土壤平均含水率差异显著(P0.05),适当增大掺沙量可以有效促进土壤水分向下运移,掺沙比例过大会降低土壤的持水能力。3)当掺沙比例小于24%时,不同处理7 d的土壤含盐量差异显著(P0.05);S9~S12处理在20 d时30 cm土层的土壤含盐量相比不掺沙的处理降低90%以上,能够同时保证土壤的脱盐能力和持水能力。4)Kostiakov模型能够很好地在本研究中对土壤水分入渗过程进行模拟。该研究结果可为表层土壤掺沙改良河套灌区重度盐碱地提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号