首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 2 different continuous rate infusions (CRIs) of medetomidine over an 8-hour period on sedation score, selected cardiopulmonary parameters, and serum levels of medetomidine were evaluated in 6 healthy, conscious dogs using a crossover study design. The treatment groups were: CONTROL = saline bolus followed by saline CRI; MED1 = 2 μg/kg body weight (BW) medetomidine loading dose followed by 1 μg/kg BW per hour CRI; and MED2 = 4 μg/kg BW medetomidine loading dose followed by 2 μg/kg BW per hour CRI. Sedation score (SS), heart rate (HR), respiratory rate (RR), temperature (TEMP), systolic arterial pressure (SAP), mean arterial pressure (MAP), and diastolic arterial pressure (DAP), arterial and mixed venous blood gas analyses, lactate, and plasma levels of medetomidine were evaluated at baseline, at various intervals during the infusion, and 2 h after terminating the infusion. Statistical analysis involved a repeated measures linear model. Both infusion rates of medetomidine-induced dose-dependent increases in SS and dose-dependent decreases in HR, SAP, MAP, and DAP were measured. Respiratory rate (RR), TEMP, central venous pH, central venous oxygen tension, and oxygen extraction ratio also decreased significantly in the MED2 group at certain time points. Arterial oxygen and carbon dioxide tensions were not significantly affected by either infusion rate. In healthy dogs, both infusion rates of medetomidine-induced clinically relevant sedative effects, accompanied by typical alpha2 agonist-induced hemodynamic effects, which plateaued during the infusion and subsequently returned to baseline. While additional studies in unhealthy animals are required, the results presented here suggest that medetomidine infusions at the doses studied may be useful in canine patients requiring sedation for extended periods.  相似文献   

2.
This study aimed to compare the antagonistic effects of atipamezole (40, 120, and 320 μg/kg, IM), yohimbine (110 μg/kg, IM), and saline on neurohormonal and metabolic responses induced by medetomidine (20 μg/kg, IM). Five beagle dogs were used in each of the 5 experimental groups in randomized order. Blood samples were taken for 6 h. Medetomidine significantly decreased norepinephrine, epinephrine, insulin, and nonesterified fatty acid levels, and increased plasma glucose levels. Both atipamezole and yohimbine antagonized these effects. The reversal effect of atipamezole was dose-dependency, except on epinephrine. Yohimbine caused prolonged increases in plasma norepinephrine and insulin levels compared to atipamezole, possibly because of its longer half-life elimination. Only yohimbine increased the cortisol levels. Neither glucagon nor lactate levels changed significantly. Based on these findings, when medetomidine-induced sedation is antagonized in dogs, we recommend using atipamezole IM, from 2- to 6-fold the dose of medetomidine, unless otherwise indicated.  相似文献   

3.
This study was aimed to investigate and compare the effects of medetomidine and xylazine on the blood level of some stress-related neurohormonal and metabolic variables in clinically normal dogs, especially focusing on time and dose relations of the effects. A total of 9 beagle dogs were used for 9 groups, which were treated with physiological saline solution (control), 10, 20, 40, and 80 μg/kg medetomidine, and 1, 2, 4, and 8 mg/kg xylazine, intramuscularly. Blood samples were taken at 10 times during 24 h from a central venous catheter. Plasma norepinephrine, epinephrine, cortisol, glucose, insulin, glucagon, and non-esterified fatty acid concentrations were determined. Both medetomidine and xylazine similarly and dose-dependently inhibited norepinephrine release and lipolysis. Medetomidine suppressed epinephrine release dose-dependently with greater potency than xylazine. Xylazine also tended to decrease epinephrine levels dose-dependently. The cortisol and glucagon levels did not change significantly in any treatment group. Both drugs suppressed insulin secretion with similar potency. Both medetomidine and xylazine increased glucose levels. The hyperglycemic effect of medetomidine, in contrast with xylazine, was not dose-dependent at the tested dosages. The results suggested that the effect of medetomidine on glucose metabolism may not be due only to α2-adrenoceptor-mediated actions.  相似文献   

4.
The purpose of this study was to investigate the effects of a medetomidine-midazolam combination on some neurohormonal and metabolic variables in healthy cats. Five cats were used repeatedly in each of 5 groups, which were injected intramuscularly with physiological saline solution (control), 0.5 mg/kg of midazolam, 40 microg/kg of medetomidine, 80 microg/kg of medetomidine, and 40 microg/kg of medetomidine plus 0.5 mg/kg of midazolam. Blood samples were taken 10 times over 24 h from a catheter introduced into the jugular vein. Plasma concentrations of glucose, insulin, glucagon, cortisol, nonesterified fatty acids (NEFAs), norepinephrine, and epinephrine were determined. In addition, the duration of lateral recumbency, rectal temperature, heart rate, and respiratory rate were examined. The combination of medetomidine and midazolam enhanced the duration of lateral recumbency and reduced the hyperglycemia induced by medetomidine alone. Recovery from hypoinsulinemia induced by the medetomidine-midazolam combination tended to be more rapid than when the same dose of medetomidine was used alone. The decrease in plasma norepinephrine levels induced by medetomidine alone was diminished by the addition of midazolam. Midazolam alone did not significantly change the plasma glucose, insulin, glucagon, cortisol, epinephrine, or NEFA concentration, but increased the norepinephrine concentration. This study revealed that the combination of medetomidine and midazolam produces minimal neurohormonal and metabolic changes when compared with medetomidine alone in cats.  相似文献   

5.
OBJECTIVE: To determine the effect of medetomidine on the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. STUDY DESIGN: Prospective randomized study. ANIMALS: Twelve healthy adult female purpose-bred dogs, weighing 16.8 to 25 kg. METHODS: Two treatments were randomly administered to each of twelve dogs at weekly intervals: (1) Saline injected IM followed in 15 minutes by isoflurane anesthesia (ISO) induced by mask and maintained at an end-tidal concentration of 1.8% for 60 minutes; and (2) Medetomidine, 15 ug/lkg IM followed in 15 minutes by isoflurane anesthesia (ISO&MED) induced by mask and maintained at an end-tidal concentration of 1.0% for 60 minutes. One week after completion of these two treatments, all dogs were ovariohysterectomized. six receiving each treatment (SURG and SURG&MED). Central venous blood samples (10 mL) were obtained immediately before medetomidine or saline (baseline) and at 30, 75, and 195 minutes and 24 hours after administration of medetomidine or saline in ISO and ISO&MED. In SURG and SURG&MED, samples were obtained immediately prior to injection of medetomidine or saline (baseline) and at 30 (before skin incision), 45 (after severence of the ovarian ligament), 75 (after skin closure), 105 (30 minutes after skin closure, dog recovered and in sternal recumbency), 135, 195, 375 minutes, and 24 hours after the initial sample. Samples were analyzed for epinephrine, norepinephrine, adrenocorticotrophic hormone (ACTH), cortisol, insulin, and glucose. Data were analyzed by analysis of variance and where significant differences were found, a least significant difference test was applied. RESULTS: Premedication with medetomidine prevented or delayed the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. CONCLUSIONS: The stress response induced by ovariohysterectomy, although significant, is of short duration. Medetomidine safely and effectively reduced surgically-induced stress responses. CLINICAL RELEVANCE: Surgically induced stress responses can be obtunded or prevented by administration of medetomidine.  相似文献   

6.
The purpose of this study was to investigate and compare the effects of medetomidine and xylazine on some neurohormonal and metabolic variables in healthy cats. Five cats were used repeatedly in each of 11 groups, which were injected intramuscularly with physiological saline solution (control), 20, 40, 80, 160, and 320 microg/kg of medetomidine, and 0.5, 1, 2, 4, and 8 mg/kg of xylazine. Blood samples were taken over 24 h from the jugular vein for determination of plasma glucose, insulin, cortisol, epinephrine, norepinephrine, glucagon, and nonesterified fatty acid concentrations. Both medetomidine and xylazine induced remarkable hyperglycemia that was dose-dependent except for the response to medetomidine from 0 to 3 h. Both agents suppressed epinephrine and norepinephrine release but not in a dose-dependent manner at the tested dosages. Both agents inhibited insulin release and lipolysis, with similar potency, and tended to suppress cortisol release. The glucagon levels did not change significantly in any of the groups. These results suggest that the effects of medetomidine and xylazine on glucose metabolism and catecholamine release may not be due only to the actions mediated by alpha2-adrenoceptors.  相似文献   

7.
OBJECTIVE: To evaluate the effects of medetomidine and its antagonism with atipamezole in goats. STUDY DESIGN: Prospective randomized crossover study with 1 week between treatments. ANIMALS: Six healthy 3-year-old neutered goats (three male and three female) weighing 39.1-90.9 kg (60.0 +/- 18 kg, mean +/- SD). METHODS: Goats were given medetomidine (20 microg kg(-1), IV) followed, 25 minutes later, by either atipamezole (100 microg kg(-1), IV) or saline. Heart and respiratory rate, rectal temperature, indirect blood pressure, and mechanical threshold were measured, and sedation and posture were scored and blood samples obtained to measure epinephrine, norepinephrine, free fatty acids, glucose, and cortisol concentrations at baseline (immediately before medetomidine), 5 and 25 minutes after medetomidine administration, and at 5, 30, 60, and 120 minutes after the administration of antagonist or saline. Parametric and nonparametric tests were used to evaluate data; p < 0.05 was considered significant. RESULTS: Medetomidine decreased body temperature, heart rate, and respiratory rate and increased mean arterial blood pressure, cortisol, and glucose. Recumbency occurred 89 +/- 50 seconds after medetomidine administration. All goats were standing 86 +/- 24 seconds after atipamezole administration whereas all goats administered saline were sedate and recumbent at 2 hours. Tolerance to compression of the withers and metacarpus increased with medetomidine. From 5 to 120 minutes after saline or atipamezole administration, there were differences in body temperature, glucose, and cortisol but none in heart rate or blood pressure. Three of the six goats receiving saline developed bloat; five of six urinated. After atipamezole, four of six goats developed piloerection and all goats were agitated and vocalized. CONCLUSION: At the doses used, atipamezole antagonized the effects of medetomidine on recumbency, sedation, mechanical threshold, and the increase in glucose. Atipamezole increased the rate of return of cortisol toward baseline, and prevented further decline in rectal body temperature. CLINICAL RELEVANCE: Atipamezole may be used to antagonize some, but not all effects of medetomidine.  相似文献   

8.
OBJECTIVE: To examine stress-related neurohormonal and metabolic effects of butorphanol, fentanyl, and ketamine administration alone and in combination with medetomidine in dogs. ANIMALS: 10 Beagles. PROCEDURE: 5 dogs received either butorphanol (0.1 mg/kg), fentanyl (0.01 mg/kg), or ketamine (10 mg/kg) IM in a crossover design. Another 5 dogs received either medetomidine (0.02 mg/kg) and butorphanol (0.1 mg/kg), medetomidine and fentanyl (0.01 mg/kg), medetomidine and ketamine (10 mg/kg), or medetomidine and saline (0.9% NaCI) solution (0.1 mL/kg) in a similar design. Blood samples were obtained for 6 hours following the treatments. Norepinephrine, epinephrine, cortisol, glucose, insulin, and nonesterified fatty acid concentrations were determined in plasma. RESULTS: Administration of butorphanol, fentanyl, and ketamine caused neurohormonal and metabolic changes similar to stress, including increased plasma epinephrine, cortisol, and glucose concentrations. The hyperglycemic effect of butorphanol was not significant. Ketamine caused increased norepinephrine concentration. Epinephrine concentration was correlated with glucose concentration in the butorphanol and fentanyl groups but not in the ketamine groups, suggesting an important difference between the mechanisms of the hyperglycemic effects of these drugs. Medetomidine prevented most of these effects except for hyperglycemia. Plasma glucose concentrations were lower in the combined sedation groups than in the medetomidine-saline solution group. CONCLUSIONS AND CLINICAL RELEVANCE: Opioids or ketamine used alone may cause changes in stress-related biochemical variables in plasma. Medetomidine prevented or blunted these changes. Combined sedation provided better hormonal and metabolic stability than either component alone. We recommend using medetomidine-butorphanol or medetomidine-ketamine combinations for sedation or anesthesia of systemically healthy dogs.  相似文献   

9.
The objective of this study was to determine the effects of propofol on the minimum alveolar concentration of sevoflurane needed to prevent motor movement (MACNM) in dogs subjected to a noxious stimulus using randomized crossover design. Six, healthy, adult beagles (9.2 ± 1.3 kg) were used. Dogs were anesthetized with sevoflurane on 3 occasions, at weekly intervals, and baseline MACNM (MACNM-B) was determined on each occasion. Propofol treatments were administered as loading dose (LD) and constant rate infusion (CRI) as follows: Treatment 1 (T1) was 2 mg/kg body weight (BW) and 4.5 mg/kg BW per hour; T2 was 4 mg/kg BW and 9 mg/kg BW per hour; T3 was 8 mg/kg BW and 18 mg/kg BW per hour, respectively. Treatment MACNM (MACNM-T) determination was initiated 60 min after the start of the CRI. Two venous blood samples were collected and combined at each MACNM-T determination for measurement of blood propofol concentration using high-performance liquid chromatography method (HPLC). Data were analyzed using a mixed-model ANOVA and are presented as least square means (LSM) ± standard error of means (SEM).Propofol infusions in the range of 4.5 to 18 mg/kg BW per hour resulted in mean blood concentrations between 1.3 and 4.4 μg/mL, and decreased (P < 0.05) sevoflurane MACNM in a concentration-dependent manner. The percentage decrease in MACNM was 20.5%, 43.0%, and 68.3%, with corresponding blood propofol concentrations of 1.3 ± 0.3 μg/mL, 2.5 ± 0.3 μg/mL, and 4.4 ± 0.3 μg/mL, for T1, T2, and T3, respectively. Venous blood propofol concentrations were strongly correlated (r = 0.855, P < 0.0001) with the decrease in MACNM. In dogs, propofol decreased the sevoflurane MACNM in a concentration-dependent manner.  相似文献   

10.
ObjectiveTo evaluate the perioperative opioid-sparing effect of a medetomidine (MED) infusion compared to a saline (SAL) infusion in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery.Study designRandomized, partially blinded, clinical study.AnimalsA total of 44 client-owned adult dogs.MethodsAll dogs were administered a 1 μg kg–1 MED loading dose, followed by a 1.7 μg kg–1 hour–1 constant rate infusion (CRI) intravenously or equivalent volumes of SAL. Infusions were started 10–15 minutes before surgical incision and continued throughout the surgical procedure. All dogs were administered a standardized anaesthetic and analgesic protocol (including a ketamine CRI). Multiparametric monitoring, including invasive arterial blood pressure, was performed. A trained investigator, unaware of the treatment, performed pain scores for 4 hours postoperatively. Rescue analgesia consisted of fentanyl administered intraoperatively and methadone postoperatively. Data were tested for normality and analysed with Fisher’s exact test, Mann–Whitney U-test, analysis of variance and Kaplan–Meier survival analysis. Data are shown as median (interquartile range) and p-value was set at < 0.05.ResultsThe total dose of fentanyl was significantly lower with MED 0 (0–0.8) μg kg–1 hour–1 compared to SAL 3 (1.8–5.3) μg kg–1 hour–1 (p = 0.004). In the MED group, one dog compared to 12 dogs in the SAL group required a fentanyl CRI (p = 0.001). There were no statistically significant differences between groups regarding the total dose of methadone administered.Conclusions and clinical relevanceThe addition of a low-dose medetomidine CRI to the anaesthetic protocol decreased the need for a fentanyl CRI in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery during administration of a ketamine CRI.  相似文献   

11.
The effect of selection for milk yield on lactation yield, net energy balance, and on plasma growth hormone, insulin, prolactin, nonesterified fatty acids and glucose was studied in two groups of primiparous Holstein cows of differing genetic merit. Net energy balance was calculated and serial blood samples were collected for a 7 hr period at 0, 45, 90 and 180 days postpartum. Growth hormone releasing factor (.2 μg/kg BW) was administered after 2.5 hr at 0, 45 and 180 days postpartum, while epinephrine (.7 μg/kg BW) was administered at 90 days postpartum, Milk yield was greater, net energy balance was decreased and plasma growth hormone was greater in genetically superior selection group cows compared to control cows.

Growth hormone showed similar increases in both genetic groups in response to growth hormone releasing factor, while prolactin, insulin and glucose were not altered. Epinephrine stimulated an increase in plasma nonesterified fatty acid, glucose and insulin, but responses did not differ between genetic groups. Results indicate differences exist in production efficiency, net energy balance and plasma growth hormone concentration among dairy cattle as a result of selection for milk yield and suggest that selection pressure may act to alter homeorhetic control of nutrient metabolism.  相似文献   


12.
OBJECTIVE: To determine the hemodynamic consequences of the coadministration of a continuous rate infusion (CRI) of medetomidine with a fentanyl bolus in dogs. ANIMALS: 12 healthy sexually intact male dogs weighing 30.3 -/+ 4.2 kg (mean +/- SD). PROCEDURE: Dogs received either fentanyl alone (15.0 microg/kg, i.v. bolus) or the same dose of fentanyl during an 11-hour CRI of medetomidine (1.5 microg/kg/h, i.v.). Prior to drug administration, dogs were instrumented for measurement of cardiac output, left atrial pressure, and systemic arterial blood pressures. Additionally, blood samples were collected from the pulmonary artery and left atrium for blood gas analysis. RESULTS: Medetomidine infusion reduced the cardiac index, heart rate, and O2, delivery while increasing left atrial pressure. Subsequent fentanyl administration further decreased the cardiac index. The Pao2 was not significantly different between the 2 treatment groups; however, fentanyl transiently decreased Pao2 from baseline values in dogs receiving a CRI of medetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Because of the prolonged hemodynamic changes associated with the CRI of medetomidine, its safety should be further evaluated before being clinically implemented in dogs.  相似文献   

13.
Sympathoadrenal stimulation may perturb results of endocrine tests performed on fractious horses. Sedation may be beneficial; however, perturbation of results may preclude useful information. Four experiments were designed to 1) determine the effects of epinephrine on insulin response to glucose (IR2G), 2) assess the effects of detomidine (DET), alone or combined with butorphanol (DET/BUT), on IR2G and glucose response to insulin (GR2I), and 3) assess the effects of BUT alone on IR2G. In Experiment 1, mares were administered saline or epinephrine (5 μg/kg BW) immediately before infusion of glucose (100 mg/kg BW). Glucose stimulated (P < .05) insulin release in controls at 5 minutes that persisted through 30 minutes; insulin was suppressed (P < .05) by epinephrine from 5 to 15 minutes, rising gradually through 30 minutes. Experiments 2 (IR2G) and 3 (GR2I) were conducted as triplicated 3 × 3 Latin squares with the following treatments: saline (SAL), DET, and DET/BUT (all administered at .01 mg/kg BW). Glucose stimulated (P < .05) insulin release that persisted through 30 minutes in SAL mares; DET and DET/BUT severely suppressed (P < .0001) the IR2G. Sedation did not affect resting glucose and had inconsistent effects on the GR2I when mares were treated with 50 mIU/kg BW recombinant human insulin. Butorphanol had no effect on IR2G. In conclusion, adrenergic agonists severely suppress the IR2G and cannot be used for sedation for this test. The use of DET did not alter the GR2I, and therefore may be useful for conducting this test in fractious horses.  相似文献   

14.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

15.
Neonatal foals may require prolonged sedation to permit ventilatory support in the first few days of life. The objective of this study was to evaluate and compare the cardiopulmonary effects and clinical recovery characteristics of 2 sedative/analgesia protocols in healthy foals receiving assisted ventilation. Foals were randomized to receive dexmedetomidine, butorphanol, and propofol (DBP) or midazolam, butorphanol, and propofol (MBP) during a 24-hour period. Infusion rates of dexmedetomidine, midazolam, and propofol were adjusted and propofol boluses administered according to set protocols to maintain optimal sedation and muscle relaxation. Ventilatory support variables were adjusted to preset targets. Physiologic variables were recorded, cardiac output (CO) measured (thermodilution), and arterial and mixed venous blood collected for gas analysis at intervals up to 24 hours. Foals in group DBP received dexmedetomidine [2.4 ± 0.5 μg/kg body weight (BW) per hour], butorphanol (13 μg/kg BW per hour), and propofol (6.97 ± 0.86 mg/kg BW per hour), whereas foals in group MBP received midazolam (0.14 ± 0.04 mg/kg BW per hour), butorphanol (13 μg/kg BW per hour), and propofol (5.98 ± 1.33 mg/kg BW per hour). Foals in the DBP group received significantly more propofol boluses (9.0 ± 3.0) than those in the MBP group (4.0 ± 2.0). Although physiologic variables remained within acceptable limits, heart rate (HR), mean arterial pressure (MAP), and cardiac index (CI) were lower in foals in the DBP group than in the MBP group. Times to sternal recumbency, standing, and nursing were significantly shorter in the DBP than MBP group. We found that MBP and DBP protocols are suitable to assist ventilatory support in neonatal foals, although MBP results in a prolonged recovery compared to DBP.  相似文献   

16.
The aim of this study was to determine the viability and cardiorespiratory effects of the association of epidural alpha-2 adrenergic agonists and lidocaine for ovariohysterectomy (OH) in bitches. Forty-two bitches were spayed under epidural anesthesia with 2.5 mg/kg body weight (BW) of 1% lidocaine with adrenaline (CON) or in association with 0.25 mg/kg BW of xylazine (XYL), 10 μg/kg BW of romifidine (ROM), 30 μg/kg BW of detomidine (DET), 2 μg/kg BW of dexmedetomidine (DEX), or 5 μg/kg BW of clonidine (CLO). Heart rate (HR), respiratory rate (fR) and arterial pressures were monitored immediately before and every 10 min after the epidural procedure. Blood gas and pH analysis were done before, and at 30 and 60 min after the epidural procedure. Animals were submitted to isoflurane anesthesia if they presented a slightest sign of discomfort during the procedure. Time of sensory epidural block and postoperative analgesia were evaluated. All animals in CON and DEX, 5 animals in ROM and CLO, 4 animals in XYL, and 3 in DET required supplementary isoflurane. All groups, except CLO, showed a decrease in HR. There was an increase in arterial pressures in all groups. Postoperative analgesia lasted the longest in XYL. None of the protocols were totally efficient to perform the complete procedure of OH; however, xylazine provided longer postoperative analgesia than the others.  相似文献   

17.
In the present study, we report the effect of medetomidine followed by atipamezole on plasma glucose, cortisol and noradrenaline in calves, cows and sheep. Eight calves, eight lactating dairy cows and eight adult female sheep were included in a crossover trial. The animals were injected i.v. with medetomidine (40 microg/kg), followed 60 min later by atipamezole i.v. (200 microg/kg) or saline. The wash-out period between experiments was 1 or 2 weeks. In every animal, medetomidine induced a marked hyperglycaemia, which was reversed by atipamezole. Cortisol levels increased significantly in cows and sheep, reaching levels 4-8-fold higher than the baseline levels 25-45 min after injection of medetomidine. Atipamezole did not affect the cortisol levels, except in sheep where an increase was observed. Plasma levels of noradrenaline decreased in cows and sheep after medetomidine injection, reflecting the inhibition of sympathetic activity by the drug. After injection of the antagonist, there was a large increase in noradrenaline levels. In conclusion, a high dose of medetomidine does not seem to reduce the overall endocrine stress response in cattle and sheep, which has previously been reported in other species.  相似文献   

18.
目的 探究促性腺激素抑制激素(gonadotropin-inhibitory hormone,GnIH)对雄性小鼠采食、体重和血糖稳态的影响。方法 选取体重及日龄相近的雄性小鼠20只,随机分为2组,分别为对照组[腹腔注射生理盐水100 μL/(次·只)]和试验组[腹腔注射20 μg/100 μL GnIH,100 μL/(次·只)],每组10只,每天注射2次,连续注射21 d。观察和记录小鼠的采食情况;对小鼠的体重、空腹血糖、葡萄糖耐量、胰岛素耐量进行测定;利用实时荧光定量PCR(qPCR)方法对小鼠胰腺中胰岛素转录因子基因(NeuroD1)、胰岛素基因(Ins)、胰高血糖素基因(Gcg)、胰岛素转录调控因子基因(Pdx1)mRNA相对表达量进行检测。结果 与对照组相比,试验组小鼠平均日增重和平均日采食量极显著(P<0.01)升高;试验组小鼠空腹血糖曲线下面积极显著(P<0.01)增加,葡萄糖耐量的血糖曲线下面积极显著(P<0.01)增加,胰岛素耐量的血糖曲线下面积极显著(P<0.01)增加;试验组小鼠胰腺Gcg基因mRNA相对表达量显著(P<0.05)升高,Ins基因mRNA、Pdx1基因mRNA和NeuroD1基因mRNA相对表达量均显著(P<0.05)下降。结论 慢性腹腔注射GnIH会引起雄性小鼠采食量和体重增加,并引起机体血糖紊乱。  相似文献   

19.
Cardiovascular and pulmonary effects of a new sedative/analgesic (medetomidine) as a preanaesthetic drug in the dog. A study was carried out to investigate the possible usefulness of medetomidine (Farmos Group, Turku, Finland) for premedication prior to general anaesthesia with thiopental sodium and halothane. The main emphasis was laid on the circulatory and respiratory effects of medetomidine. Dogs treated with xylazine (2 mg/kg) or placebo (physiological saline solution) served as controls. Medetomidine caused a decrease in blood pressure, heart rate and respiratory rate at all dose levels tested. These decreases were essentially dose -dependent, but there were great individual variations.It is concluded that the drug can be useful for premedication at the lowest dose level tested (10 μ/kg). The sedative effect, however, is so strong that an even lower dose might be sufficient for the present purpose.  相似文献   

20.
The objective of this paper was to evaluate romifidine as a premedicant in dogs prior to propofol-halothane-N2O anesthesia, and to compare it with the other alpha2-agonists (medetomidine and xylazine). For this, ten healthy dogs were anesthetized. Each dog received 3 preanesthetic protocols: atropine (10 microg/kg BW, IM), and as a sedative, romifidine (ROM; 40 microg/kg BW, IM), xylazine (XYL; 1 microg/kg, IM), or medetomidine (MED; 20 microg/kg BW, IM). Induction of anesthesia was delivered with propofol 15 min later and maintained with halothane and N2O for one hour in all cases. The following variables were registered before preanesthesia, 10 min after the administration of preanesthesia, and at 5-minute intervals during maintenance: PR, RR, rectal temperature (RT), MAP, SAP, and DAP. During maintenance, arterial oxygen saturation (SpO2), end-tidal CO2 (EtCO2) and percentage of halothane necessary for maintaining anesthesia (%HAL) were also recorded. Induction dose of propofol (DOSE), time to extubation (TE), time to sternal recumbency (TSR) and time to standing (TS) were also registered. The statistical analysis was carried out during the anesthetic period. ANOVA for repeat measures revealed no differences between the 3 groups for PR and RR; however, MAP, SAP and DAP were higher in the MED group; SpO2 was lower in MED and EtCO2 was lower in ROM; %HAL was higher in XYL. No statistical differences were observed in DOSE, TE, TSR or TS. Percentage of halothane was lower in romifidine and medetomidine than in xylazine premedicated dogs also anesthetized with propofol. All the cardiorespiratory variables measured were within normal limits. The studied combination of romifidine, atropine, propofol, halothane and N2O appears to be a safe and effective drug combination for inducing and maintaining general anesthesia in healthy dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号