首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Influence of long‐term sodic‐water (SW) irrigation with or without gypsum and organic amendments [green manure (GM), farmyard manure (FYM), and rice straw (RS)] on soil properties and nitrogen (N) mineralization kinetics was studied after 12 years of rice–wheat cropping in a sandy loam soil in northwest India. Long‐term SW irrigation increased soil pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) and decreased organic carbon (OC) and total N content. On the other hand, application of gypsum and organic amendments resulted in significant improvement in all these soil properties. Mineralization of soil N ranged from 54 to 111 mg N kg?1 soil in different treatments. Irrigation with SW depressed N mineralization. In SW‐irrigated plots, two flushes of N mineralization were observed; the first during 0 to 7 d and the second after 28 d. Amending SW irrigated plots with GM and FYM enhanced mineralization of soil N. Gypsum application along with SW irrigation reduced cumulative N mineralization at 56 days in RS‐amended plots but increased it under GM‐treated, FYM‐treated, or unamended plots. Nitrogen mineralization potential (No) ranged from 62 to 543 mg N kg?1 soil. In the first‐order zero‐order model (FOZO), the easily decomposable fraction ranged from 5.4 to 42 mg N kg?1 soil. Compared to the first‐order single compartment model, the FOZO model could better explain the variations in N mineralization in different treatments. Variations in No were influenced more by changes in pH, SAR, and ESP induced by long‐term SW irrigations and amendments rather than by soil OC.  相似文献   

2.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Lysimeter experiments were conducted with sandy‐clay‐loam soil to study the efficiency of two amendments in reclaiming saline‐sodic soil using moderately saline and SAR (sodium‐adsorption ratio) irrigation water. Gypsum obtained from industrial phosphate by‐products and reagent grade Ca chloride were applied to packed soil columns and irrigated with moderately saline (ECe = 2.16 dS m–1), moderate‐SAR water (SAR = 4.8). Gypsum was mixed with soil prior to irrigation at application rates of 5, 10, 15, 20, 25, and 32 Mg ha–1, and Ca chloride was dissolved directly in leaching water at application rates of 4.25, 8.5, 12.75, 17.0, and 21.25 Mg ha–1, respectively. The highest application rate in both amendments resulted in 96% reduction of total Na in soil. The hydraulic conductivity (HC) of soils receiving gypsum increased in all treatments. The highest HC value of 6.8 mm h–1 was obtained in the highest application rate (32 Mg ha–1), whereas the lowest value of 5.2 mm h–1 was observed with the control treatment. Both amendments were efficient in reducing soil salinity and sodicity (exchangeable‐sodium percentage, ESP); however, Ca chloride was more effective than gypsum as a reclaiming material. Exchangeable Na and soluble salts were reduced with gypsum application by 82% and 96%, and by 86% and 93% with Ca chloride application, respectively. Exchangeable Ca increased with increasing amendment rate. Results of this study revealed that sodium was removed during cation‐exchange reactions mostly when the SAR of effluent water was at maximum with subsequent passage of 3 to 4 pore volumes. Gypsum efficiently reduced soil ESP, soil EC, leaching water, and costs, therefore, an application rate of 20 Mg ha–1 of gypsum with 3 to 4 pore volumes of leaching water is recommended for reclaiming the studied soil.  相似文献   

4.
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.  相似文献   

5.
Development of alternative sources through wastewater reuse is important to meet water demands in arid regions. However, effects of wastewater irrigation on soil properties and crop performance must be evaluated before advocating its widespread use. Objectives of this study were to evaluate: (i) effects of prior evaporative disposal of saline‐sodic blowdown water (BW) on soil (fine‐loamy, mixed, and thermic Typic Calciorthods) properties in the disposal area, and (ii) effects of flood irrigation with three water qualities (control, BW 1X, and BW 2X) on soil salinity and alfalfa performance using a greenhouse soil column study (soil collected from same study area as objective (i)). Results indicated that although prior land disposal of BW had increased salinity and sodicity of soil, they were within the tolerance limits of the intended crop, alfalfa. Mass balance calculations indicated measured (15·6 Mg ha−1) and calculated (13·2 Mg ha−1) salt accumulation at the test site used for evaporative disposal were similar. Alfalfa grown using BW under greenhouse conditions produced prime quality hay and biomass yield similar to the control treatment (8·3 g column−1 vs. 10·5 g column−1 in control). Although 3·6 years equivalent of flood irrigation with BW 1X did not result in saline soil (BW 1X irrigated soils EC ranged from 2·2 to 3·5 dS m−1), BW 2X irrigation resulted in saline soils. Sodicities of irrigated soils were greater in fine textured deep soils than coarse textured surface soils (e.g., SAR of 6·1 at 0–5 cm vs. 19·5 mmol1/2 L−1/2 at 30–60 cm in BW 1X), indicating the need for high solubility Ca amendments for long‐term irrigation with BW on fine texture soils within the soil profile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Historically many towns in inland Australia disposed of their treated sewage by pumping into local rivers. This is no longer a feasible proposition. Alternatives to river pumping include irrigation and/or aquaculture. As treated sewage effluent may contain large amounts of nitrogen, phosphorus and sodium salts, if not managed carefully, soil salinity, sodicity and nutrient accumulation could increase. The objective of this study was to evaluate if gypsum application had any effect on soil‐quality changes in a Vertisol due to irrigating a cotton–wheat rotation with tertiary treated sewage effluent. The treatments were application of 2·5 t ha−1 of gypsum in June 2000 before commencing irrigation and an untreated control. Annually, between June 2000 and April 2004, irrigation water quality and soil changes in nitrate‐N, EC1:5, pH, organic carbon, Cl, dispersion index, and exchangeable cations to a depth of 1·8 m were measured and deep drainage inferred with the chloride mass balance method. Cotton lint yield and fibre characteristics were also evaluated. Irrigation with treated sewage effluent increased exchangeable Na in all depths, and exchangeable Ca and K in the clayey‐textured surface 0·6 m, but decreased exchangeable Ca and K, and SOC in the coarser clay‐loam‐textured depths > 0·6 m. Nitrate‐N leaching, associated with deep drainage had occurred, as the crops had not used all the N in irrigation water. Gypsum application decreased exchangeable Ca, increased dispersion and during the 2003–2004 season deep drainage, but had no effect on salinity, sodicity or pH. Application of commercial gypsum at sub‐optimal rates with sodium‐rich irrigation water is, therefore, unlikely to improve soil properties. Stubble incorporation before sowing cotton in 2003 appears to have mobilized gypsum applied during 2000. Gypsum application reduced cotton lint yield and fibre quality during 2003–2004. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Biological, chemical and bio‐chemical strategies have been tested in the past for reclamation of saline‐sodic and sodic soils. The efficiency of two crop rotations (rice‐wheat and Sesbania‐wheat) alone or in combination with either gypsum (CaSO4.2H2O) or sulfuric acid (H2SO4) was tested for ionic displacement from four saline‐sodic soils. Pure gypsum was applied at 50 per cent of soil gypsum requirement at the time of planting rice and Sesbania, whereas 95 per cent pure sulfuric acid was added at 50 per cent soil gypsum requirement as one‐third applications by mixing with the first three irrigations. The rice crop biomass decreased at a soil saturation extract electrical conductivity (ECe) of 8 dS m−1, whereas wheat and Sesbania were influenced at a sodium adsorption ratio (SAR) of ≥40. Gypsum treatment helped the crops flourish well at these ECe and SAR levels. The infiltrated volume of water dropped with decrease in ECe : SAR ratio of soils and increase in crop biomass production. Crops rotation treatments alone helped leach sodium (Na+) and other ions successfully at SAR ≤ 21 but were less effective at SAR ≥ 40 at which point plants growth was also curtailed. Gypsum and H2SO4 treatments significantly aided leaching of Na+ and other ions with water at SAR ≥ 40 under both the crop rotations. Hence, crops effectively reclaimed soil at low sodicity level, whereas at high SAR, chemical amendments are obligatory in order to reclaim soils. This study also suggests that the required dose of H2SO4 should be applied with pre‐planting irrigation for better yield of the first crop. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In the Far West Texas region in the USA, long‐term irrigation of fine‐textured valley soils with saline Rio Grande River water has led to soil salinity and sodicity problems. Soil salinity [measured by saturated paste electrical conductivity (ECe)] and sodicity [measured by sodium adsorption ratio (SAR)] in the irrigated areas have resulted in poor growing conditions, reduced crop yields, and declining farm profitability. Understanding the spatial distribution of ECe and SAR within the affected areas is necessary for developing management practices. Conventional methods of assessing ECe and SAR distribution at a high spatial resolution are expensive and time consuming. This study evaluated the accuracy of electromagnetic induction (EMI), which measures apparent electrical conductivity (ECa), to delineate ECe and SAR distribution in two cotton fields located in the Hudspeth and El Paso Counties of Texas, USA. Calibration equations for converting ECa into ECe and SAR were derived using the multiple linear regression (MLR) model included in the ECe Sampling Assessment and Prediction program package developed by the US Salinity Laboratory. Correlations between ECa and soil variables (clay content, ECe, SAR) were highly significant (p ≤ 0·05). This was further confirmed by significant (p ≤ 0·05) MLRs used for estimating ECe and SAR. The ECe and SAR determined by ECa closely matched the measured ECe and SAR values of the study site soils, which ranged from 0·47 to 9·87 dS m−1 and 2·27 to 27·4 mmol1/2 L−1/2, respectively. High R2 values between estimated and measured soil ECe and SAR values validated the MLR model results. Results of this study indicated that the EMI method can be used for rapid and accurate delineation of salinity and sodicity distribution within the affected area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Sodium (Na+) dominated soils reduce saturated hydraulic conductivity (Ks) by clay dispersion and plugging pores, while gypsum (CaSO4•2H2O) application counters these properties. However, variable retrieval of texturally different saline–sodic soils with gypsum at soil gypsum requirement (SGR) devised to define its quantity best suited to improve Ks, leach Na+ and salts. This study comprised loamy‐sand (LS), sandy loam (SL), and clay loam (CL) soils with electrical conductivity of saturation extract (ECe) of ~8 dS m−1, sodium adsorption ratio (SAR) of ~44 (mmol L−1)1/2 and exchangeable sodium of ~41%, receiving no gypsum (G0), gypsum at 25% (G25), 50% (G50) and 75% (G75) of SGR. Soils packed in lysimeters were leached with low‐carbonate water [EC at 0·39 dS m−1, SAR at 0·56 (mmol L−1)1/2 and residual sodium carbonate at 0·15 mmolc L−1]. It proved that a rise in gypsum rate amplified Ks of LS ≫ SL > CL. However, Ks of LS soil at G25 and others at G75 remained efficient for salts and Na+ removal. Retention of calcium with magnesium (Ca2+ + Mg2+) by LS and SL soils increased by G50 and decreased in G75, while in CL, it also increased with G75. The enhanced Na+ leaching efficiency in LS soil with G25 was envisaged by water stay for sufficient time to dissolve gypsum and exchange and leach out Na+. Overall, the superiority of gypsum for LS at G25, SL at G50 and CL at G75 predicted cost‐effective soil reclamation with a decrease in ECe and SAR below 0·97 dS m−1 and 5·92 (mmol L−1)1/2, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Potential for carbon dioxide (CO2) biosequestration was determined during the reclamation of highly saline–sodic soils (Aridisols) after rice (2003) and wheat (2003–2004) crops at two sites in District Faisalabad, Pakistan. Two treatments were assessed: T1, tube-well brackish water only; and T2, soil-applied gypsum at 25% soil gypsum requirement?+?tube-well brackish water. The irrigation water used at both sites had different levels of salinity (EC 3.9–4.5 dS m?1), sodicity (SAR 21.7–28.8), and residual sodium carbonate (14.9 mmolc L?1). Composite soil samples were collected from soil depths of 0–15 and 15–30 cm at presowing and postharvest stages and analyzed for pH, ECe, and sodium adsorption ratio (SAR). After rice harvest, there was no significant effect of gypsum application on ECe, pH, and SAR at both sites, except pH at 0–15 cm depth decreased significantly with gypsum at site 1. After wheat harvest, ECe, pH, and SAR decreased significantly with gypsum at site 1, whereas the effect of gypsum on these parameters was not significant at site 2. Compared to initial soil, ECe and SAR in soil decreased considerably after rice or wheat cultivation, particularly at site 1, whereas pH increased slightly due to cultivation of these crops. For rice, the total CO2 sequestration was significantly increased with gypsum application at both sites and ranged from 1499 to 2801 kg ha?1. The total sequestration of CO2 was also significantly increased with gypsum application in wheat at both sites and ranged from 2230 to 3646 kg ha?1. The amounts of CO2 sequestered by crops due to gypsum application were related to seed and straw yield responses of rice and wheat to gypsum, which were greater at site 1 than site 2. Also, the yield response to applied gypsum was greater for rice than wheat at site 1, whereas the opposite was true at site 2. Overall, the combined application of gypsum with brackish water reduced soil ECe and SAR compared to brackish water alone, particularly at site 1. Our findings also suggest that the reclamation strategies should be site specific, depending on soil type and quality of brackish water used for irrigation of crops. In conclusion, the use of gypsum is recommended on brackish water–irrigated salt-prone soils to improve their quality, and for enhancing C biosequestration and crop production for efficient resource management.  相似文献   

11.
This study analyses soil organic carbon (SOC) and hot‐water extractable carbon, both measures of soil quality, under different land management—(i) conventional tillage (CT); (ii) CT plus the addition of oil mill waste alperujo (A); (iii) CT plus the addition of oil mill waste olive leaves (L); (iv) no tillage with chipped pruned branches (NT1); and (v) no tillage with chipped pruned branches and weeds (NT2)—in a typical Mediterranean agricultural area: the olive groves of Andalusia, southern Spain. SOC values in CT, A, NT1 and NT2 decreased with depth, but in NT2, the surface horizon (0–5 cm) had higher values than the other treatments, 47% more than the average values in the other three soils. In L, SOC also decreased with depth, although there was an increase of 88·5% from the first (0–10 cm) to the second horizon (10–16 cm). Total SOC stock values were very similar under A (101·9 Mg ha−1), CT (101·7 Mg ha−1), NT1 (105·8 Mg ha−1) and NT2 (111·3 Mg ha−1, if we consider the same depth of the others). However, SOC under L was significantly higher (p < 0·05) at 250·2 Mg ha−1. Hot‐water extractable carbon decreased with depth in A, CT and NT1. NT2 and L followed the same pattern as the other management types but with a higher value in the surface horizon (2·3 and 4·9 mg g−1, respectively). Overall, our results indicate that application of oil mill waste olive leaves under CT (L) is a good management practice to improve SOC and reduce waste. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The SALTIRSOIL model predicts soil salinity, sodicity and alkalinity in irrigated land using basic information on soil, climate, crop, irrigation management and water quality. It extends the concept of the WATSUIT model to include irrigation and crop management practices, advances in the calculation of evapotranspiration and new algorithms for the water stress coefficient and calculation of electrical conductivity. SALTIRSOIL calculates the soil water balance and soil solution concentration over the year. A second module, SALSOLCHEM, calculates the inorganic ion composition of the soil solution at equilibrium with soil calcite and gypsum at the soil’s CO2 partial pressure. Results from comparing predicted and experimentally determined concentrations, observations and predictions of pH, alkalinity and calcium concentration in calcite‐saturated solutions agree to the second significant figure; in gypsum‐saturated solutions the standard difference between observations and predictions is <3% in absolute values. The algorithms in SALTIRSOIL have been verified and SALSOLCHEM validated for the reliable calculation of soil salinity, sodicity and alkalinity at water saturation in well‐drained irrigated lands. In simulations for horticultural crops in southeast Spain, soil solution concentration factors at water saturation, quotients of electrical conductivity (EC25) at saturation to electrical conductivity in the irrigation water, and quotients of sodium adsorption ratio (SAR) are very similar to average measured values for the area.  相似文献   

13.
Abstract. The worldwide occurrence of saline sodic and sodic soils on more than half a billion hectares warrants attention for their efficient, inexpensive and environmentally acceptable management. These soils can be ameliorated by providing a source of calcium (Ca2+) to replace excess sodium (Na+) from the cation exchange sites. Although chemical amendments have long been used to ameliorate such soils, the chemical process has become costly during the last two decades in several developing countries. As a low‐cost and environmentally acceptable strategy, the cultivation of certain salt tolerant forage species on calcareous sodic and saline sodic soils, i.e. phytoremediation, has gained interest among scientists and farmers in recent years. In a field study conducted at three calcareous saline sodic sites (pHs=8.1–8.8, ECe=7.8–12.5 dS m–1, SAR=30.6–76.1) in the Indus Plains of Pakistan, we compared chemical and phytoremediation methods. There were four treatments; two involved plants: Kallar grass (Leptochloa fusca (L.) Kunth), and sesbania (Sesbania bispinosa (Jacq.) W. Wight). The other two treatments were uncropped: soil application of gypsum and an untreated control. All treatments were irrigated with canal water (EC=0.22–0.28 dS m–1). The plant species were grown for one season (5–6 months). Sesbania produced more forage yield (34 t ha–1) than Kallar grass (23 t ha–1). Phytoremediation and chemical treatments resulted in similar decreases in soil salinity and sodicity, indicating that phytoremediation may replace or supplement the more costly chemical approach. The soil amelioration potential of sesbania was similar to that of the Kallar grass, which suggests that moderately saline sodic calcareous soils can be improved by growing a forage legume with market value.  相似文献   

14.
Degradation of soils by irrigation with ground waters containing residual alkalinity poses a major threat to agriculture in semi‐arid regions, particularly in South Asia. However, there is a lack of indices to define the soil degradation and crop performance under a monsoon climate. Therefore, an experiment was conducted during 2000–2004 to determine the responses of paddy rice and wheat crops in rotation to irrigation with alkaline waters (AW) having similar salinity (electrolyte concentration 30 me L?1) but varying ionic constituents (sodium adsorption ratio irrigation water, SARiw 10 and 25; adjusted sodium adsorption ratio, adj.RNa 13.6 and 29.2; residual sodium carbonate, RSC 5 and 10 me L?1 and Cl:SO4 4:1 and 1:4, respectively). The concentration factors, ECe/ECiw (ratio of electrical conductivity of soil's saturation paste extract to that of the irrigation water) were between 1.1 and 1.8 for soils deprived of rainfall, whereas it was almost 1 for soils not sheltered from rain. Similarly, saturation paste extract, SARe, was between 1.6 and 2.0 times SARiw and 2.0–2.3 times SARiw with and without rainfall, and the exchangeable sodium per cent (ESP) 1.0–1.8 times SARiw. Yields of paddy relative to yields of crops irrigated with good‐quality water, averaged 56–74% during the period 2000–2004 compared with 81–88% for wheat, indicating the greater sensitivity of rice to irrigation with AW. Elevated levels of sulphate rather than chloride in the irrigation water lessened the impacts of the residual alkalinity. Production functions showed that the sodicity (ESP) did not solely explain the variation in crop yields because the salinity stress simultaneously inhibited growth. None of the sodicity indices (RSC, SAR and adj.RNa) adequately defined the relative impacts of AW, although residual alkalinity (RSC) was a better indicator than either of the other two. The monsoon rains played an important role in alleviating the effects of residual alkalinity. Data presented here should support the development of more reliable criteria for the assessment of sodicity/salinity hazards from AW in semi‐arid regions.  相似文献   

15.
灌溉水质对土壤化学特征和作物生长的影响   总被引:27,自引:1,他引:27       下载免费PDF全文
本文以灌溉水矿化度和钠吸附比为两个主要指标,组合成16个灌溉水质处理,研究了不同灌溉水质对土壤化学性质和作物生长的影响。初步提出了引起盐害和碱害的灌溉水矿化度和钠吸附比的临界值。研究结果表明,灌溉水带入土壤的盐分在土壤中累积与淋洗交替进行。  相似文献   

16.
Currently at least 20 per cent of the world's irrigated land is salt‐affected. However, projections of global population growth, and of an increased demand for food and fibre, suggest that larger areas of salt‐affected soil will need to be cropped in the future. About 60 per cent of salt‐affected soils are sodic, and much of this land is farmed by smallholders. Ameliorating such soils requires the application of a source of calcium (Ca2+), which replaces excess sodium (Na+) at the cation exchange sites. The displaced Na+ is then leached from the root zone through excess irrigation, a process that requires adequate flows of water through the soil. However, it must now be recognized that we can no longer conduct sodic soil amelioration and management solely with the aim of achieving high levels of crop productivity. The economic, social, and environmental impacts of different soil‐amelioration options must also be considered. A holistic approach is therefore needed. This should consider the cost and availability of the inputs needed for amelioration, the soil depth, the level to which sodicity needs to be reduced to allow cropping, the volume and quality of drainage water generated during amelioration, and the options available for drainage‐water disposal or reuse. The quality and cost of water available for post‐amelioration crops, and the economic value of the crops grown during and after amelioration should also be taken into account, as should farmers' livelihoods, the environmental implications of amelioration (such as carbon sequestration), and the long‐term sustainable use of the ameliorated site (in terms of productivity and market value). Consideration of these factors, with the participation of key stakeholders, could sustainably improve sodic soil productivity and help to transform such soils into a useful economic resource. Such an approach would also aid environmental conservation, by minimizing the chances of secondary sodicity developing in soils, particularly under irrigated agriculture. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Recent evidences from some irrigated areas worldwide, such as Central Asia, suggest that water used for irrigation contains magnesium (Mg2+) at levels higher than calcium (Ca2+). Excess levels of Mg2+ in irrigation water and/or in soil, in combination with sodium (Na+) or alone, result in soil degradation because of Mg2+ effects on the soil's physical properties. More than 30 per cent of irrigated lands in Southern Kazakhstan having excess levels of Mg2+ are characterized by low infiltration rates and hydraulic conductivities. The consequence has been a gradual decline in the yield of cotton (Gossypium hirsutum L.), which is commonly grown in the region. These soils require adequate quantities of Ca2+ to mitigate the effects of excess Mg2+. As a source of Ca2+, phosphogypsum—a byproduct of the phosphorous fertilizer industry—is available in some parts of Central Asia. In participation with the local farming community, we carried out a 4‐year field experiment in Southern Kazakhstan to evaluate the effects of soil application of phosphogypsum—0, 4·5, and 8·0 metric ton per hectare (t ha−1)—on chemical changes in a soil containing excess levels of Mg2+, and on cotton yield and economics. The canal water had Mg2+ to Ca2+ ratio ranging from 1·30 to 1·66 during irrigation period. The application of phosphogypsum increased Ca2+ concentration in the soil and triggered the replacement of excess Mg2+ from the cation exchange complex. After harvesting the first crop, there was 18 per cent decrease in exchangeable magnesium percentage (EMP) of the surface 0·2 m soil over the pre‐experiment EMP level in the plots where phosphogypsum was applied at 4·5 t ha−1, and a 31 per cent decrease in EMP in plots treated with phosphogypsum at 8 t ha−1. Additional beneficial effect of the amendment was an increase in the soil phosphorus content. The 4‐year average cotton yields were 2·6 t ha−1 with 8 t ha−1 phosphogypsum, 2·4 t ha−1 with 4·5 t ha−1 phosphogypsum, and 1·4 t ha−1 with the control. Since the amendment was applied once at the beginning, exchangeable Mg2+ levels tended to increase 4 years after its application, particularly in the treatment with 4·5 t ha−1 phosphogypsum. Thus, there would be a need for phosphogypsum application to such soils after every 4–5 years to optimize the ionic balance and sustain higher levels of cotton production. The economic benefits from the phosphogypsum treatments were almost twice those from the control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This column study evaluated the effects of irrigation with two water qualities (WW and FW) to produce bioenergy sorghum on SOC balance, nutrients availability and salt constituents in two soils (TX and NM) amended with gypsum & elemental sulfur (S) and un-amended. Study results indicated that SOC concentration was higher in freshwater irrigated columns (7.41 g kg?1) than wastewater irrigated soils (7.32 g kg?1) across growth year-soil type-amendments-depth. Soils amended with gypsum and sulfur registered significantly higher value of 7.52 and 7.41 g kg?1 compared to 7.30 and 7.23 g kg?1 in non-amended soils under fresh and wastewater irrigation, respectively. Lower SOC in WW irrigated columns could be due to the combined effects of increased salinity and priming effects. Although SOC content initially increased in gypsum and S amended soils to about 10g kg?1, at the end of the study SOC in all treatments decreased to levels significantly below the pre-study. WW irrigation added 2.00, 1.10 and 4.40 times the N, P and K added by fertilizers and was able to meet 65%, 87%, and 210% of bioenergy sorghum uptake of respective nutrients. Sulfates and chlorides of sodium and calcium were dominant salts, which significantly affected SOC and nutrients.

Abbreviations: FW: freshwater; WW: treated wastewater; G + S: gypsum and elemental sulfur; NA: no amendment, TX: Texas soil and NM: New Mexico soil  相似文献   


19.
Eustoma grandiflorum (Raf.) Shinn. (lisianthus) is a moderately salt tolerant species that can be produced commercially under irrigation with saline wastewaters prevalent in two salt-affected areas of California. The objective of the present studies was to determine the effect of irrigation with saline waters of two different compositions on the ion accumulation and ion relations of lisianthus ‘Pure White’ and ‘Echo Blue’. The ionic composition of irrigation waters simulated the compositions typical of i) seawater dilutions (SWD) and ii) concentrations of Colorado River water (CCRW). Electrical conductivities (EC) of SWD and CCRW were between 2 and 12 dS · m?1. Plants irrigated with CCRW were higher in Ca2+ compared to plants irrigated with SWD water. Calcium was also higher in ‘Pure White’ than in ‘Echo Blue’. Increasing EC of irrigation water caused a significant decrease in shoot and leaf Ca2+ concentration in ‘Echo Blue’, but had no effect on Ca2+ content of ‘Pure White’ shoots and leaves. Magnesium concentration in ‘Echo Blue’ was higher than in ‘Pure White’. Electrical conductivity did not significantly affect Mg2+ concentration of either cultivar, despite the increasingly higher external concentration. Potassium concentration of young and mature leaves of ‘Echo Blue’ increased as EC increased from 2 to 8 dS · m?1, then decreased significantly once EC exceeded 8 dS · m?1. Potassium concentration of ‘Pure White’ leaves decreased over the range of salinity treatments tested, suggesting that the reduced potassium ion (K+) activity at EC levels of 8 dS · m?1, or less, that resulted in lower leaf?K+ in ‘Pure White’ did not cause a decrease in K+ uptake in ‘Echo Blue’. Increases in external Na+ caused a significant increase in Na+ in ‘Pure White’ leaves and these plants exhibited the best growth even when levels of Na+ were high enough to be considered detrimental for growth.  相似文献   

20.
The study reports a case of bioreclamation of a once barren sodic landscape in the middle part of Gangetic alluvial plain at Banthra Research Station (National Botanical Research Institute, Lucknow, India) (80° 45′ – 53′E and 26° 40′ – 45′N) which began about four decades ago. The investigations were carried out to ascertain the changes in soil characteristics caused by different land‐use systems adopted consistently over three decades. The results showed that the anthropogenic effect on alteration of surface texture through addition of sand in soils of Typic Natrustalfs is still distinct but persistent sodicity is retained. The soils of Inceptic Haplustalfs are markedly improved showing pH value around 8 and ESP > 4 with negligible CaCO3. The soils of Aeric Endoaquepts supporting stands of forest trees are now devoid of sodicity to about 0\5 m depth, whereas the soils of Aeric Halaquepts though under cultivation have mild sodicity. Soils of Typic Halaquepts occurring on a low physiographic position with aquic soil moisture regime have high sodicity. Summarizing the results of changes in the surface (0 – 15 cm) soil characteristics caused by continuous cultivation irrespective of any crop grown on any soil type reveals that there is perceptible reduction in soil pH and ESP after three decades of reclamation using organic amendments coupled with regular cultivation and afforestation in different locations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号