首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
分析测定了大田试验条件下11个玉米品种的3个氮肥处理、2个密度处理和6个生育期的150张叶片在350~2500nm波段的反射率和吸收率及其叶绿素a、叶绿素b和类胡萝卜素的含量。玉米叶片在叶绿素吸收波段的最大吸收波长位于665nm附近,665nm处叶片的吸收率与反射率间呈高度负相关(R2=-0.7533,n=150),而吸收率较高(>92%)的叶片的相关性明显强于吸收率较低的叶片。基于近红外波段和叶绿素吸收波段(红波段)或叶绿素反射波段(绿波段)构建的8个高光谱参量只有以反射率为基础计算时才与色素含量间存在相关性。mSR705和mND705无论以反射率还是以吸收率为基础计算,均表现出与色素含量间的强相关关系,而以吸收率为基础计算的mSR705和mND705与色素含量间的相关性又稍强于以反射率为基础计算的mSR705和mND705。本研究结果暗示叶片的表面反射是干扰叶片光谱(尤其是吸收光谱)对色素浓度变化响应的主要因子。  相似文献   

2.
为给小麦生长过程中叶绿素的实时监测和氮肥调控提供参考,设置3种不同土壤质地(沙土、壤土和粘土)、5种不同施氮水平(0、120、225、330和435kg·hm-2)和3个河南省主栽小麦品种(矮抗58、周麦22和郑麦366),同步测定小麦主要生育时期冠层光谱反射率和叶绿素(Chla+b)含量,系统分析了3种土壤质地条件下小麦Chla+b含量与350~1 050nm波段范围内冠层光谱参数的相关关系。结果表明,3种土壤质地下小麦叶绿素的冠层光谱响应趋势基本一致。光谱指数REPIG和mND705对叶片Chla+b含量的监测效果较好,建模决定系数分别为0.76和0.75。利用独立样本数据对用于建模的此二光谱参数进行检验,其预测效果表现较为稳定,预测决定系数分别为0.87和0.85,均方根偏差分别为0.46和0.48。说明利用光谱指数REPIG和mND705为自变量建立的估测模型可以较好地预测当地生产条件下小麦叶片叶绿素,同时为氮肥施用及调控提供技术依据。  相似文献   

3.
大豆叶片叶绿素含量与光谱的特征分析   总被引:3,自引:0,他引:3  
用Unispec光谱分析仪和SPAD叶绿素仪测定了2个品种从初花期到成熟期的反射光谱和叶绿素含量.用SPAD叶绿素仪测定结果表明:每个时期均为合交98-1667的叶绿素含量高于合丰55号;用Unispec光谱分析仪测定结果显示:合丰55号大豆的光谱反射率高于合交98-1667,并且发现在可见光510 nm~610 nm处有一个叶绿素反射吸收峰,此吸收峰是大豆叶片上特有的一个特征值.数据统计分析表明:叶片叶绿素含量与光谱植被指数mSR705、mND705,和PSSRc具有极显著相关性.说明可以通过测量叶片光谱的方法来监测大豆叶片叶绿素含量.  相似文献   

4.
关中冬小麦叶片氮素含量高光谱遥感监测模型   总被引:2,自引:0,他引:2  
为给黄土高原大范围的冬小麦氮素营养遥感监测提供理论依据,通过田间试验,研究了冬小麦叶片氮素含量遥感监测的最佳生育时期、最敏感波段及其他最优光谱参量。结果表明,灌浆期是利用高光谱遥感监测冬小麦叶片氮素营养状况的最佳生育时期;在拔节、抽穗和灌浆期680nm波段光谱反射率R680均能较好地反映冬小麦叶片氮素含量,基于光谱位置以及叶面积指数的光谱参量也能较好地反映冬小麦叶片氮素含量。拔节期、抽穗期和灌浆期分别以680nm波段光谱反射率R680、绿峰反射率Rg和植被指数(SDr-SDb)/(SDr+SDb)对小麦叶片氮素含量的拟合效果最佳,其回归方程分别为Y=27.54-280.247 X+1456.245 X2、Y=8.632 X-0.24和Y=25.83 X1.012。  相似文献   

5.
为探讨基于Dualex植物多酚-叶绿素仪和高光谱遥感技术反演小麦叶绿素含量的可行性,利用Dualex植物多酚-叶绿素仪,测定不同生育时期冬小麦叶片叶绿素含量(Chl),同时进行叶片光谱测定,以对Chl敏感的1个一阶导数波段、3个三边参数和3个植被指数作为自变量,利用偏最小二乘法(PLS)和支持向量回归(SVR)构建估测模型,并利用验证样本对各生育时期估测模型进行精度检验,同时与传统的单因素模型进行了比较。结果表明,冬小麦反射光谱曲线在不同生育时期有所不同,且随着叶绿素含量的增加,可见光波段的光谱反射率不断降低;在以一阶导数光谱敏感波段、三边参数以及植被指数构建的冬小麦Chl单因素估算模型中,基于各生育时期显著相关的植被指数构建的模型精度最优;以7个参数作为自变量,利用偏最小二乘法(PLS)和支持向量回归(SVR)构建的模型在各生育时期均表现出较好的拟合性及预测精度,尤其利用SVR建立的模型建模决定系数在0.8以上,预测决定系数在0.7以上,是进行冬小麦叶片Chl估测的最优模型。  相似文献   

6.
基于光谱指数的冬小麦冠层叶绿素含量估算模型研究   总被引:4,自引:0,他引:4  
为探索对冬小麦冠层叶绿素含量反应敏感的高光谱波段组合,同时比较不同光谱指数对小麦冠层叶绿素含量的估测效果,通过分析350~2 500nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段交叉组合而成的主要高光谱指数与冬小麦冠层叶片叶绿素含量的定量关系,建立冬小麦冠层叶绿素含量估算模型。结果表明,选用归一化光谱指数(NDSI)、比值光谱指数(RSI)、差值光谱指数(DSI)和土壤调节光谱指数(SASI)建立的冬小麦冠层叶绿素含量监测模型决定系数均大于0.71,标准误差均小于1.842。利用独立试验资料进行检验,表现最好的是RSI(FD_(689),FD_(609))和SASI(R_(491),R_(666))L=0.01,预测精度高达98.2%,模型精确度和可靠性较高。  相似文献   

7.
光谱仪与SPAD测定马铃薯叶绿素含量的比较   总被引:1,自引:0,他引:1  
通过Unispec-SC光谱仪和SPAD-502叶绿素计两种方法测定马铃薯叶片叶绿素相对含量的比较,结果表明:马铃薯在310~730 nm波段选取510 nm、650 nm和680 nm 3个波段的光谱反射率,在730~1130 nm波段,选取820 nm和940 nm 2个波段的光谱反应率,它们与叶绿素含量的相关性呈显著水平。在940 nm和510 nm组合的波段计算的植被指数与叶绿素相关性最好,并且以NDVI的相关系数最高,r=-0.9546,达到了极显著水平。Unispec-SC光谱仪比SPAD-502叶绿素计预测结果更为准确。  相似文献   

8.
用Unispec光谱分析仪和SPAD-502叶绿素仪测定不同生育时期不同氮肥水平大豆叶片光谱反射率及叶绿素含量,并分析了光谱植被指数与叶绿素含量的相关性。结果表明:不施氮肥处理光谱反射率高于施氮处理,随着施氮量的增加,大豆叶片光谱反射率下降,并初步断定结荚期是大豆氮素光谱营养诊断的敏感时期;随着氮肥水平的提高叶绿素含量增加;整个生育时期,除鼓粒期不施氮处理外其它处理的植被指数mND705与叶绿素含量均呈极显著正相关;在花期和结荚期,各处理的mSR705与叶绿素含量呈极显著正相关,PSSRc与叶绿素含量呈极显著负相关。  相似文献   

9.
为提高农作物叶片叶绿素含量高光谱估算的准确度,以阜康农作物试验地为研究靶区,测定了165个采样点的春小麦叶片叶绿素含量和叶片光谱反射率,运用分数阶微分算法进行光谱预处理,最后运用偏最小二乘法(PLSR)建立叶绿素含量估算模型。结果表明,对数学变换■、lg~R、1/lg~R、1/R)的光谱及原始光谱(R)的数据进行0~2阶分数阶微分预处理时,通过0.01水平显著性检验的波段数量明显增加,且光谱数据经4种数学变换后均在1.2阶微分与小麦叶绿素含量有较高的相关性。1.2阶微分处理后,对叶绿素含量的敏感波段数量表现为■。利用对数变换和1.2阶微分计算的植被指数(NDVI、DVI、RVI、MSR_(705)、MSR_(670,800)、CI)建立的PLSR模型的估算精度最优,其预测的相对误差、决定系数和平方根差分别为2.17、0.87和0.243mg·g~(-1),可作为小麦叶片叶绿素含量的最佳估算模型,也说明对光谱数据进行数学转换和分数阶微分处理可显著提高春小麦叶绿素含量的估算精度。  相似文献   

10.
为了快速监测小麦叶片水分含量,以敏感波段组和植被指数组2种变量分别作为输入变量,以地面同步观测的冬小麦叶片含水量作为输出变量,分别采用偏最小二乘(partial least squares,PLS)、极限学习机(extreme learning machine,ELM)和粒子群算法(particle swarm optimization,PSO)优化极限学习机,建立冬小麦叶片含水量预测模型,并对其反演效果进行比较。结果表明,光谱反射率和植被指数与叶片含水量之间存在较为密切的相关性,依此确定的敏感光谱波段为红光、蓝光和近红外波段,敏感植被指数为绿度指数、过红指数、归一化绿红差值指数、三角形植被指数和过绿指数。从2种变量的建模效果看,基于植被指数组构建的模型的精度和稳定性均优于敏感波段组,其中基于植被指数组的PSO-ELM模型在6个叶片水分含量反演模型中表现最佳,其R2和RMSE分别为0.98和0.26%。利用最优模型反演得到研究区冬小麦叶片含水量的分布范围为45%~75%,平均为64.57%,反演结果与地面实测较相符,说明基于无人机光谱数据通过建立以植被指数为变量的PSO-ELM模型可实现对冬小麦叶片水分含量的精准预测。  相似文献   

11.
 分析测定了大田条件下2个水稻品种在3个氮素水平下的剑叶和穗从乳熟期至收割的光谱反射率(350~2500 nm)及对应剑叶和穗的叶绿素(Chl)、类胡萝卜素(Car)含量,并利用相关分析研究了11个植被指数与剑叶、穗的叶绿素含量之间的关系。mSR705、mND705在试验范围各叶绿素含量水平下,都表现极显著的相关性。mSR705、mND705与叶片、穗叶绿素含量进行线性回归,两者拟合R2分别为0.9319和0.9488(n=48)。植被指数与类胡萝卜素、Car/Chl间的相关性分析表明,光化学反射指数(PRI)与剑叶、穗Car/Chl都有很好的负相关(R2=0.7745,n=48), 可以用来预测不同植被结构的Car/Chl;R760/R500与剑叶Car/Chl和穗Car含量也具有较好的相关性。结果表明,mSR705、mND705和PRI等指数可用于估算叶片、穗的色素含量,作为水稻成熟度的监测指标。  相似文献   

12.
在叶片尺度上,基于高光谱植被指数反演实际光合速率(Phi2)、非调节的光能耗散(PhiNO)、非光化学淬灭(PhiNPQ)、相对叶绿素含量(RC)4个叶绿素荧光参数,分析不同氮素处理下叶片光谱反射率和4个叶绿素荧光参数在不同时期的变化特征。结果表明,可见光波段在过量施氮下叶片反射率低于不施氮处理;在近红外波段,叶片光谱反射率随着施氮量的增大而增大。随着玉米的生长,不施氮处理下Phi2逐渐减少,PhiNPQ逐渐增加;过量施氮下Phi2先增加后减少,PhiNO和PhiNPQ先降低后增加。RC在不同施氮条件下均随着生育时期发展先增加后减少。Phi2和PhiNPQ与归一化植被指数(NDVI)的相关性最好,PhiNO与改进型叶绿素吸收比值指数(MCARI)的相关性最好,RC与红边植被指数(CIred edge)的相关性最好。  相似文献   

13.
为了丰富大田尺度下冬小麦叶面积指数的遥感估算方法并提高估算精度,以关中地区冬小麦为对象,基于Sentinel-2多光谱卫星数据与地面同步观测的冬小麦叶面积指数样点数据,应用偏最小二乘回归(PLSR)、反向传播神经网络(BPNN)和随机森林(RF)法构建冬小麦叶面积指数估算模型,进行区域冬小麦叶面积指数遥感反演。结果表明,Sentinel-2多光谱卫星影像中心842nm近红外B8波段与冬小麦叶面积指数相关性最好,样本总体相关系数为0.778;植被指数中反向差值植被指数(IDVI)与冬小麦叶面积指数相关性最好,样本总体相关系数为0.776。各种估算模型中LAI-RF模型预测效果最佳,r~2为0.72,RMSE为0.53,RE为16.83%。基于LAI-RF估算模型,应用Sentinel-2多光谱卫星数据较好地反演了研究区冬小麦叶面积指数区域分布,其结果总体上与地面真实情况接近,说明以Sentinel-2卫星影像数据建立LAI-RF估算模型,可应用于区域冬小麦LAI反演制图。  相似文献   

14.
基于叶片高光谱特征的小麦白粉病严重度估算模式   总被引:3,自引:0,他引:3  
为了解白粉病胁迫下小麦叶片特征并预测其危害程度,基于大田小区和温室盆栽小麦白粉病接种试验,采用高光谱仪测定受白粉病不同程度危害的冬小麦叶片光谱反射率,并分析光谱特征参数与白粉病严重度间的关系。结果表明,随着小麦白粉病病情的加重,在可见光350~700nm波段内,叶片光谱反射率增加;而在700~1050nm近红外波段内,叶片光谱反射率明显降低。400~500nm和610~690nm为光谱敏感波段,在650~680nm波段相关系数最高(r0.75)。光谱参数MCARI、PSRI、VARIgreen和AI对叶片病害严重度拟合效果较好,决定系数(R2)变化范围为0.77~0.82,标准误差为9.34~10.14。模型检验表明,小麦单叶片病害严重度超过10%时,检验结果较为理想,单叶片病害严重度低于10%时,则定量估算误差偏大,10%严重度可作为光谱法识别小麦白粉病的临界值。光谱参数MCARI和VARIgreen对小麦白粉病反应敏感,估算误差较小,可作为小麦白粉病严重度的最佳估算模型。  相似文献   

15.
为解决大田冬小麦叶片叶绿素含量估测模型精度低、通用性弱的问题,在获取冬小麦拔节期和抽穗期冠层红光波段反射率(BRred)和近红外波段反射率(BRnir)的基础上,计算归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、土壤调节植被指数(SAVI)、改进型比值植被指数(MSR)、重归一化植被指数(RDVI)、II型增强植被指数(EVI2)和非线性植被指数(NLI)等8个植被指数。经统计分析,选择与叶片叶绿素含量(SPAD值)相关性较好的5个遥感光谱指标(NDVI、MSR、NLI、BRred和RVI)作为输入变量,建立了冬小麦叶片叶绿素含量的BP神经网络估测模型(WWLCCBP),并对估测模型进行精度验证。结果表明,WWLCCBP估测模型在拔节期估测的决定系数(r2)为0.84,均方根误差(RMSE)为5.39,平均相对误差(ARE)为9.87%。抽穗期的估测效果与拔节期较为一致。将WWLCCBP和高分六号影像...  相似文献   

16.
《Plant Production Science》2013,16(4):400-411
Abstract

Non-destructive monitoring and diagnosis of plant nitrogen (N) concentration are of significant importance for precise N management and productivity forecasting in field crops. The present study was conducted to identify the common spectra wavebands and canopy reflectance spectral parameters for indicating leaf nitrogen concentration (LNC, mg N g-1 DW) and to determine quantitative relationships of LNC to canopy reflectance spectra in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Ground-based canopy spectral reflectance and LNC were measured with seven field experiments consisting of seven different wheat cultivars and five different rice cultivars and varied N fertilization levels across three growing seasons for wheat and four growing seasons for rice. All possible ratio vegetation indices (RVI), difference vegetation indices (DVI), and normalized difference vegetation indices (NDVI) of key wavebands from the MSR16 radiometer were calculated. The results showed that LNC of wheat and rice increased with increasing N fertilization rates. Canopy reflectance, however, was a more complicated relationship under different N application rates. In the near infrared portion of the spectrum (760?1220 nm), canopy spectral reflectance increased with increasing N supply, whereas in the visible region (460?710 nm), canopy reflectance decreased with increasing N supply. For both rice and wheat, LNC was best estimated at 610, 660 and 680 nm. Among all possible RVI, DVI and NDVI of key bands from the MSR16 radiometer, NDVI(1220, 610) and RVI(1220, 610) were most highly correlated to LNC in both wheat and rice. In addition, the correlations of NDVI(1220, 610) and RVI(1220, 610) to LNC were found to be higher than those of individual wavebands at 610, 660 and 680 nm in both wheat and rice. Thus LNC in both wheat and rice could be indicated with common wavebands and vegetation indices, but separate regression equations are necessary for precisely describing the dynamic change patterns of LNC in wheat and rice. When independent data were fit to the derived equations, the root mean square error (RMSE) values for the predicted LNC with NDVI(1220, 610) and RVI(1220, 610) relative to the observed values were 10.50% and 10.52% in wheat, and 13.04% and 12.61% in rice, respectively, indicating a good fit. These results should improve the knowledge on non-destructive monitoring of leaf N status in cereal crops.  相似文献   

17.
为了探讨多角度遥感在白粉病胁迫下监测小麦叶绿素含量的适宜角度,以易感白粉病品种偃展4110和中感白粉病品种国麦301为试验材料,获取三种不同生长环境(病圃田、接种田和自然感病田)下抽穗至灌浆期小麦冠层多角度反射光谱及叶绿素含量,分析不同时期叶绿素含量变化及其与多角度反射率的关系,建立白粉病胁迫下小麦叶绿素含量监测模型。结果表明,由红边波段构建的光谱参数对白粉病胁迫下叶绿素含量变化反应敏感。优化筛选出的植被指数与叶绿素含量之间的相关性在前向角度观测时优于垂直角度观测,而垂直观测角度好于后向角度观测,整体上以前向20°最佳。植被指数中,光谱参数RES(红边对称度)表现较好,在前向20°下的监测精度达0.725。因此,在前向20℃观察条件下可用RES对白粉病危害后小麦冠层叶绿素含量变化进行有效监测。  相似文献   

18.
为给小麦长势的遥感监测提供依据,利用多种植被指数对比分析了水浇地和旱地春小麦不同生育期冠层光谱及叶绿素含量的变化,并建立了不同地类春小麦叶绿素含量的最佳估测模型。结果表明,春小麦叶绿素含量在整个生育期呈先升后降趋势,且水浇地高于旱地。春小麦冠层光谱在可见光波段表现为阳坡和双面坡地>阴坡地>水浇地,而在近红外区域反之。在起身期-乳熟期,春小麦叶绿素含量分别与二次修正土壤调节植被指数和植被衰老反射率指数的相关性最好;在拔节-扬花期,水浇地和阴坡地的叶绿素含量分别与绿度植被指数和修正归一化差异指数相关性最好,阳坡和双面坡地则与二次修正土壤调节植被指数的相关系数最大。利用相关性最好的植被指数模拟春小麦叶绿素含量,水浇地在起身-扬花期宜用抛物线模型,乳熟期则适合用乘幂模型,且各模型r和检验r均大于0.88,拟合程度较高;阴坡、阳坡和双面坡地起身期适用指数模型,其余时期适合抛物线模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号