首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this retrospective study was to assess the effect of receiving a single (n = 50,285) or double (n = 4392) artificial insemination (AI), 12 h apart, within a timed artificial insemination protocol on pregnancy per AI (P/AI) in nulliparous heifers (inseminated with either sex-sorted or conventional semen) and pluriparous Holstein cows in a commercial dairy herd. Also, this study aimed to investigate the relationship between temperature-humidity index (THI) and time of the first AI and fertility. Fertility of cows receiving two AI with normothermia (THI <68) was higher (p < .05) than cows receiving a single AI (42.9% vs. 36.4%). P/AI of cows receiving two AI with severe heat stress (THI >85) was higher (p < .05) than cows receiving a single AI (21.0% vs. 12.6%). Regardless of heat stress conditions, applying the first AI in the morning increased (p < .05) P/AI in cows with double AI than in cows whose first AI occurred in the afternoon (38.4 vs. 33.3%). With moderate heat stress, and sexed-sorted semen, P/AI to timed AI was higher (65.0 vs. 51.9%; p < .05) in heifers receiving double AI than those serviced once. It was concluded that double AI, 12 h apart, enhanced fertility at timed AI than herd mates with a single AI, particularly with heat stress at breeding.  相似文献   

2.
The first aim of this study was to determine the influence of the procedures [hormonal treatments for fixed time artificial insemination (FTAI) versus insemination at spontaneous oestrus (SEAI)] on several sequential inseminations (AI). A second aim was to determine the influence of some intrinsic and extrinsic factors and their interactions, including characteristics of the animals such as age, season, farm, sire, and AI technician on the response to both procedures. A retrospective analysis was performed from a data base of 120.807 AIs of healthy cows with at least 40–70 days post-partum at first service. Overall, FTAI achieved slighter greater pregnancy rates than insemination after detected oestrus. The second AI seems to be a key insemination as effects of sire and technician were greater than in the following ones. The use of FTAI or SEAI in one AI did not affect the results of the following AIs, regardless if FTAI or SEAI procedures were used in that AI. Technician had greater variation than sire or farm on final pregnancy rate. The results of each sire for pregnancy rate varied according to the type of insemination, with sires achieving greater results with one or other procedure. Pregnancy rate was positively related to the days in milk in the first two AIs. Results were greater in autumn than in spring services.  相似文献   

3.
The objectives were to evaluate the reproductive indices and survival analysis of pregnancy outcomes in multiparous repeat breeder Holstein cows (n = 557). The cows were synchronized to ovulate by Ovsynch, new controlled internal drug release device (N‐CIDRsynch), and once‐used CIDR device (U‐CIDRsynch). The pregnancy per AI at 28 days post‐insemination (P/AI 28) in the N‐CIDRsynch group (28.75%) was significantly (COR = 1.49; p = 0.011) greater than that reported in the Ovsynch (23.46%) and U‐CIDRsynch (21.73%) groups. Furthermore, the pregnancy per AI at day 75 post‐insemination (P/AI 75) in the N‐CIDRsynch group was significantly greater than the Ovysync group (COR = 1.35; p = 0.050). The repeat breeder cows received a N‐CIDR device had a significantly higher progesterone level on day 2 and day 4 of CIDR insertion (1.38 and 1.67 ng/ml, respectively) than those received a U‐CIDR device or the control group (p = 0.012 and 0.001, respectively). The Cox regression model recorded significant associations for synchronization protocols, THI at the TAI and season of calving with the hazard of P/AI 28 and P/AI 75 (p = 0.044 and 0.046; 0.001 and 0.005; 0.003 and 0.001, respectively). Multiparous repeat breeder cows (>3) had a lower hazard ratio (HR) of P/AI 28 than that reported in the reference (2nd parity) group (HR = 0.74, p = 0.050). The repeat breeder cows inseminated at 76–80 and >80 temperature‐humidity index (THI) had significantly lower HR of P/AI 28 than those inseminated at the baseline (<70) THI value (HR = 0.73 and 0.30, p = 0.036 and 0.001, respectively). The current results indicate that the use of N‐CIDR synch protocol may achieve satisfactory pregnancy outcomes in repeat breeder cows.  相似文献   

4.
The objective of the study was to evaluate the interval from onset of oestrus to time of artificial insemination (AI) to obtain the optimum pregnancy rate with sex-sorted semen in Holstein heifers. Heifers in oestrus were detected and inseminated only by using heat–rumination neck collar comprised electronic identification tag at the age of 13–14 months. Heifers (n = 283) were randomly assigned to one of three groups according to the timing of insemination at 12–16 hr (G1, n = 97), at 16.1–20 hr (G2, n = 94) and at 20.1–24 hr (G3, n = 92) after reaching the activity threshold. The mean duration of oestrus was 18.6 ± 0.1 hr, and mean peak activity was found at 7.5 ± 0.1 hr after activity threshold. The mean interval from activity threshold to ovulation was 29.4 ± 0.4 hr. The overall pregnancy per AI (P/AI) was 53.0% at 29–35 days and 50.9% at 60–66 days after AI. There was a significant reduction between G1 (13.8 ± 1.4 hr) and G3 (7.9 ± 1.4 hr) related to the intervals from AI to ovulation time. Sex-sorted semen resulted in significantly higher P/AI at 29–35 days when heifers inseminated in G3 (60.9%) after oestrus than those inseminated in G1 (49.5%) and G2 (48.9%). In terms of fertility, when the temperature–humidity index (THI) was below the threshold value (THI ≤65) at the time of AI, there was a tendency (≤65; 57.2% vs. > 65; 47.1%) for high pregnancy rate. There was no effect of sire on P/AI. In addition, the interaction of the technician with the time of AI was found significant, and three-way interaction of technician, sire and time of AI was tended to be significant on pregnancy rate. Thus, in addition to delaying the time of insemination (between 20.1 and 24 hr) after oestrous detection, THI and experienced technician were also found to be critical factors in increasing fertility with the use of sex-sorted semen in Holstein heifers.  相似文献   

5.
For successful batch farrowing, porcine oestrus and ovulation must be synchronized using fixed-time artificial insemination (FTAI). However, exogenous gonadotropins, which are currently used in FTAI, negatively affect gilt ovulation. Here, we aimed to improve sexually mature gilt superovulation efficiency using passive immunization against inhibin during FTAI. Altrenogest-treated gilts were challenged with 10 ml anti-inhibin serum (AIS group, n = 6), 1,000 IU pregnant mare serum gonadotropin (PMSG group, n = 6), or 10 ml goat serum (control group, n = 6). Gilts in the AIS and PMSG groups were inseminated according to the FTAI protocol, and gilts in the control group were inseminated during natural oestrus. When PMSG was replaced by AIS during FTAI of gilts, ovulation rate and embryos recovered were significantly greater in the AIS group as compared to the other two groups (p < .05). Especially the average number of 6–8-cell embryos in the AIS group was significantly higher than that in the PMSG group (p < .01). Moreover, the blastocyst number in the AIS group was significantly higher than that in the PMSG group and the control group (p < .05). But there was no significant difference in the blastocyst number between the PMSG group and the control group (p > .05). Besides, plasma levels of estradiol-β (E2) and progesterone (P4) were significantly greater in the AIS group as compared to the other two groups on Day 23 and D 27, respectively (p < .01). In summary, we devised an improved high-yield FTAI protocol for sexually mature gilts using AIS; this protocol had a greater superovulation efficiency than the FTAI using PMSG.  相似文献   

6.
Fixed‐time post‐cervical artificial insemination (FTAI) drastically reduces labour requirements and increases the use of boars with higher genetic merit. This study evaluated the efficiency of eCG administration combined with/without the GnRH agonist buserelin for the induction and synchronization of ovulation in weaned sows submitted to FTAI. The sows were allocated into three groups. In the control group, the first artificial insemination was performed at the onset of oestrus and repeated every 24 hr. In the eCG+GnRH group, sows received 600 IU eCG at weaning and buserelin (10 μg) after 86–89 hr of eCG, and in the GnRH group, sows received only buserelin after 86–89 hr of weaning. The hormone‐treated sows received a single FTAI after 30–33 hr of buserelin application. All the sows were inseminated with homospermic doses (1.5 × 109 sperm cells/50 ml). The interval between weaning and ovulation was shorter (p < .05) in the eCG+GnRH (133.3 hr) and GnRH (135.9 hr) groups than the control (141.5 hr) group. In the eCG+GnRH group, the sows ovulated earlier (p < .05) than those in the GnRH group (44.5 vs. 48.2 hr after buserelin administration). The reproductive performance of GnRH sows was not compromised when only sows exhibiting oestrus at the time of insemination were considered, but lower farrowing rate and smaller litter size were observed in eCG+GnRH sows. The reproductive performance of eCG+GnRH sows was primarily compromised because the insemination was performed outside the optimal time relative to ovulation; therefore, it is advisable to inseminate them before 116–122 hr after weaning.  相似文献   

7.
Increasing use of fixed‐time artificial insemination (FTAI) in beef cattle production has presented an opportunity for the use of fresh or chilled semen as an alternative to standard cryopreserved semen. The objective of this study was to examine in vitro sperm function and pregnancy rate of electroejaculated semen, chilled and stored for 48 hr, compared to conventionally cryopreserved semen with an optimized FTAI protocol in Brahman cattle. Semen from three Brahman bulls was collected, and aliquots were extended in either chilled (at 5°C) or frozen (LN2) in a Tris‐egg yolk extender base with 2.4% or 7.0% glycerol, respectively. Semen samples were assessed 48 hr after collection or post‐thaw and warming, for sperm motility, in vitro sperm function and fertilizing ability, and used in a FTAI programme. The overall pregnancy rates was significantly different (< .01) after FTAI with frozen (n = 173; 53.2%) and chilled semen (n = 174; 31.6%). In contrast, the in vitro sperm assessment showed that the chilled semen had significantly faster motility (< .05), a higher proportion of progressively motile spermatozoa (< .05), with significantly higher proportions of acrosome intact, viable spermatozoa (< .01). This study showed that reasonable pregnancy rates in Brahman cattle can be achieved using FTAI with chilled semen collected using electroejaculation and stored for up to 48 hr. However, improvements in semen extenders are required in consideration of semen collection method to improve the longevity of sperm fertilizing ability to significantly increase FTAI output using chilled storage of bull semen.  相似文献   

8.
Environmental factors such as the temperature–humidity index (THI) are known to affect reproductive parameters in cattle. Therefore, here, we examined whether there was any correlation between the THI and the reproductive performance of Japanese Black cattle by analysing the first‐service conception rates of 178,492 artificially inseminated cows across 9,833 herds in south‐western Japan over a 3‐year period. The daily mean (±SD) THI over the study period was 63.6 ± 11.3 (range: 41.4–81.5). The calving to first artificial insemination (AI) interval was significantly negatively correlated with THI in the month of AI (r = ?.75, p < .001), whereas conception rate to first AI (CRFA) showed a cyclical change that did not correspond with that of THI, resulting in a time lag between CRFA and THI in the month of AI. Furthermore, there was a stronger correlation between CRFA and THI between 3 and 2 months before AI (r = .76 vs. .83, p < .001) than in the month of AI (r = .34, p = .04). Therefore, this extensive field study showed that a decrease in THI was associated with declined reproductive performance in Japanese Black cattle and that the impact of the cold environment on the conception rate is attributable to a carryover effect from the cold season before AI rather than conditions at the time of AI.  相似文献   

9.
This study compared the responses shown by lactating dairy cows to four different P4-based protocols for AI at estrus. Cows with no estrous signs 96 h after progesterone intravaginal device (PRID) removal were subjected to fixed-time AI (FTAI), and their data were also included in the study. In Experiment I, follicular/luteal and endometrial dynamics were assessed every 12 h from the beginning of treatment until AI. The estrous response was examined in Experiment II, and fertility was assessed in both experiments. The protocols consisted of a PRID fitted for five days, along with the administration of different combinations of gonadotropin releasing hormone (GnRH), equine chorionic gonadotropin and a single or double dose (24 h apart) of prostaglandin F. In Experiment I (40 cows), animals receiving GnRH at the start of treatment showed a significantly higher ovulation rate during the PRID insertion period while estrus was delayed. In Experiment II (351 cows), according to the odds ratios, cows showing luteal activity at the time of treatment were less likely to show estrus than cows with no signs of luteal activity. Treatment affected the estrous response and the interval from PRID removal to estrus but did not affect conception rates 28–34 days post AI. Primiparous cows displayed a better estrous response than multiparous cows. Our findings reveal acceptable results of 5-day P4-based protocols for AI at estrus in high-producing dairy cows. Time from treatment to estrus emerged as a good guide for FTAI after a 5-day P4-based synchronization protocol.  相似文献   

10.
Pregnancy rate per AI (PR/AI) and breeding season pregnancy rates between insemination with sexed semen (SS; at 18 hr after the onset of oestrus) and conventional semen (CS; at 12 hr after the onset of oestrus,) and offspring gender ratio between two groups were compared. Angus cross cows (n = 686, during 2019 and 2020 breeding seasons) were oestrus-synchronized using Select-Synch + CIDR protocol and were observed thrice daily for oestrus until 72 hr after PGF2α administration. Cows expressed oestrus (n = 513) were inseminated with either SS (n = 246; SexedULTRA 4M™; y chromosome-bearing sperm) or CS (n = 267). Cows (n = 173) that failed to express oestrus at 72 hr after PGF2α received 100 μg of GnRH and CS insemination concomitantly. Two weeks later, cows were penned with natural service sires (bull:cow ratio 1:25) for 45 days. Pregnancy was diagnosed 30 days after bull removal. Calves' gender was determined at birth. For cows that expressed oestrus, PR/AI did not differ (p > .1) between SS (65.0%) and CS (66.7%) groups. The overall PR/AI differed (p < .05) between SS (65.0%) and CS (56.4%) groups. The natural service PR differed (p < .001) but breeding season PR (p > .05) did not differ between SS vs. CS groups. Bull:heifer gender ratio following AI was 88:12 and 52:48 for SS and CS groups, respectively, with an overall 66:34 ratio. Bull:heifer gender ratio for the two breeding seasons was 79:21 and 52:48 for SS and CS groups, respectively, with an overall 62:38 ratio. In conclusion, the fertility of SS insemination at 18 hr after onset of oestrus was 97% of CS insemination at 12 hr after onset of oestrus. Though breeding season pregnancy did not differ between SS and groups, preferred calf gender was 25 percentage points greater for SS over CS application. The gender accuracy was 88%.  相似文献   

11.
The GMM sheep is a carrier of Booroola fecundity (FecB) gene, which produces the twins and triplets in one lambing. The homozygous carrier GMM (FecBBB), non‐carrier GMM and Malpura (FecB++) ewes were synchronized by progesterone sponges, and the plasma progesterone concentration was measured by RIA. The results showed that the progesterone concentration did not differ significantly (p > .05) in homozygous carrier GMM (5.74 ± 1.2 ng/ml), non‐carrier GMM (5.42 ± 1.4 ng/ml) and non‐carrier Malpura ewes (5.67 ± 1.5 ng/ml). Further, quantitative expression of BMP factors/receptors and SMAD signalling genes were analysed in the ovaries of sheep by qRT‐PCR. The study showed that the expression of BMP2 was slightly higher (p > .05) in carrier GMM than that of non‐carrier GMM, but it was almost similar to Malpura ewes. Expression of BMP4 and BMP7 was significantly higher (p < .001; p < .05) in carrier GMM than that of non‐carrier GMM and Malpura ewes. Although BMP6 expression was higher (p > .05) in carrier GMM than that of non‐carrier GMM, but lower (p > .05) than the Malpura ewes. Expression of BMP15 (p < .05), GDF5 (p < .01) and GDF9 (p < .05) was significantly higher in carrier GMM than non‐carrier GMM ewes. Surprisingly, BMPR1B expression was significantly higher (p < .001) in non‐carrier GMM and Malpura than the carrier GMM ewes, while TGFβRI did not differ significantly (p > .05) among both GMM genotypes. On the other hand, expression of BMPR1A (p > .05) and BMPRII (p < .05) was higher in carrier GMM than the non‐carrier GMM, but significantly lower (p < .001) than the Malpura ewes. It was interesting to note that the expression of SMAD1 (p > .05), SMAD2 (p < .001), SMAD3 (p < .05), SMAD4 (p < .001), SMAD5 (p < .001) and SMAD8 (p < .001) was lower in the carrier GMM than that of non‐carrier GMM ewes. It is concluded that the FecB mutation alters the expression of BMPR1B and SMAD signalling genes in the ovaries of homozygous carrier GMM ewes.  相似文献   

12.
This study compares in two experiments the responses of lactating dairy cows to four different progesterone-based protocols for fixed-time artificial insemination (FTAI) in terms of their effects on follicular/luteal dynamics and fertility. The protocols consisted of a progesterone intravaginal device fitted for five days, along with the administration of different combinations of gonadotropin releasing hormone, equine chorionic gonadotropin and a single or double dose (24 h apart) of prostaglandin F. In Experiment I, the data were derived from 232 lactating cows. Binary logistic regression identified no effects of treatment on ovulation failure or multiple ovulation 10 days post artificial insemination (AI). Based on the odds ratio, the likelihood of ovulation failure was lower (by a factor of 0.1) in cows showing at least one corpus luteum (CL) upon treatment than in cows lacking a CL; repeat breeders (> 3 AI) and cows with multiple CLs at treatment showed lower (by a factor of 0.44) and higher (by a factor of 9.0) risks of multiple ovulation, respectively, than the remaining animals. In Experiment II, the data were derived from 5173 AIs. The independent variable treatment failed to affect the conception rate 28–34 days post AI, twin pregnancy or early fetal loss 58–64 days post AI. The results of this study demonstrate the efficacy of 5-day progesterone-based protocols for FTAI. All four protocols examined were able to induce ovulation in both cyclic and non-cyclic animals so that FTAI returned a similar pregnancy rate to spontaneous estrus. Our results suggest that the ovarian response and fertility resulting from each treatment are due more to the effect of ovarian structures at treatment than to the different combinations of hormones investigated.  相似文献   

13.

This study was conducted to determine the effect of estrus on the daily milk yield in Holstein cows and to investigate the chance of using the possible milk yield changes in determining the estrus. During the 3-year period of the study, 103 dairy cows were observed 4 days before and 4 days after daily milk yield of 240 estruses and a total of 2174 daily milk yields were evaluated. Variance analysis was used to determine the factors affecting the daily milk yield, and the LSD test was used for multiple comparisons. Insemination year, insemination season, number of lactation, milk yield group, and daily milk yield of lactation period were found to be significant (P?<?0.01). On the other hand, the effect of estrus days on milk yield was insignificant. In the days of estrus, the least square mean of milk yield is 31.0 kg, while the lowest and highest milk yields are 10.2 kg and 62.9 kg. The daily milk yield in the estruses decreased by an average of 300 g, which decreased to 400 g by continuing 1 day after the estruses. The next day, however, it increased rapidly by 600 g, and then dropped again, probably due to the effect of metestrus. It was found that, among all estruses, 31.3% of cows decreased their milk yield, whereas 26.5% of cows increased their milk yield. However, 42.2% of cows both decreased and increased their milk yield in different estruses. The interval between birth and the first insemination after were found to be longer (97.5 days and 92.9 days) at high milk-yielding cows compared to the low milk-yielding cows. According to the results of this study, daily milk yield changes could not be used as an estrus indicator.

  相似文献   

14.
This work aims to study the relationship between variations of the Temperature-Humidity Index (THI) and the parameters of reproduction especially the first conception rate (FCR) and to determine the threshold THI value where cows’ fertility rate dropped in 12 Holstein dairy herds raised in the arid climatic conditions of Tunisia. THI values were calculated over 22 years (1996–2018), and the mean monthly temperature and relative humidity data were obtained from the Meteorological Institute of Tunisia. A total of 20,396 individual records (Insemination and calving dates) were extracted from the Livestock and Pasturing Office (OEP, Tunisia) with regard to the highest THI before breeding, on the breeding day, and after breeding. Statistical analysis was performed using the GLM procedure of SAS software. Results point to the fact that a summer heat stress exists in southeast Tunisia and lasts for 4 months starting from June until September with THI values fluctuating between 73 ± 2.38 and 79 ± 3.01 exceeding, therefore, THI threshold of 72. Increased THI from ≤70 to ≥80 units was associated with drops in conception rate (CR) and fertility rate (FR) of 49% and 45% giving a correlation with the THI of (r = −.72, p < .05) and (r = −.74, p < .05), respectively. When cows were inseminated on extremely hot days (THI ≥ 80) preceded by cooler temperatures, pregnancy by service (P/AI) was 7% points higher than for other cows that were exposed to high temperatures before breeding. The average number of insemination was higher (p < .05) from THI ≤ 70 (2.01) compared to THI ≥ 80 (3.41). Cows calving during an absence of heat stress (THI ≤ 70) have the shortest average calving intervals (CI: 420 ± 15.1 days). Contrastly, calving in the condition of heat stress (THI ≥ 80) has the longest CI (487 ± 12.8 days). For each point increase in the THI value above 67, there is a decrease in the first conception rate by 1.39%. In this particular arid environment, high-yielding Holstein cows’ breeding success is strongly affected by heat stress that takes place just before or after breeding.  相似文献   

15.
The usefulness of a radiotelemetric pedometer for estrus detection in standing (ST) heat, or in silent heat without ST events, but in which ovulation is observed, in Japanese Black cattle was investigated. The duration of an increase in steps in ST heat was 11.8 ± 1.3 hr, and it was similar to that of ST events (duration: 10.1 ± 0.8 hr). Even in silent heat, the change pattern and the duration (11.6 ± 0.2 hr) of the period with an increase in steps during estrus were not different compared with ST heat. When artificial insemination (AI) was performed at 15.5 ± 0.6 hr from the onset of estrus detected by the pedometer in ST heat cases, the conception rate was 57.1% (8/14). Furthermore, fertility in cattle that underwent silent heat was evaluated. When AI was performed at 14.4 ± 2.0 hr from the onset of estrus detected by the pedometer, the conception rate was 60% (3/5) in silent heat cases. The overall results suggest that the radiotelemetric pedometer is a valid device for detecting estrus and it can even detect silent heat in Japanese Black cattle. Moreover, even silent heat cattle are fertile when AI is performed at the appropriate time.  相似文献   

16.
This study compared the efficiency of a five-day or standard (nine-day) progesterone-based regimen combined with equine chorionic gonadotrophin (eCG) in a fixed-time AI (FTAI) protocol for dairy cows. The data examined were derived from 3577 inseminations conducted in three dairy herds. Animals with no estrus signs detected over 21 days were randomly assigned to a PRID-9 or PRID-5 group. Cows in each group received a progesterone intravaginal device (PRID) for 9 or 5 days, respectively, PGF and eCG on PRID removal, and GnRH 48 h later. Fixed-time AI was performed 12 h after the GnRH dose. Cows artificially inseminated following spontaneous estrus during the study period were considered as controls. Based on the odds ratio, the likelihoods of animals in PRID-9 in the warm (conception rate [CR] of 22.3%) and cool (32% CR) periods, and control animals in the warm period (26.6% CR) becoming pregnant were reduced (by factors of 0.6, 0.3 and 0.4, respectively) compared with the control animals in the cool period (CR of 43.7%). The risk of a twin pregnancy was higher (51.4%) for cystic PRID-9 cows (by a factor of 3.6) and lower (9.9%) for cyclic PRID-5 animals (by a factor of 0.4) compared with the PRID-9 cyclic cows. These findings indicate that the proposed protocol achieves similar results during the cool or warm season to those obtained when AI is conducted at spontaneous estrus during the cool season. In addition, PRID-5 reduced twin pregnancy compared with PRID-9.  相似文献   

17.
This study compared artificial insemination pregnancy rate (AI‐PR) between 14‐day CIDR‐GnRH‐PGF2α‐GnRH and CIDR‐PGF2α‐GnRH synchronization protocol with two fixed AI times (56 or 72 hr after PGF2α). On day 0, heifers (= 1311) from nine locations assigned body condition score (BCS: 1, emaciated; 9, obese), reproductive tract score (RTS: 1, immature, acyclic; 5, mature, cyclic) and temperament score (0, calm; and 1, excited) and fitted with a controlled internal drug release (CIDR, 1.38 g of progesterone) insert for 14 days. Within herd, heifers were randomly assigned either to no‐GnRH group (= 635) or to GnRH group (= 676), and heifers in GnRH group received 100 μg of GnRH (gonadorelin hydrochloride, IM) on day 23. All heifers received 25 mg of PGF2α (dinoprost, IM) on day 30 and oestrous detection aids at the same time. Heifers were observed for oestrus thrice daily until AI. Within GnRH groups, heifers were randomly assigned to either AI‐56 or AI‐72 groups. Heifers in AI‐56 group (= 667) were inseminated at 56 hr (day 32 PM), and heifers in AI‐72 group (= 644) were inseminated at 72 hr (day 33 AM) after PGF2α administration. All heifers were given 100 μg of GnRH concurrently at the time AI. Controlling for BCS (< .05), RTS (< .05), oestrous expression (< .001), temperament (< .001) and GnRH treatment by time of insemination (< .001), the AI‐PR differed between GnRH treatment [GnRH (Yes – 60.9% (412/676) vs. No – 55.1% (350/635); < .05)] and insemination time [AI‐56 – 54.6% (364/667) vs. AI‐72 – 61.8% (398/644); (< .01)] groups. The GnRH treatment by AI time interaction influenced AI‐PR (GnRH56 – 61.0% (208/341); GnRH72 – 60.9% (204/335); No‐GnRH56 – 47.9% (156/326); No‐GnRH72 – 62.8% (194/309); < .001). In conclusion, 14‐day CIDR synchronization protocol for FTAI required inclusion of GnRH on day 23 if inseminations were to be performed at 56 hr after PGF2α in order to achieve greater AI‐PR.  相似文献   

18.
We evaluated whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or detection of estrus and AI plus a clean-up TAI for heifers not detected in estrus, and whether adding an injection of GnRH at controlled internal drug release (CIDR) insertion would enhance fertility in CIDR-based protocols. Estrus in 2,075 replacement beef heifers at 12 locations was synchronized, and AI was preceded by 1 of 4 treatments arranged as a 2 x 2 factorial design: 1) Estrus detection + TAI (ETAI) (n = 516): CIDR for 7 d plus 25 mg of prostaglandin F2alpha (PG) at CIDR insert removal, followed by detection of estrus for 72 h and AI for 84 h after PG (heifers not detected in estrus by 84 h received 100 microg of GnRH and TAI); 2) G+ETAI (n = 503): ETAI plus 100 microg GnRH at CIDR insertion; 3) Fixed-time AI (FTAI) (n = 525): CIDR for 7 d plus 25 mg of PG at CIDR removal, followed in 60 h by a second injection of GnRH and TAI; 4) G+FTAI (n = 531): FTAI plus 100 microg of GnRH at CIDR insertion. Blood samples were collected (d -17 and -7, relative to PG) to determine ovarian status. For heifers in ETAI and G+ETAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed according to the a.m.-p.m. rule. Pregnancy was diagnosed by transrectal ultrasonography. The percentage of heifers exhibiting ovarian cyclic activity at the initiation of treatments was 89%. Pregnancy rates among locations across treatments ranged from 38 to 74%. Pregnancy rates were 54.7, 57.5, 49.3, and 53.1% for ETAI, G+ETAI, FTAI, and G+FTAI treatments, respectively. Although pregnancy rates were similar among treatments, a tendency (P = 0.065) occurred for pregnancy rates in the G+ETAI treatment to be greater than in the FTAI treatment. We concluded that the G+FTAI protocol yielded pregnancy rates similar to protocols that combine estrus detection and TAI. Further, the G+FTAI protocol produced the most consistent pregnancy rates among locations and eliminated the necessity for detection of estrus when inseminating replacement beef heifers.  相似文献   

19.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) at 54 or 66 h after administration of the CO-Synch + controlled internal drug-release (CIDR) protocol. Cows (n = 851) at 2 locations over 2 yr (yr 1, n = 218 and 206; and yr 2, n = 199 and 228 at the 2 locations, respectively) were stratified by age, BCS, and days postpartum to 1 of 2 FTAI intervals. Cows were administered GnRH (100 mug, i.m.) and were equipped with a CIDR insert (1.38 g of progesterone) on d 0. Controlled internal drug-release inserts were removed 7 d later at the time PGF(2alpha) (25 mg, i.m.) was administered (d 7). Continuous estrus detection was performed at location 2 by using the HeatWatch Estrus Detection System; the transmitters were fitted at the time of PGF(2alpha) and removed at the time of AI. Artificial insemination was performed at predetermined fixed times [54 h (FTAI 54; n = 424) or 66 h (FTAI 66; n = 427) after PGF(2alpha)] and all cows were administered GnRH (100 mug, i.m.) at AI. Two blood samples were collected on d -10 or -8 and immediately before treatment initiation to determine the pretreatment estrous cyclicity status of cows [progesterone >/=0.5 ng/mL (FTAI 54, 288/424 = 68%; FTAI 66, 312/427 = 73%; P = 0.07)]. Pregnancy rates were greater (P < 0.01) among cows that exhibited estrus than among those that did not (123/163 = 76% and 150/270 = 56%, respectively). There were no treatment x location interactions within year (P > 0.10) for age, days postpartum, or BCS; thus, the results were pooled for the respective treatments. Pregnancy rates were greater for FTAI 66 than FTAI 54 (P = 0.05; 286/426 = 67% vs. 257/424 = 61%, respectively). Pregnancy rates resulting from FTAI did not differ between year (P = 0.09), farm (P = 0.80), AI sire (P = 0.11), or technician (P = 0.64). There was no difference between pregnancy rates resulting from FTAI based on pretreatment cyclicity status (P = 0.30), and there was no difference between treatments in final pregnancy rates (P = 0.77). In summary, pregnancy rates resulting from FTAI following CO-Synch + CIDR at 66 h were greater than those resulting from FTAI at 54 h.  相似文献   

20.
The SpermVital® technology comprises embedding of spermatozoa within an alginate gel to facilitate release of sperm cells over a prolonged period in utero after AI. The aim of this study was to examine whether the survival time of spermatozoa is extended when applying this immobilization technology in combination with cryopreservation. Sperm cell survival (acrosome and plasma membrane integrity) was studied in vitro for 48 hr at physiological temperature. One dose of SpermVital® (SV) semen was compared with single doses of Biladyl® (B) processed semen as well as double doses of B (B double). B double was obtained by adding a second B dose the following day, thereby mimicking double AI. Furthermore, reproductive performance applying single early timed AI (TAI) with SV following oestrus synchronization was studied in a field trial. Double insemination (TAI on two consecutive days) with B semen served as control. Number of acrosome‐intact live sperm cells decreased over time in vitro for all treatments (p < .05). There was no difference between SV sperm cell survival and B double after 24 hr (p > .05). However, after 48 hr, SV sperm cell survival was higher than B double (p < .05). Moreover, multivariate analysis showed that the outcome of single early TAI with SV was not significantly different from B double (p > .05). Likelihood of pregnancy and calving in the heifer group was higher than in the cow group (p < .05). These results imply that spermatozoa immobilized in alginate gel have prolonged survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号