首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The objective of this study was to compare orbital and ocular vasculature velocity, measured by Doppler imaging, in normal Beagles and Beagles with inherited primary open-angle glaucoma. Eight normal Beagles and 13 Beagles with different stages of primary open-angle glaucoma were evaluated twice with a 2–4-week period between measurements. Doppler imaging was performed with the dogs anesthetized, and the Doppler transducer applied directly on the corneal surface. The majority of the orbital vasculature (external ethmoidal artery; internal ophthalmic artery and vein; and external ophthalmic artery and vein) and ocular blood vessels (anterior ciliary artery and veins; long posterior ciliary arteries; short posterior ciliary arteries; primary retinal arteries; and the vortex veins) were identified and Doppler blood velocity parameters were determined. The glaucomatous dogs demonstrated significant differences in the Doppler velocity parameters of several orbital vessels (external ethmoidal, external ophthalmic, and internal ophthalmic arteries), and several ocular vessels (anterior ciliary, short posterior ciliary, and long posterior ciliary arteries). These differences included decreased blood velocities, and increased pulsatility and resistive indexes. The Doppler blood flow velocities of the primary retinal arteries were unchanged between the normal and glaucomatous dogs. In the glaucomatous dogs, the Doppler imaging suggests increased vascular resistance downstream in both the orbital and ocular vasculature. These blood velocity parameter changes may be primary or secondary, and may offer therapeutic opportunities to increase perfusion, prolong the retina and optic nerve head function, and maintain vision in the canine glaucomas.  相似文献   

2.
Objective To evaluate the changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.005% latanoprost (Xalatan, Pharmacia and Upjohn, Kalamazoo, MI, USA) once in the morning, or once in the evening, or twice daily in five‐day multiple‐dose studies. Animals studied Eight Beagles with the moderate stage of inherited primary open‐angle glaucoma. Procedures Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 am, 10 am, 12 noon, 2 pm, and 4 pm in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.005% latanoprost was instilled in the opposite drug eye. Control and drug eyes were selected using a random table. For these three studies, 0.5% methylcellulose and 0.005% latanoprost were instilled the second through the fifth days with instillations in the morning (8.30 am), or evening (8 pm), or twice daily (8.30 am and 8 pm). Statistical comparisons between drug groups included control, placebo, and treated (0.005% latanoprost) eyes for three multiple‐dose studies. Results In the 8‐am latanoprost study, the mean ± SEM diurnal declines in IOP for the placebo and drug eyes for the first day were 6.5 ± 3.6 mmHg and 8.4 ± 4.0 mmHg, respectively. The mean ± SEM diurnal changes in IOP after 0.005% latanoprost at 8 am once daily for the next four days were 23.3 ± 5.0 mmHg, 25.4 ± 2.1 mmHg, 25.7 ± 1.7 mmHg, and 26.1 ± 1.7 mmHg, respectively, and were significantly different from the control eye. A significant miosis also occurred starting 2 h postdrug instillation, and the resultant mean ± SD pupil size was 1.0 ± 0.1 mm. In the first day of the second latanoprost study, the mean ± SEM diurnal changes in the placebo and drug eye IOPs were 11.6 ± 3.8 mmHg, and 12.0 ± 4.4 mmHg, respectively. For the following four days with latanoprost instilled at 8 pm, the mean ± SEM diurnal changes in IOP in the drug eyes were 24.9 ± 2.1 mmHg, 22.4 ± 1.8 mmHg, 21.6 ± 1.9 mmHg, and 26.6 ± 2.2 mmHg, respectively. Compared to the fellow placebo eyes, the diurnal changes in IOP were significantly different. Significant changes in pupil size were similar to the IOP changes, with miosis throughout the day and return to baseline pupil size the following morning before drug instillation. In the last study, the mean ± SEM diurnal changes in IOP for the placebo and drug eyes for the first day were 6.6 ± 2.1 mmHg and 9.4 ± 2.8 mmHg, respectively. For the four subsequent days with latanoprost instilled twice daily, the mean ± SEM diurnal IOP changes were 19.6 ± 1.5 mmHg, 19.1 ± 1.4 mmHg, 19.9 ± 1.7 mmHg, and 20.3 ± 0.7 mmHg, respectively, and were significantly different from the placebo eyes. The mean changes in PS were 3.1 ± 0.7 mm. Conclusion 0.005% latanoprost instilled once daily (am or pm) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle. The evening instillation of 0.005% latanoprost produced less daily fluctuations in IOP than when the drug was instilled in the morning. 0.005% latanoprost instilled twice daily produced the greatest decline in IOP with the least daily fluctuations, but longer duration miosis.  相似文献   

3.
The purpose of this study was to assess the feasibility and reproducibility of color Doppler imaging (CDI) of the vasculature of the normal canine orbit and eye. Eight normal Beagles were evaluated by Doppler imaging. The goals of the study were to determine the location, spectral waveform morphology, specific blood velocity parameters, and reproducibility for the ophthalmic and orbital vessels most frequently identified in the normal dog. Vessels identified a majority of the time (> 50%) included: external ophthalmic artery, dorsal external ophthalmic vein, ventral external ophthalmic vein, internal ophthalmic artery, anterior ciliary artery and vein, short and long posterior ciliary arteries, primary retinal arteries, and vortex veins. Other vessels imaged less frequently included: external ethmoidal artery (50%), and primary retinal veins (25%). For each blood vessel the time averaged velocity, peak systolic velocity, minimum diastolic velocity, pulsatility index, and resistive index were determined. The ophthalmic and orbital vessels have unique spectral waveforms and velocities which serve as a basis for identification. Reproducibility of the most commonly imaged vessels of the canine eye and orbit with Doppler imaging was high (< 10% variation). Doppler imaging has the potential for determining noninvasively and consecutively the blood velocity parameters found in orbital and ocular diseases, including orbital inflammations and neoplasms; intraocular inflammations and neoplasms; vascular diseases including systemic vascular disease (hypertension), vasculopathies, and anemia; the glaucomas; and documentable follow-up after medical and/or surgical treatment of these diseases.  相似文献   

4.
Objective To evaluate effects of Coherin? on intraocular pressure (IOP), pupil size (PS), and heart rate (HR) in glaucomatous Beagles in single‐dose studies in a pilot study. Materials and methods Intraocular pressure, PS, and HR were measured in eight glaucomatous Beagles. One randomly chosen eye received single 50 μL doses of differing concentrations of Coherin? (treated eye) or vehicle (placebo‐treated eye), and the fellow eye served as the untreated control. After the first measurements, a single dose of either Coherin? or sterile water vehicle was instilled in the drug and placebo eyes, respectively. Results The mean ± SEM diurnal changes in IOP after 0.005%, 0.01%, 0.2%, 0.284%, 1%, 2%, and 4% topical Coherin? once daily were 7.6 ± 3.2 mmHg, 15.5 ± 5.3 mmHg, 11.2 ± 4.4 mmHg, 11.8 ± 4.4 mmHg, 19.1 ± 3.8 mmHg, 5.0 ± 1.8 mmHg, and 8.8 ± 2.8 mmHg, respectively. The declines in IOP were significantly different (P < 0.05) from the untreated control eyes with the 0.2% and 0.284% Coherin?‐treated eyes and suggestive for 1% Coherin? concentrations. No signs of irritation, significant PS, and HR changes were detected in the Coherin?‐treated eyes. Conclusion Of seven different concentrations, 2% and 0.248% Coherin? produced significant declines in IOP in the glaucomatous beagle in single‐dose studies when compared to both untreated control and placebo‐treated eyes. One percent Coherin? solution produced significant IOP decreases compared with the placebo‐treated eye but not the untreated control eyes. No local ocular irritation, PS and HR changes were observed in Coherin?‐treated eyes. This pilot study suggests that topical Coherin? has potential as an ocular hypotensive agent.  相似文献   

5.
Objective The gene (myocilin: MYOC) has been attributed to be involved in over 6% of inherited types of human glaucoma, the highest correlation for any gene to date. This study determines myocilin protein levels in the aqueous humor (AH) of normal laboratory quality, genetic carrier (offspring of normal laboratory quality and POAG Beagles), and primary open angle glaucoma (POAG) Beagles. Materials and methods Eighteen dogs were used and classified as either normal, carrier or having mild, moderate or advanced POAG. A 0.1‐mL sample of AH was drawn from the anterior chamber of each dog in the study and frozen on dry ice. A modified Coomassie stain and Western blot, using a polyclonal rabbit antihuman myocilin antibody (Santa Cruz Biotechnologies, Santa Cruz, CA), was run on each sample to compare the myocilin levels. A purified human trabecular meshwork excreted myocilin protein sample was used as a control (Alcon Research Laboratories, Fort Worth, TX) and its band/densitometry measurement was defined as one unit of myocilin for comparisons. Results Comparisons of AH myocilin levels differed among normal laboratory quality, genetic carrier, and POAG Beagles at different stages of the disease. In the normal laboratory, Beagles the AH myocilin measured 0.817 ± 0.075 units (mean ± SEM); in the carrier Beagles the AH myocilin was 3.117 ± 0.290 units. As POAG progressed, myocilin protein levels also increased to 6.097 ± 0.810, 8.844 ± 1.079, and 17.228 ± 1.198 units in the early, moderate, and advanced forms, respectively. Overall comparisons between normal, carrier and all POAG Beagles combined showed significant differences (P < 0.0010). Individual comparisons between normal and carrier eyes showed significant differences (P < 0.0193). Comparisons between normal and all POAG eyes also showed significant differences (P < 0.0426). Conclusion This study shows myocilin protein is present in normal Beagles, markedly increased in POAG Beagles, and mildly increased in genetic carrier Beagles. There is a strong correlation between amounts of AH myocilin protein and the presence and severity of POAG. The exact role of AH myocilin levels in the genesis of ocular hypertension remains unresolved, but myocilin may adversely affect AH outflow.  相似文献   

6.
Ophthalmic examination findings in adult pygmy goats (Capra hicus)   总被引:1,自引:1,他引:0  
Objective To document normal ophthalmic findings and ocular abnormalities in captive adult pygmy goats. Animals studied Ten healthy adult pygmy goats (five male, five female; 5–11 years of age; 26–45 kg body mass) underwent complete ophthalmic examinations. Procedure Direct illumination, diffuse and slit‐beam biomicroscopy, indirect ophthalmoscopy, IOP measurements and Schirmer tear tests were performed. TonoVet® rebound tonometry, followed by topical application of 0.5% ophthalmic proparacaine, and Tono‐Pen XL® applanation tonometry were performed in each eye to obtain estimates of IOP. Results Ophthalmic abnormalities included corneal scars and pigmentation, incipient cataracts, lenticular sclerosis, and vitreal veiling. Mean STT values were 15.8 mm/min, with a range of 10–30 mm/min. Mean IOP values were 11.8 mmHg for TonoVet®‐D, with a range of 9–14 mmHg; 7.9 mmHg for TonoVet®‐P, with a range of 6–12 mmHg; and 10.8 mmHg for Tono‐Pen XL®, with a range of 8–14 mmHg. Conclusions Ophthalmic examination findings in adult pygmy goats, including normal means and ranges for STT and IOP measurements, using applanation and rebound tonometry, are provided.  相似文献   

7.
Objective To report ophthalmic findings in the Screech owl (Megascops asio). Sample population Twenty‐three, apparently healthy adult captive Screech owls in Maryland. Procedures OU of all owls underwent complete ophthalmic examination. One randomly assigned eye of each bird was measured by phenol red thread tear test (PRT), and the other eye by Schirmer tear test (STT). TonoVet® rebound tonometry and TonoPen‐XL® applanation tonometry were performed in each eye to measure IOP. Conjunctival swabs were cultured from one eye of 10 birds, corneal diameter was measured in OU of eight birds, and streak retinoscopy was performed on OU of seven birds. Ten birds were anesthetized, and A‐scan ultrasonography using a 15‐MHz probe was performed to obtain axial intraocular measurements. Results Ophthalmic abnormalities were noted in 24/46 (52%) of eyes. Median STT result was ≤ 2 mm/min, ranging ≤ 2–6 mm/min, and mean ± SD PRT was 15 ± 4.3 mm/15 s. Mean ± SD IOP were 9 ± 1.8 mmHg TonoVet®‐P, 14 ± 2.4 mmHg TonoVet®‐D, and 11 ± 1.9 mmHg TonoPen‐XL®. Coagulase negative staphylococcal organisms were cultured from all conjunctival swabs. Mean ± SD corneal dimensions were 14.5 ± 0.5 mm vertically and 15.25 ± 0.5 mm horizontally. All refracted birds were within one diopter of emmetropia. Mean ± SD axial distance from the cornea to the anterior lens capsule was 4.03 ± 0.3 mm, from cornea to the posterior lens capsule was 10.8 ± 0.5 mm, and from cornea to sclera was 20.33 ± 0.6 mm. Conclusions This study reports ophthalmic examination findings in Screech owls, and provide means and ranges for various ocular measurements. This is the first report of rebound tonometry and PRT in owls.  相似文献   

8.
Objective To detect and categorize time‐specific variations in daytime intraocular pressure (IOP) found in Rhesus monkeys with laser‐induced ocular hypertension. Procedures Ten male monkeys with argon laser‐induced ocular hypertension in one eye were anesthetized with ketamine hydrochloride, and the IOP measured in both eyes at 7 a.m., 7.30 a.m., and then hourly until 1 p.m. with a Tonopen? XL applanation tonometer. Intraocular pressure time profiles for both eyes in each animal were developed. The means ± SD of the IOPs for both eyes were calculated for the whole 6‐h study period, and the values compared statistically. The difference between the lasered eye mean IOP standard deviation and the normal eye mean IOP standard deviation for each animal during the 6‐h follow‐up was also calculated and compared. Results Mean IOP (± SD) in the glaucoma and normal eyes for the 10 animals during the 6‐h study was 32.6 ± 2.5 and 14.9 ± 2.5 mmHg, respectively. The IOP was significantly higher in the experimental eye than in the normal eye (P = 0.0008). The mean IOP in the lasered eye did not significantly change during the study period, whereas a slight but significant increase in IOP of the normal eye over the study period was recorded (P = 0.003). The variance in IOP in the hypertensive eyes was considerably greater than that in the untreated control eyes. From 7 a.m. to 1 p.m. the IOP declined in five eyes and increased in the other five eyes with laser‐induced ocular hypertension. Conclusions The time‐specific IOP variation pattern in the daytime in the laser treated eyes is significantly greater than the variation in the normotensive eyes. This shows that in order to detect statistical differences between IOP variations induced by an IOP‐reducing drug, and the exaggerated spontaneous IOP variations present in the laser‐induced hypertensive eye, sufficient animals should be included in any study. Understanding the time‐specific IOP variation present in a group of monkeys with laser‐induced ocular hypertension is essential prior to using the model for the evaluation of IOP‐reducing drugs.  相似文献   

9.
Objective To evaluate changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.004% travoprost once in the morning, or once in the evening, or twice daily in 5‐day multiple dose studies. Materials and methods Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 a.m., 10 a.m., 12 noon, 2 p.m. and 4 p.m. in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.004% travoprost was instilled in the opposite drug eye. Methylcellulose (0.5%) and 0.004% travoprost were instilled on the 2nd through to the 5th day with instillations in the morning (8.30 a.m.), or evening (8 p.m.), or twice daily (8.30 a.m. and 8 p.m.). Results The mean ± SEM diurnal changes from baseline IOP in the control and placebo eyes in all three studies ranged from 1.2 ± 0.3 mmHg to 3.2 ± 0.9 mmHg. The mean ± SEM diurnal changes from the baseline IOP after 0.004% travoprost at 8 a.m. once daily for the next 4 days were 19.0 ± 2.7 mmHg, 24.7 ± 2.7 mmHg, 24.9 ± 3.1 mmHg, and 24.7 ± 3.1 mmHg, respectively, and were significantly different from the control eye. After travoprost was instilled at 8 p.m., the mean ± SEM baseline changes from the baseline IOP in the drug eyes were 23.5 ± 2.2 mmHg, 24.2 ± 2.2 mmHg, 24.5 ± 2.3 mmHg, and 24.2 ± 2.3 mmHg, respectively. When 0.004% travoprost was instilled twice daily, the mean ± SEM baseline IOP changes were 27.7 ± 2.1 mmHg, 28.1 ± 2.1 mmHg, 28.4 ± 2.2 mmHg, and 28.5 ± 2.2 mmHg, respectively, and were significantly different from the control eyes. Miosis of varying duration was frequent during the three studies. Conclusion Travoprost instilled once daily (a.m. or p.m.) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle.  相似文献   

10.
The relationship of cataract maturity to intraocular pressure in dogs   总被引:2,自引:2,他引:0  
Objective To determine the distribution of intraocular pressure, as measured by applanation tonometry, in dogs with cataracts, and compare these tonometric results to the different stages of cataract formation (incipient, immature, mature, and hypermature). Animals studied Retrospection study of canine clinical patients (86 dogs). Procedures All records of dogs presented from 1991 to 1996 to the university veterinary medical teaching hospital for diagnosis of cataracts and evaluation for cataract surgery were reviewed. The tonometric measurements from the initial ophthalmic examination were selected in cataractous and nonglaucomatous eyes either receiving no topical or no systemic medications. The stage of cataracts was based on the degree of opacification, tapetal reflection, clinical vision, and visibility of the ocular fundus by indirect ophthalmoscopy. The distribution of tonometric results were grouped by the cataract maturity, and compared by anova and Tukey’s general linear tests. Results Intraocular pressure with incipient cataracts ranged from 9 to 17 mmHg (mean 12.7 ± 1.2 mmHg). Intraocular pressure with immature cataracts ranged from 3 to 27 mmHg (mean 13.6 ± 0.6 mmHg). For the mature cataracts, IOP ranged from 5 to 22 mmHg (mean 11.9 ± 0.7 mmHg). For the hypermature cataract group, IOP ranged from 4 to 23 mmHg (mean 10.8 ± 0.6 mmHg). Comparison of the tonometric results among the different stages of cataract formation indicated a significant difference (P = 0.0086) between only the immature and hypermature groups. Conclusions Intraocular pressure in lens‐induced uveitis (LIU) is lowered but the relationship to the stage of cataract maturity is less clear. Significant tonometric differences were present between the immature and hypermature cataract groups, but these differences are too small to be clinically useful. Decreased intraocular pressure of dogs with all stages of cataract formation suggests concurrent LIU during all stages of cataract formation, especially with the mature and hypermature stages. The average tonometric measurements in dogs with these cataracts were about two standard deviations below the mean IOP reported in normal dogs.  相似文献   

11.
Purpose To perform selected ophthalmic diagnostic tests in healthy capuchin monkeys (Cebus apella) with the aim of establishing normal physiological reference values for this species. Methods A total of 15 healthy, capuchin monkeys were used to test most of the parameters in this investigation. Five of the 15 monkeys were used for the evaluation of normal conjunctival flora. Ages varied from 6 to 20 years of age. Selected diagnostic ocular tests were performed including Schirmer tear test (STT), tonometry using an applanation tonometer (Tonopen®), central corneal thickness (CCT) using an ultrasonic pachymeter (Sonomed, Micropach®, Model 200P+) and culture of the normal conjunctival bacterial flora. Results and discussion Results for selected ocular diagnostic tests investigated here for the capuchin monkey eye were as follows: IOP: 18.4 ± 3.8 mmHg; STT: 14.9 ± 5.1 mm/min; CCT: 0.46 ± 0.03 mm. No statistically significant differences between ages or genders were found for any of the results. Streptococcus sp. and Corynebacterium sp. were isolated from healthy conjunctival and eyelid margins, suggesting they are normal constituents of the conjunctival flora of the capuchin monkey. The data obtained in this investigation will help veterinary ophthalmologists and laboratory animal medicine specialists to more accurately diagnose ocular diseases in the capuchin monkey. These ophthalmic reference values will be particularly useful to diagnose discrete or unusual pathological changes of the capuchin monkey eye.  相似文献   

12.
Objectives To establish normal reference ranges of ocular parameters including phenol read thread, palpebral fissure length, horizontal and vertical corneal diameter, upright and hanging intraocular pressure (IOP) and to report ophthalmic examination findings of the anterior segment and lens, in a population of captive fruit bats. Animals studied Eyes of 30 bats of three species were included in this study: 10 (5 males, 5 females) Malayan Flying Foxes (Pteropus vampyrus), 10 (5 males, 5 females) Little Golden‐mantled Flying Foxes (Pteropus pumilus), and 10 (4 males, 6 females) Island Flying Foxes (Pteropus hypomelanus). Results The most common ophthalmic examination findings included iris‐iris persistent pupillary membranes (83%), nuclear sclerosis (56.7%), prominent arterial circle (40%), iridal hyperpigmented foci (30%), pupillary margin cysts (27%), and third eyelid defects (20%). The mean, among all species for: phenol red thread was 20.23 ± 1.28 mm/15 s both eyes (OU); palpebral fissure length was 13.34 ± 0.33 mm for OU; for horizontal corneal diameter was 10.72 ± 0.32 mm for OU; for vertical corneal diameter was 9.90 ± 0.30 mm for OU; for the hanging intraocular pressures was 19.38 ± 0.77 mmHg for OU; for upright IOP was 13.95 ± 0.60 mmHg for OU. Measurements for the individual species groups and eyes were also calculated. Conclusions Results revealed the IOP of bats in a hanging position were significantly higher than the IOP of bats in an upright position. The size of the bat, between the species, affected palpebral fissure length, horizontal corneal diameter, and vertical corneal diameter. Information about the ocular structures and normal ophthalmic parameters for the Pteropus species is crucial for species protection because of dependence on vision for survival.  相似文献   

13.
Objective To determine intraocular pressure (IOP) in adult yellow‐footed tortoises using applanation tonometry. Animals Fifteen healthy adult captive yellow‐footed tortoises (eight males and seven females). Procedures Intraocular pressures were estimated for tortoises by using an applanation tonometer after topical anesthesia. Body length, measured from nuchal to anal scutes, ranged from 27.5 to 57.2 cm. Five measurements from each eye were obtained by a single observer in an ambient temperature of approximately 30 °C. Results Mean ± SEM IOP of 30 eyes of 15 yellow‐footed tortoises was 14.2 ± 1.2 mmHg. Range of IOP was 6–30 mmHg for tortoises. Significant differences were detected neither between right and left eyes (P = 0.357) of individual tortoises, nor between males and females (P = 0.524). Observer's readability was good (intraclass coefficient = 0.65), and IOP did not change over the ordered five measurements. Conclusions There was no significant difference in IOP between males and females in this specie. Tonometry values for normal eyes may represent a useful diagnostic methodology for recognition and treatment of ocular diseases in reptiles.  相似文献   

14.
Objective The present study was undertaken to establish reference values for Schirmer tear test (STT) and intraocular pressure (IOP) in the long‐eared hedgehog (Hemiechinus auritus). Animals Fourteen healthy long‐eared hedgehogs (H. auritus) of either sex were studied. Procedures The hedgehogs were individually immobilized with an intramuscular injection of combined Ketamine (20 mg/kg) and Diazepam (0.5 mg/kg), and each animal underwent ophthalmic examinations including: STT, tonometry, biomicroscopy, and indirect ophthalmoscopy. Results No significant effects of animal gender, weight, side (right vs. left eye) were found in this study. Mean (SD) STT values for all eyes (n = 28) were 1.7 ± 1.2 mm/1 min with a range of 0–4 mm/1 min. Mean STT in male animals was 2.2 ± 1.2. Mean STT in female Hedgehogs was 1.3 ± 1.1. Mean (SD) IOP values by applanation tonometry were 20.1 ± 4.0 mmHg (range 11.5–26.5 mmHg). Mean (SD) IOP values by applanation tonometry were 18.2 ± 4.0 and 22.0 ± 3.2 mmHg for males and females, respectively. Conclusions This study reports STT and IOP findings in long‐eared hedgehogs (H. auritus).  相似文献   

15.
This study was aimed to evaluate the effect of 0.0015% preservative-free tafluprost (Zioptan®) and 0.005% preservative containing latanoprost ophthalmic solutions (Lataprost®) on intraocular pressure (IOP) in healthy male guinea pigs (Cavia porcellus). A total of 16 male guinea pigs were randomly assigned to receive one drop of tafluprost or one drop of latanoprost in the right eye. The contralateral eye served as control. IOP was measured using a rebound tonometer at time 0(baseline), after 30 minutes and every 60 minutes for the next three hours and then every three hours for the next 21 hours. Administration of tafluprost and latanoprost was not associated with changes in IOP in the treated eyes. The maximum IOP-lowering effect of the ophthalmic solutions was observed 30 minutes post-instillation in the treated eyes (-1.25 ± 1.50 mmHg, P-value = 0.194 in group A and -1.50 ± 1.29 mmHg, P-value = 0.103 in group B) and returned to normal after 9 and 12 hours in group A and B, respectively. There was no significant difference between the IOP measurements of the right and left eyes in neither groups during the study (repeated measure test and Generalized Linear Mixed Model). The administration of one drop of tafluprost and latanoprost had no significant effect on the IOP of healthy guinea pigs. Further studies are needed in guinea pigs affected by glaucoma to explore the effectiveness of these drugs.  相似文献   

16.
17.
Resistive index (RI) and pulsatility index (PI) are indirect measurements of blood flow resistance that may be measured by pulsed wave Doppler ultrasonography. Chemical restrain may potentially alter the indices although it is required to perform ultrasonography in some patients. The purpose of this study was to describe values for both intrarenal and ocular RI and PI within the same subject in clinically normal dogs sedated with a midazolam and butorphanol combination and evaluate if there are any significant changes between sedated and nonsedated dogs. Fifteen healthy Beagle dogs were studied by Duplex Doppler interrogation in interlobar or arcuate arteries of the kidney and long posterior ciliary artery. Pulse rate and systolic blood pressure were also determined. All measurements were recorded before and after the administration of a sedative combination of midazolam (0.2 mg/kg) and butorphanol (0.2 mg/kg). Mean comparison tests (paired t-tests or Wilcoxon's rank-sum test) were used to determine if any significant differences existed between right and left renal values or right and left ocular values. A correlation study (Pearson or Spearman) was applied between RI, PI, and systolic pressure, and pulse rate. RI and PI were significantly higher in sedated Beagles than in unsedated Beagles. There was neither correlation between index and systolic blood pressure nor pulse rate. In conclusion, provided that normal RI and PI increase in sedated animals, then reference ranges should be higher when sedated--healthy or ill--animals are evaluated.  相似文献   

18.
Objective  To evaluate and to validate the accuracy of the Perkins® handheld applanation tonometer in the measurement of IOP in dogs and cats.
Animals  Twenty eyes from 10 dogs and 10 cats immediately after sacrifice were used for the postmortem study and 20 eyes from 10 clinically normal and anesthetized dogs and cats were used for the in vivo study. Both eyes of 20 conscious dogs and cats were also evaluated.
Procedure  Readings of IOP postmortem and in vivo were taken using manometry (measured with a mercury column manometer) and tonometry (measured with a Perkins® handheld applanation tonometer). The IOP measurement with Perkins® tonometer in anesthetized and conscious dogs and cats was accomplished by instillation of proxymetacaine 0.5% and of 1% fluorescein eye drops.
Results  The correlation coefficient ( r 2) between the manometry and the Perkins® tonometer were 0.982 (dogs) and 0.988 (cats), and the corresponding linear regression equation were y  = 0.0893 x  + 0.1105 (dogs) and y  = 0.0899 x  + 0.1145 (cats) in the postmortem study. The mean IOP readings with the Perkins® tonometer after calibration curve correction were 14.9 ± 1.6 mmHg (range 12.2–17.2 mmHg) in conscious dogs, and were 15.1 ± 1.7 mmHg (range 12.1–18.7 mmHg) in conscious cats.
Conclusion  There was an excellent correlation between the IOP values obtained from direct ocular manometry and the Perkins® tonometer in dogs and cats. The Perkins® handheld tonometer could be in the future a new alternative for the diagnosis of glaucoma in veterinary ophthalmology.  相似文献   

19.
Reasons for performing study: Only few drugs with limited efficacy are available for topical treatment of equine glaucoma. Objective: To evaluate the effect of topical administration of 1% brinzolamide on intraocular pressure (IOP) in clinically normal horses. Methods: Healthy mature horses (n = 20) with normal ocular findings, were studied. The IOP was measured 5 times daily (07.00, 11.00, 15.00, 19.00 and 23.00 h) over 10 days. On Days 1 and 2, baseline values were established. On Days 3–5 one eye of each horse was treated with one drop of 1% brinzolamide every 24 h immediately following the 07.00 h measurement. On Days 6–8 the same eye was treated with 1% brinzolamide every 12 h (07.00 and 19.00 h). Measurements on Days 9 and 10 documented the return of IOP to baseline values. Statistical analysis of the data was performed. Results: In the treated eye a significant decrease in IOP compared to baseline values was noted during both the 24 and 12 h dosing periods (P<0.001). During the once‐daily treatment protocol an IOP reduction of 3.1 ±1.3 mmHg (14%) from baseline was recorded. During the twice‐daily protocol a total IOP reduction of 5.0 ± 1.5 mmHg (21%) was achieved. Conclusion: Intraocular pressure was significantly decreased by 1% brinzolamide in a once‐daily and a twice‐daily treatment protocol in normotensive eyes. These findings suggest that brinzolamide might also be effective in horses with an elevated IOP. Potential relevance: This drug may be useful for treatment of equine glaucoma.  相似文献   

20.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号