首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云南木蠹象是我国西南地区新发现的云南松的一种重要蛀干害虫。云南木蠹象蛹室在被害云南松树木上的分布规律,反映了该虫幼虫和蛹在树木上的危害与分布。研究表明,云南木蠹象蛹室主要分布在云南松树木主干的中上部,其蛹室数量占主干蛹室量的76.99%;同时,云南木蠹象蛹室集中于树木主干,主干上的蛹室数占全树蛹室数的70.26%。云南木蠹象蛹室在轮枝上的分布多集中在中上部轮枝,即第1~3轮轮枝。在这些轮枝上的蛹室数目是所有轮枝蛹室数目的87.69%。从生长年龄而言,蛹室主要分布在1~2年生的主干和侧枝上。  相似文献   

2.
受小蠹虫不同阶段为害的云南松光合生理反应分析   总被引:3,自引:2,他引:1       下载免费PDF全文
分析了15年生云南松在横坑切梢小蠹、云南纵坑切梢小蠹在蛀梢和蛀干为害期的针叶光合生理反应.Dun-can多重比较结果表明:云南松在小蠹虫蛀梢和蛀干期显著影响了针叶同化CO<,2>的能力,针叶净光合速率分别下降了31%和65%,气孔导度、蒸腾速率等光合指标也出现极显著下降(P<0.01).相关性分析表明:针叶净光合速率与各生理生态因子的相关关系以及主要生理生态因子之间的相关关系在小蠹虫不同的蛀害期而不同.小蠹虫蛀梢和蛀干为害显著降低了针叶叶绿素含量(P<0.05),但受蛀梢为害的云南松针叶叶绿素a/b值显著高于健康或受蛀干为害的云南松.针叶最大荧光(Fm)、最大光量子效率(Fv/Fm)以及Fv/Fo均因小蠹虫蛀梢和蛀干为害而显著下降,尤以在被蛀干时的针叶Fm、Fv/Fm、Fv/Fo下降幅度更大.综合分析表明:受小蠹虫"胁迫"(蛀梢、蛀干)后针叶叶绿素合成受到显著影响,引起了寄主云南松光合机构的破坏,导致寄主云南松树势下降,这必为喜欢攻击亚健康或衰弱林木的次期性昆虫创造合适的寄主.  相似文献   

3.
Variation in the number and diversity of bark beetles in spaced mature lodgepole pine stands in the East Kootenay region of British Columbia was analyzed in relation to location (site), spacing treatment and years following treatment. We analyzed the number of bark beetles and the number of bark beetle species that emerged from stumps or were captured in flight traps in the first five years following spacing. We also investigated the incidence of bark beetle attacks on the remaining trees and the mean dates of emergence from stumps and of capture in flight traps for the common species. Observations were made on three sites, each having three treatments: 4 m × 4 m spacing, 5 m × 5 m spacing, and an untreated control. The mean density of bark beetles emerged from stumps was different among sites and years but not between spacing treatments. There was no statistically significant variation in the number of bark beetle species captured in flight traps by site, spacing treatment, years, or spacing treatment and years. Significantly more bark beetles were captured in the 4 m × 4 m spacing treatment than in the control. The number of bark beetles captured was the highest in the first 2 years following treatment. Up to 26 species of bark beetles, excluding ambrosia beetles, were captured in flight barrier traps. There was no difference in species diversity by site or treatment indicating that species diversity in mature lodgepole pine is relatively stable over large areas. Of the 213 trees that sustained at least 10 attacks by bark beetles on the lower 2 m of the bole, 59.1% occurred in the spaced plots but only 18.2% of those were successful, versus 74.7% success in the infested trees in the control plots. The majority of infested trees contained Ips sp., Dendroctonus valens and D. murrayanae. Of the seven trees attacked by mountain pine beetle (D. ponderosae) only one tree was located in a spaced plot.  相似文献   

4.
秦岭华山松小蠹生态位研究   总被引:31,自引:8,他引:23  
通过对秦岭林区海拔1600~2200m的中山地带华山松小蠹虫种类和生态位的研究,结果表明:在秦岭林区入侵危害寄主华山松的小蠹虫有19种,其中能构成竞争和共存的小蠹虫主要有11种。虽然,这11种小蠹虫具有各自不同的生态位宽度,且存在不同程度的生态位重叠,但各小蠹虫可依据其对寄主树木营养和空间需求的不同、种群密度的相互制约,以及入侵寄主树木时序的差异达到竞争的平衡和共存。秦岭华山松小蠹生态系统的建立,首先是由华山松大小蠹入侵健康华山松,并通过携带蓝变真菌入侵寄主树木,迅速克服寄主树木抗性系统,使寄主树木树势衰弱;其次松六齿小蠹、暗额星坑小蠹和松十二齿小蠹,作为秦岭华山松的主要次期性小蠹,迅速入侵衰弱的寄主华山松;最后其它次期性小蠹虫入侵寄主树木,利用寄主华山松剩余营养和空间。从而实现秦岭华山松立木小蠹生态系统的动态稳定。  相似文献   

5.
Selective logging, fire suppression, forest succession and climatic changes have resulted in high fire hazards over large areas of the western USA. Federal and state hazardous fuel reduction programs have increased accordingly to reduce the risk, extent and severity of these events, particularly in the wildland–urban interface. In this study, we examined the effects of mechanical fuel reduction treatments on the activity of bark beetles in ponderosa pine, Pinus ponderosa Dougl ex. Laws., forests located in Arizona and California, USA. Treatments were applied in both late spring (April–May) and late summer (August–September) and included: (1) thinned biomass chipped and randomly dispersed within each 0.4 ha plot; (2) thinned biomass chipped, randomly dispersed within each plot and raked 2 m from the base of residual trees; (3) thinned biomass lopped-and-scattered (thinned trees cut into 1–2 m lengths) within each plot; (4) an untreated control. The mean percentage of residual trees attacked by bark beetles ranged from 2.0% (untreated control) to 30.2% (plots thinned in spring with all biomass chipped). A three-fold increase in the percentage of trees attacked by bark beetles was observed in chipped versus lopped-and-scattered plots. Bark beetle colonization of residual trees was higher during spring treatments, which corresponded with peak adult beetle flight periods as measured by funnel trap captures. Raking chips away from the base of residual trees did not significantly affect attack rates. Several bark beetle species were present including the roundheaded pine beetle, Dendroctonus adjunctus Blandford (AZ), western pine beetle, D. brevicomis LeConte (AZ and CA), mountain pine beetle, D. ponderosae Hopkins (CA), red turpentine beetle, D. valens LeConte (AZ and CA), Arizona fivespined ips, Ips lecontei Swaine (AZ), California fivespined ips, I. paraconfusus Lanier (CA) and pine engraver, I. pini (Say) (AZ). Dendroctonus valens was the most common bark beetle infesting residual trees. A significant correlation was found between the number of trees chipped per plot and the percentage of residual trees with D. valens attacks. A significantly higher percentage of residual trees was attacked by D. brevicomis in plots that were chipped in spring compared to the untreated control. In lopped-and-scattered treatments, engraver beetles produced substantial broods in logging debris, but few attacks were observed on standing trees. At present, no significant difference in tree mortality exists among treatments. A few trees appeared to have died solely from D. valens attacks, as no other scolytids were observed in the upper bole. In a laboratory study conducted to provide an explanation for the bark beetle responses observed in this study, monoterpene elution rates from chip piles declined sharply over time, but were relatively constant in lopped-and-piled treatments. The quantities of β-pinene, 3-carene, -pinene and myrcene eluting from chips exceeded those from lopped-and-piled slash during each of 15 sample periods. These laboratory results may, in part, explain the bark beetle response observed in chipping treatments. The implications of these results to sustainable forest management are discussed.  相似文献   

6.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

7.
Bark beetles are notorious pests of natural and planted forests causing extensive damage. These insects depend on dead or weakened trees but can switch to healthy trees during an outbreak as mass-attacks allow the beetle to overwhelm tree defences. Climatic events like windstorms are known to favour bark beetle outbreaks because they create a large number of breeding sites, i.e., weakened trees and for this reason, windthrown timber is generally preventively harvested and removed. In December 1999, the southwest of France was struck by a devastating windstorm that felled more that 27 million m3of timber. This event offered the opportunity to study large-scale spatial pattern of trees attacked by the bark beetle Ips sexdentatus and its relationship with the spatial location of pine logs that were temporally stored in piles along stand edges during the post-storm process of fallen tree removal. The study was undertaken in a pure maritime pine forest of 1300 ha in 2001 and 2002. We developed a landscape approach based on a GIS and a complete inventory of attacked trees. During this study more than 70% of the investigated stands had at least one tree attacked by I. sexdentatus  . Spatial aggregation prevailed in stands with n≥15n15 attacked trees. Patches of attacked trees were identified using a kernel estimation procedure coupled with randomization tests. Attacked trees formed patches of 500–700 m2 on average which displayed a clumped spatial distribution. Log piles stemming from the sanitation removals were mainly distributed along the large access roads and showed an aggregated spatial pattern as well. The spatial relationship between patches of attacked trees and log pile storage areas was analyzed by means of the Ripley’s statistic that revealed a strong association at the scale of the studied forest. Our results indicated that bark beetle attacks were facilitated in the vicinity of areas where pine logs were stored. The spatial extent of this relationship was >1000 m. Similar results were obtained in 2001 and 2002 despite differences in the number and spatial distribution of attacked trees. The presence of a strong “facilitation effect” suggests that log piles should be removed quickly in order to prevent outbreaks of bark beetles.  相似文献   

8.
Douglas-fir growing on the western slopes of the Oregon Coast Range are experiencing an unprecedented outbreak of Swiss needle cast (SNC) caused by the fungus Phaeocryptopus gaeumannii. SNC can produce substantial physiological stress in host trees by reducing needle gas exchange and enhancing premature needle abscission, resulting in slower growth. Based on the frequent link between stressed trees and insect activity, we explored the potential influence of SNC on Douglas-fir beetle, Dendroctonus pseudotsugae, activity and some tree physiological parameters that may influence beetle attraction (i.e., constitutive ethanol and monoterpene contents of woody tissues) and host susceptibility (i.e., wound-induced resin flow). Woody tissue ethanol concentrations, wound-induced resin flow, and beetle attraction were all reduced as SNC severity increased. Although trees affected by SNC attracted fewer beetles, the number of attacks did not decline, the attacks were more likely to penetrate to sapwood depth, and the galleries were longer than in healthier trees, most likely due to a weakened oleoresin defense. However, there have been no current reports of increased Douglas-fir beetle activity on SNC stressed trees, and no rapid increases in beetle population numbers, or outbreaks associated with these diseased forests. SNC stressed trees may remain free from attacks because pioneering beetles have difficulty recognizing them as being stressed with low ethanol concentrations. Furthermore, beetle populations may not be increasing since stressed trees appear unsuitable for reproduction, as no eggs, larvae, or adult beetles were observed in excavated galleries on any attacked trees. However, if large volumes of host materials became available as a result of some catastrophic event (e.g. wildfire or wind-throw), and the beetles can reproduce successfully enough to increase population densities then the potential for a devastating outbreak of Douglas-fir beetle in SNC stressed trees might be exacerbated because they have compromised oleoresin defense systems, and may be killed with fewer beetle attacks.  相似文献   

9.
Southern pine beetles and associated pathogenic fungi represent the largest biotic threat to pine forests in the southeastern USA. The two primary defensive mechanisms of the tree to the beetle-fungal complex are the primary oleoresin flow and the concentrations of preformed and induced secondary compounds. We compared oleoresin flow and concentrations of phloem nutrients, soluble sugars, starch, total phenolics and proanthocyanidins in Pinus taeda L. trees in fertilized and control plots in the Sandhills region of North Carolina. Four blocks of 10 trees per treatment were sampled on five dates from May to November 1995. Phloem nitrogen and potassium concentrations were elevated in trees on fertilized plots, whereas phloem calcium concentrations were decreased. Fertilization significantly enhanced (10-20%) concentrations of phloem phenolics and proanthocyanidins. In contrast, phloem soluble sugars and starch concentrations were up to 30% lower in fertilized trees than in control trees. Increased phenolic concentrations and lower nonstructural carbohydrates should correlate with reduced tissue palatability and decreased pathogen susceptibility in fertilized trees; however, resin flows were significantly lower (30-100%) in fertilized trees compared with control trees, which may facilitate pine bark beetle establishment. Furthermore, fertilization-induced increases in phloem nitrogen concentration may be more important than tissue carbohydrate or phenolic content in determining tissue palatability.  相似文献   

10.
【目的】明确聚集信息素对横坑切梢小蠹诱捕量与不同危害程度的云南松林有虫梢率之间的关系,为横坑切梢小蠹种群监测与防治提供技术支持。【方法】采用随机抽样法,调查云南省祥云县普淜镇和下庄镇2个样地云南松林内切梢小蠹的危害情况,并在由梢部危害转至干部危害期利用聚集信息素诱捕横坑切梢小蠹成虫,分析横坑切梢小蠹在梢转干时期的种群变化规律及有虫梢率与诱捕量之间的关系。【结果】普淜和下庄2个样地横坑切梢小蠹和云南切梢小蠹是优势种。普淜样地中横坑切梢小蠹占49. 75%,雌雄比为1. 06∶1;云南切梢小蠹占50. 25%,雌雄比为1. 32∶1。下庄样地中横坑切梢小蠹占54%,雌雄比为1. 45∶1;云南切梢小蠹占46%,雌雄比为1. 88∶1。2样地中横坑切梢小蠹蛀梢期树冠有虫梢率从上到下依次降低,普淜样地有虫梢率约为下庄样地的10倍。2样地横坑切梢小蠹的诱捕量在整个梢转干期呈现相同的规律,成虫扬飞均始于11月中旬,终见于翌年5月下旬,扬飞高峰期是3月初至4月下旬。诱捕器中天敌种群数量与横坑切梢小蠹数量有明显的跟随现象。诱捕器中横坑切梢小蠹雌雄性比在1∶1. 09~1. 71之间,雄性个体数量明显多于雌性。横坑切梢小蠹林间有虫梢率(y)与诱捕量(x)之间呈线性正相关,其中在高虫口密度普淜样地拟合函数关系式为y=0. 002 4x+0. 060 1(R^2=0. 67),低虫口密度下庄样地拟合函数关系式为y=0. 003 2x-0. 004 3(R^2=0. 71)。【结论】了解高、低虫口密度下横坑切梢小蠹在云南松树冠中的分布规律,利用聚集信息素诱捕可作为监测横坑切梢小蠹种群变化的有效方法,且诱捕量与林间有虫梢率呈线性正相关,诱捕量可反应横坑切梢小蠹在蛀梢期的有虫梢率。  相似文献   

11.
纵坑切梢小蠹蓝污真菌侵害云南松树组织解剖观察   总被引:1,自引:0,他引:1  
叶辉  吕军 《林业科学》2001,37(6):71-74
通过对云南松树进行纵坑切梢小蠹(Tomicus piniperda)蓝污真菌(Leptogramphium yunnanense)接种试验,对云南松受害组织进行了形态解剖观察,验证了蓝污真菌对云南松的致病作用。蓝污真菌发现于受害木质部和韧皮组织中的各类细胞中,在木质部,蓝污区域呈现出以心材为中心的扇形分布。在韧皮组织内,蓝污真菌主要沿着细胞轴向在垂直方向上生长,并可通过孔纹进入到水平方向上的相邻细胞内。本项研究揭示了该蓝污真菌在云南松树干韧皮和木质部组织,细胞内的生长和蔓延规律,进一步表明纵坑切梢小蠹蓝污真菌L.yunnanense是云南松的一种病原真菌。  相似文献   

12.
Wildfires burned over 200,000 ha of forest lands in Florida from April to July 1998. This unique disturbance event provided a valuable opportunity to study the interactions of summer wildfires with the activity of pine feeding insects and their associates in the southeastern United States. We compared tree mortality with abundance of bark and ambrosia beetles, reproduction weevils and wood borers relative to fire severity. Over 27% of residual live trees in stands that experienced high fire severity died between October 1998 and May 1999. An additional 2–3% of trees that initially survived the fire died during the second year compared to <1% mortality in unburned stands. One year after the fire, more than 75% of the trees surviving in high fire severity stands had roots infected with one or more species of Leptographium and/or Graphium spp. and nearly 60% of the sampled roots were infected. No such fungi were recovered from roots of trees in unburned stands. Significantly, more root weevils, Hylobius pales and Pachylobius picovorus, were captured in unbaited pitfalls in the moderate and high fire severity stands than in the controls. Mean trap catches of Ips grandicollis, Dendroctonus terebrans and Hylastes salebrosus, three common bark beetles that feed on phloem tissue of pines, were lower in Lindgren traps in the fire-damaged areas than in the control stands. In contrast, catches of the ambrosia beetles, Xyleborus spp. and Monarthrum mali, were higher in burned stands than in control stands. The generalist predator, Temnochila virescens (Coleoptera: Trogositidae), showed a strong positive relationship between abundance and fire severity, while the flat bark beetle, Silvanus sp. (Coleoptera: Sylvanidae), exhibited the reverse trend. Our results show that most tree mortality occurred within 1 year of the fire. Ips or Dendroctonus bark beetle populations did not build up in dead and weakened trees and attack healthy trees in nearby areas. The prevalence of Leptographium spp. in roots may be a symptom of, or result in, weakened trees that may affect the trees’ susceptibility to bark beetles in the future.  相似文献   

13.
Salle A  Ye H  Yart A  Lieutier F 《Tree physiology》2008,28(5):679-687
We examined the influence of seasonal water stress on the resistance of Pinus yunnanensis (Franch.) to inoculation with Leptographium yunnanense, a pathogenic fungus associated with the aggressive bark beetle, Tomicus n. sp. Experiments took place between October 1997 and November 1999 in two plots located at the top and at the foot of a hill in Shaogiu, China, a region characterized by dry winters and wet summers. Following isolated and mass fungal inoculations, we observed the reaction zone length, fungal growth in the phloem, and the occlusion, blue-staining and specific hydraulic conductivity of the sapwood. Measurements of soil and needle water contents and predawn needle water potentials confirmed that trees were subject to mild water stress during winter, especially at the drier hilltop site. Measures of tree resistance to fungal infection of phloem and sapwood were congruent and indicated that trees were most susceptible to inoculation during the wet summer, especially at the lower-elevation plot. Specific hydraulic conductivity decreased after inoculation in summer. The results indicate that mild seasonal water stress is not likely responsible for the recent extensive damage to young P. yunnanensis stands by Tomicus n. sp. in the vicinity of our study plots. Rather, the results suggest that mild water stress enhances tree resistance to fungal pathogens associated with Tomicus n. sp.  相似文献   

14.
We review current knowledge about the use of management treatments to reduce human-induced threats to old ponderosa pine (Pinus ponderosa) trees. We address the following questions: Are fire-induced damage and mortality greater in old than younger trees? Can management treatments ameliorate the detrimental effects of fire, competition-induced stress, and drought on old trees? Can management increase resistance of old trees to bark beetles? We offer the following recommendations for the use of thinning and burning treatments in old-growth ponderosa pine forests. Treatments should be focused on high-value stands where fire exclusion has increased fuels and competition and where detrimental effects of disturbance during harvesting can be minimized. Fuels should be reduced in the vicinity of old trees prior to prescribed burns to reduce fire intensity, as old trees are often more prone to dying after burning than younger trees. Raking the forest floor beneath old trees prior to burning may not only reduce damage from smoldering combustion under certain conditions but also increase fine-root mortality. Thinning of neighboring trees often increases water and carbon uptake of old trees within 1 year of treatment, and increases radial growth within several years to two decades after treatment. However, stimulation of growth of old trees by thinning can be negated by severe drought. Evidence from young trees suggests that management treatments that cause large increases in carbon allocation to radial xylem growth also increase carbon allocation to constitutive resin defenses against bark beetle attacks, but evidence for old trees is scarce. Prescribed, low-intensity burning may attract bark beetles and increase mortality of old trees from beetle attacks despite a stimulation of bole resin production.  相似文献   

15.
  • ? Our aim is to present why the hypothesis, that Ophiostomatoid fungi play an important role in the establishment of most bark beetle species on living conifers, is valuable.
  • ? After summarizing knowledge about the relationships of bark beetles with conifers and fungi, we conclude that controversy results from misinterpretations when using fungal pathogenicity to demonstrate the role of Ophiostomatoid fungi in beetle establishment on host trees.
  • ? We demonstrate that fungal pathogenicity is not the right parameter to appreciate the role of fungus in beetle establishment on host trees. We argue that artificial low density inoculations that allow the appreciation of fungus ability to stimulate tree defenses and thus to help beetles in overcoming tree resistance must be used in complement to mass inoculations. In both cases, results must be expressed in terms of tree defense stimulation rather than in terms of tree killing.
    1. Fungal species stimulating tree defenses are generally not those that grow the best in the sapwood.
    2. We argue that beetle development in the phloem, fungal invasion of the sapwood and phloem, and tree death, occur after tree defenses are exhausted, and that any fungus present in the beetle gallery could thus potentially invade the sapwood after defense exhaustion.
  • ? We conclude that stimulation of the tree defense reactions in both the phloem and the superficial sapwood is a real benefit brought by fungi to the beetles during the first phase of establishment (overcoming tree resistance).
  • ? Considering the origin of the bark beetle fungus associations attacking living trees and their general functioning based on stimulation of tree defenses, we develop three hypotheses:
    1. any beetle species would be helped in its establishment in a given tree species by developing an association, even loosely, with a fungus species belonging to the Ophiostomatoid flora of that tree species;
    2. the necessity of a considerably low level of tree resistance for fungus extension into the tree is the selection pressure that has led fungi to develop their intrinsic ability to stimulate tree defenses, through their ability to grow into the phloem. This association can be completed by antagonistic fungal species controlling extension of the previous fungal species in the tree tissues;
    3. Beetle species using the strategy of overcoming tree resistance are associated with a fungal complex, of which species could assume three roles regarding relationships between beetles and trees: 1- to stimulate tree defenses in the phloem and superficial sapwood, 2- to grow into the sapwood after tree resistance is overcome, and 3- to control phloem extension of the first other two categories. Bringing nutrients to the beetle progeny can be a fourth role.
  • ? We propose that bark beetle — Ophiostomatoid associations can be categorized, based on associations’ frequency and complexity while taking into account beetle aggressiveness. We show that a close correspondence exists between beetles’ aggressiveness and the ability of their main associated fungal species to stimulate the defenses of their host tree.
  • ? We conclude with suggesting that most sapwood invading fungi might be “cheaters” which have taken advantage of the efficiency of the relationship between beetles and fungi that stimulate tree defenses.
  •   相似文献   

    16.
    利用GC-MS联用技术和计算机检索对昆明林区的健康云南松、衰弱云南松和松褐天牛产卵刻槽云南松的韧皮部挥发性物质及松褐天牛的幼虫和成虫的粪便、松褐天牛雌、雄虫的后肠挥发性物质进行分析比较。结果表明,云南松健康木和衰弱木的韧皮部以及松褐天牛产卵刻槽韧皮部的挥发性物质的组成和含量存在较大差异。与健康木相比较,衰弱木和松褐天牛产卵刻槽韧皮部的挥发性物质中,α-蒎烯的相对含量减少,而β-月桂烯和3-蒈烯的相对含量增加;此外,衰弱木韧皮部的β-蒎烯的量也相对增加,并且发现含量很高的柠檬烯。松褐天牛产卵刻槽韧皮部、幼虫粪便、雌虫后肠均含有1-甲基-2-异丙烯基-环丁烷乙醇,表明该化合物与松褐天牛产卵行为有关。  相似文献   

    17.
    云南木蠹象是云南松的主要蛀干、蛀梢害虫,以幼虫在松树韧皮部和木质部蛀食为害,常常造成主干和侧枝枯死,严重危害的林分可导致成片松树死亡。该虫于2002年5月首次在威宁县云南松飞播林中暴发成灾,导致松树大量死亡。本文采用有害生物风险分析中的综合分析方法对云南木蠹象在贵州发生危害的风险性进行综合评价,结果表明云南木蠹象属中等危险性的林业有害生物。  相似文献   

    18.
    Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.  相似文献   

    19.
    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.  相似文献   

    20.
    Oleoresin flow is an important factor in the resistance of pines to attack by southern pine beetle, Dendroctonus frontalis Zimm., and its associated fungi. Abiotic factors, such as nutrient supply and water relations, have the potential to modify this plant-insect-fungus interaction; however, little is known of the effects of inoculation with beetle-associated fungi on oleoresin flow. We observed that constitutive and induced resin yield in loblolly pine, Pinus taeda L., were affected by either fungal inoculation (with the southern pine beetle-associated fungus Ophiostoma minus (Hedgcock) H. & P. Sydow) or silvicultural treatment. The effects of mass wounding (400 wounds m(-2)) and mass wounding and inoculation with O. minus were assessed by comparison with untreated (control) trees. The treatments were applied to trees in a 2 x 2 factorial combination of fertilizer and irrigation treatments. Fertilization did not significantly affect constitutive resin yield. Even as long as 105 days post-treatment, however, mass-inoculated trees produced higher induced resin yields than control or wounded-only trees, indicating a localized induced response to fungal inoculation. We noted no systemic induction of host defenses against fungal colonization. Although beetles attacking previously attacked trees face a greater resinous response from their host than beetles attacking trees that had not been previously attacked, the effect of an earlier attack may not last more than one flight season. Despite mass inoculations, O. minus did not kill the host trees, suggesting that this fungus is not a virulent plant pathogen.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号