首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zn deficiency is one of the leading health problems in children and women of developing countries. Different interventions could be used to overcome malnutrition, but biofortification is most impactful, convenient, sustainable and acceptable intervention. Maize is one of the major crops grown and consumed in the regions with prevalent Zn malnutrition; therefore, this is suitable target for Zn biofortification. Zn biofortification of maize could be achieved through agronomic and genetic approaches. Discussion of agronomic approaches with genetic approaches is prerequisite because soils in developing countries are deficit of Zn and availability of Zn in soils is mandatory for estimating the genetic responses of maize genotypes through genetic approaches. Seed priming, foliar and soil applications are agronomic tools for biofortification, but solo and combined applications of these treatments have different effects on Zn enrichment. Genetic approaches include the increase of Zn bioavailability or increase of kernel Zn concentration. Zn bioavailability could be increased by reducing the anti‐nutritional factors or by increasing the bioavailability enhancers. Kernel Zn concentration could be improved through hybridization and selections, whereas genetically engineered attempts for improving Zn uptake from soil, loading in xylem, remobilization in grains and sequestration in endosperm can further improve the kernel Zn concentration. Key challenges associated with dissemination of Zn biofortified maize are also under discussion in this draft. Current review emphasized all of above‐mentioned contents to provide roadmap for the development of Zn biofortified maize genotypes to curb the global Zn malnutrition.  相似文献   

2.
Maize is a commodity crop providing millions of people with food, feed, industrial raw material and economic opportunities. However, maize yields in Africa are relatively stagnant and low, at a mean of 1.7 t ha−1 compared with the global average of 6 t ha−1. The yield gap can be narrowed with accelerated and precision breeding strategies that are required to develop and deploy high-yielding and climate-resilient maize varieties. Genomic and phenotypic selections are complementary methods that offer opportunities for the speedy choice of contrasting parents and derived progenies for hybrid breeding and commercialization. Genomic selection (GS) will shorten the crop breeding cycle by identifying and tracking desirable genotypes and aid the timeous commercialization of market-preferred varieties. The technology, however, has not yet been fully embraced by most public and private breeding programmes, notably in Africa. This review aims to present the importance, current status, challenges and opportunities of GS to accelerate genetic gains for economic traits to speed up the breeding of high-yielding maize varieties. The first section summarizes genomic selection and the contemporary phenotypic selection and phenotyping platforms as a foundation for GS and trait integration in maize. This is followed by highlights on the reported genetic gains and progress through phenotypic selection and GS for grain yield and yield components. Training population development, genetic design and statistical models used in GS in maize breeding are discussed. Lastly, the review summarizes the challenges of GS, including prediction accuracy, and integrates GS with speed breeding, doubled haploid breeding and genome editing technologies to increase breeding efficiency and accelerate cultivar release. The paper will guide breeders in selection and trait introgression using GS to develop cultivars preferred by the marketplace.  相似文献   

3.
我国西南地区玉米育种面临的挑战及相应对策探讨   总被引:9,自引:0,他引:9  
潘光堂  杨克诚 《作物学报》2012,38(7):1141-1147
在剖析西南地区发展玉米产业面临挑战的基础上,反思了西南地区玉米杂交育种存在的主要差距,并根据国内外玉米杂交育种发展趋势和我们的实践,从育种层面提出了应采取的对策措施。育种目标上,重点是抗病与抗虫、耐旱与耐瘠、适合全程机械化生产和耕作制度改革,以及拓展利用营养体优势新型“饲草玉米”。种质创新上,应明确杂优类群、简化杂优模式,系统开展基础种质评价与分析,合成与改良育种用群体,创制育种特异新材料。突破性自交系选育上,应注重特异新基因的发掘与利用,把产量GCA作为重要选择标准,把自交衰退慢的株系作为主要选择对象,自交、姊妹交或混粉交替进行,提高优良基因型频率;加大选系的鉴定力度,并测定产量。育种方法上,应增加种植密度,加大选择压力,实施南北穿梭育种,加快我国南方玉米种子生产基地建设,同时加快高新技术在玉米育种上的应用。  相似文献   

4.
Maize has been targeted as one of the major crops for provitamin enrichment and delivery because it is an inexpensive and easily available source of food for millions of people in sub-Saharan Africa. Although tropical-adapted yellow maize contains provitamin-A carotenoids that can be converted into vitamin A in the human body, they represent less than 25% of the total carotenoids in most widely grown and consumed maize cultivars in Africa. Novel genes conditioning high concentration of β-carotene and other carotenoids were then continually introduced from the temperate zone and tropics to boost provitamin A in tropical-adapted maize. Several promising inbred lines developed from backcrosses involving diverse exotic donor lines displayed provitamin A concentrations that match or surpass the current breeding target of 15 μg g?1. Some of these lines attained high provitamin A content by accumulating mainly high β-carotene while others contained high provitamin A by promoting accumulation of high levels of both carotenes and xanthophylls. Several inbred lines with intermediate to high levels of provitamin A have already been used to develop hybrids and synthetics without compromising grain yield and other adaptive traits that are required to profitably cultivate maize by farmers in West and Central Africa.  相似文献   

5.
全球受维生素A(VA)缺乏威胁的人口高达5.6亿,其中很多是学龄前儿童和孕妇,严重的维生素A缺乏症可导致失明甚至死亡。玉米作为最主要的粮食作物,研究和选育高维生素A原的玉米品种,可以极大地改善以玉米为主食的发展中国家和地区的维生素A缺乏问题。就近年来玉米中维生素A原的研究进展进行了比较全面的阐述,并对维生素A和其他营养元素的生物强化进行了展望。  相似文献   

6.
Phosphorus (P) deficiency is one of the major limiting factors in maize production in many developing countries. This experiment was conducted to evaluate multiple low-P tolerance criteria and identify the suitable maize germplasm for our future low-P tolerance breeding. A total of 456 diverse maize inbreds were evaluated for low-P tolerance at seedling stage using four shoot-related traits and six root-related traits measured under applied phosphorus (AP) and non-applied phosphorus (NAP) conditions. Analysis of variance revealed significant genetic variation among genotypes for all tested traits. Medium-to-high heritability estimates were obtained for most traits. Total dry weight (DW) was highly inheritable while the widely used root/shoot ratio had only an intermediate level of heritability. Based on the synthetic index (SI), the tested inbreds were classified into three groups representing low, moderate and high tolerance to low-P stress. Regression model built based on selection criteria for low-P tolerance explained 67.8 and 76.8 % of variation for DW under NAP and AP conditions, respectively. Using low-P tolerance index for DW and SI as selection criteria, 23 and 109 maize inbreds were identified as germplasm resources that were extremely tolerant and sensitive to low-P stress, respectively, which could be further used for genetic improvement of low-P tolerance.  相似文献   

7.
干旱是目前影响玉米产量最重要的非生物胁迫因子。为了加快玉米耐旱性研究,提高育种效率,本研究归纳了近年来国内外玉米耐旱性研究现状将其总结为玉米耐旱性鉴定方法、遗传研究、品种选育以及耐旱性功能基因研究。对目前研究中存在的问题,如尚未有统一标准耐旱性鉴定体系、缺乏耐旱种质资源以及耐旱机理研究尚浅等进行了分析,并针对每个问题提出其解决对策,这为玉米耐旱性深入研究提供有力信息。  相似文献   

8.
通过剖析西非地区玉米品种情况及其面临的问题,提出援西非农业项目玉米育种的策略建议:根据不同国家情况确定育种目标,培育不同类型玉米杂交品种,并注重品种耐旱、耐贫瘠等优良性状的选择;按“地方系”与“外来系”的配对模式组配,提高育种效率,并兼顾自交系一般配合力和产量选择;开展示范与配套技术研究以利于新品种推广等。同时对今后的工作思路进行探讨,加强西非地方种质与引进外来种质的研究利用,针对当地生产条件及收获习惯选育品种,以相对简单科学的试验设计获取完整、正确的试验结果,稳定援外项目育种队伍及为育种成果联合开发寻求出路等。  相似文献   

9.
Iron is one of the most important micronutrients for crop plants due to its use in important physiological processes such as photosynthesis, mitochondrial respiration, metal homeostasis, and chlorophyll synthesis. Crop plants have adapted different strategies for uptake, transport, accumulation, and storage of iron in tissues and organs which later can be consumed by humans. Estimates indicate that about 2 billion people (33% of human population) are at risk of iron deficiency in which infants, children, and pregnant women are potentially compromised. Biofortification refers to the increase in concentration of micronutrients in edible parts of plants and understanding the pathways for iron accumulation in plants is necessary for breeding iron‐enriched crops. Iron‐biofortified crops are also one of the key factors in achieving multiple United Nations Sustainable Development goals. This review article covers different strategies of iron acquisition and transport in plants, its bioavailability, coping with the iron deficiency as a global perspective, the current status of iron biofortification, and how breeding future biofortified crops could be helpful in combating the said issue in a sustainable manner.  相似文献   

10.
玉米新品种‘裕丰303’的商业育种问题讨论   总被引:1,自引:1,他引:0  
在大田生产中,‘先玉335’等美系新品种在耐密植、抗倒伏、抗南方锈病、抗大斑病、抗高温热害等方面的能力都较弱。为了通过育种手段解决以上问题,本研究以玉米新品种‘裕丰303’为试验材料,通过对其在国家(黄淮海夏播、东华北中晚熟、西北春播)以及各省区域试验和生产试验中的产量、抗旱性、耐高温热害、耐密性、籽粒品质等品种特性进行分析。结果表明‘裕丰303’不仅具备美系新品种的优良特征特性,还具有耐旱、耐高温热害、抗倒伏、抗南方锈病等性状优势,实现并大幅度超越笔者原定的育种目标。以此为基础,讨论了今后种质扩增、改良、创新的技术路线和避免遗传脆弱性风险出现等相关商业育种问题。强调在育种实践中应高度重视耐高温热害性状和耐旱性状的选育,特别要注重通过不断提升基因型与环境互作的正向超正常表达选育具有广泛适应性的新品种。  相似文献   

11.
Deploying maize varieties with fall armyworm (Spodoptera frugiperda [J.E. Smith]; FAW) resistance, desirable product profiles (PPs) and climate resilience is fundamental for food and economic security in sub-Saharan Africa (SSA). This study reviewed and identified challenges and opportunities for effective and accelerated breeding of demand-led maize hybrids with FAW resistance and adaptation to the diverse agro-ecologies of SSA. Lessons were drawn on improving breeding efficiency through adequate genetic variation delivered via prebreeding programmes, speed breeding and a reduced breeding stage plan. Appropriate PPs aligned with demand-led breeding approaches were highlighted as foundations for variety design and commercialization. Challenges to accelerated FAW resistance breeding in maize included inadequate funds and modern tools; poor adaptation of some exotic donor parental lines; lack of information on FAW resistance among local varieties; lack of integration of molecular markers associated with FAW resistance and agronomic traits into selection plans; and limited infrastructure for FAW rearing and germplasm screening. Integration of modern breeding tools and scientific innovations were recommended for accelerated development and release of FAW resistant and market-preferred maize varieties.  相似文献   

12.
Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
耐密型玉米育种相关问题的思考   总被引:7,自引:0,他引:7  
玉米种植密度逐步提高不仅是玉米产量不断提高的主要途径,也是育种中提高选择效果的重要手段。本文结合我国玉米生产和育种的实际情况,对耐密型玉米品种选育的育种目标、种质选择、自交系选育技术和杂交种鉴定技术进行了探讨。  相似文献   

14.
产量提高过程中玉米品种特征研究进展   总被引:2,自引:1,他引:1  
自20 世纪60 年代以来,世界玉米平均单产大幅度提高;而消费需求也是逐年增加。所以,作为世界重要的粮食作物之一,玉米高产潜力的挖掘势在必行。品种选育对玉米产量增益的贡献突出。为了给今后品种选育提供理论依据,归纳前人的研究试验,分析了不同年代玉米品种的结构与功能指标,结果如下:(1)在玉米品种更替过程中,穗位高或穗位系数明显降低,茎叶夹角变小、叶面积增大,叶片持绿期延长。(2)新品种与老品种相比,透光率增加,消光系数降低,倒伏率下降,干物质积累速率与收获指数增加。(3)国内外品种选育指标有差异,但品种的特征都向着优化的方向发展。基于以上结果提出,未来的玉米育种在考虑高耐密植的同时,应注重以种抗病、以种抗虫、以种抗草。  相似文献   

15.
Adaptation of tropical maize germplasm to temperate environments   总被引:1,自引:0,他引:1  
Maize (Zea mays L.) is one of few crops that can offer significant genetic gains with the utilization of genetic diversity. Genetically broad-based germplasm has the potential to contribute useful and unique alleles to U.S. Corn Belt breeding programs not present in current U.S. genome sequences (e.g. B73, NAM, etc.). Our objectives were to determine if unique tropical genetic materials have been effectively adapted to temperate environments and how their agronomic performance was relative to adapted populations. An important long-term objective of the Iowa and North Dakota maize breeding programs has been, in addition to the typical elite by elite line pedigree selection cultivar development process, to adapt exotic and unique germplasm, maximize their genetic improvement, and develop unique products for breeding and commercial uses. Stratified mass selection methodology for earliness has been utilized for the adaptation of tropical and temperate populations to Iowa and North Dakota environments. This method has allowed screening of up to 25,000 genotypes per population cycle at a rate of one cycle per year. In addition, the estimated cost per year our programs had for the adaptation of each population was less than $2,000 which could successfully be applied in any breeding program across the globe. This cost has been less than 1 % of the total cost for finding minor genes on the same trait. Our results showed the successful adaptation of exotic populations was independent from genetic background. We can speculate there are a few major genes responsible for most of flowering date expression. We encourage the use of technology to target traits according to their genetic complexity. Stratified mass selection at the phenotypic level has been successful. Each of the populations with either 25 of 100 % tropical germplasm are available for anyone who may desire to expand the germplasm base of their breeding programs with tropical germplasm adapted to temperate mid- and short-season U.S. Corn Belt environments.  相似文献   

16.
中国作物分子设计育种   总被引:16,自引:1,他引:15  
分子设计育种通过多种技术的集成与整合,对育种程序中的诸多因素进行模拟、筛选和优化,提出最佳的符合育种目标的基因型以及实现目标基因型的亲本选配和后代选择策略,以提高作物育种中的预见性和育种效率,实现从传统的“经验育种”到定向、高效的“精确育种”的转化。分子设计育种主要包含以下3个步骤:(1)研究目标性状基因以及基因间的相互关系,即找基因(或生产品种的原材料),这一步骤包括构建遗传群体、筛选多态性标记、构建遗传连锁图谱、数量性状表型鉴定和遗传分析等内容;(2)根据不同生态环境条件下的育种目标设计目标基因型,即找目标(或设计品种原型),这一步骤利用已经鉴定出的各种重要育种性状的基因信息,包括基因在染色体上的位置、遗传效应、基因到性状的生化网络和表达途径、基因之间的互作、基因与遗传背景和环境之间的互作等,模拟预测各种可能基因型的表现型,从中选择符合特定育种目标的基因型;(3)选育目标基因型的途径分析,即找途径(或制定生产品种的育种方案)。本文评述近几年来我国在遗传研究材料创新、重要性状遗传分析、育种模拟工具开发和应用、设计育种实践、分子设计育种技术体系建设等方面取得的重要进展,结合国内外研究现状对分子设计育种的未来进行展望,最后指出我国近期应加强育种预测方法和工具、基因和环境互作、遗传交配设计、作物功能基因组学、生物信息学方法和工具、设计育种技术体系和决策支持平台等领域的研究,同时重视人才培养和团队建设。  相似文献   

17.
Common bean (Phaseolus vulgaris L.) improvement programs have been successful using conventional breeding methods to accomplish a wide array of important objectives. Specific achievements include the extension of range of adaptation of the crop, the development of cultivars with enhanced levels of disease and pest resistance and breeding lines that possess greater tolerance to drought. The most effective breeding method depends on the expression and inheritance of the trait to be selected and the target environment. Many bean improvement programs use molecular markers to facilitate cultivar development. In fact, several recent germplasm releases have used molecular markers to introgress and or pyramid major genes and QTL for disease resistance. Related species (P. coccineus and P. acultifolius) via interspecific hybridizations remain an important albeit long-term source for resistance to economically important diseases. Slow progress has been made in the improvement of traits such as adaptation to low soil fertility and tolerance to high levels of soluble Al in the soil using conventional breeding methods. The inability to directly measure root traits and the importance of genotype × environment interaction complicate the selection of these traits. In addition, symbiotic relationships with Rhizobium and mycorrhiza need to be taken into consideration when selecting for enhanced biological N fixation and greater or more efficient acquisition of soil P. Genomic examination of complex traits such as these should help bean breeders devise more effective selection strategies. As integration of genomics in plant breeding advances, the challenge will be to develop molecular tools that also benefit breeding programs in developing countries. Transgenic breeding methods for bean improvement are not well defined, nor efficient, as beans are recalcitrant to regeneration from cell cultures. Moreover, if issues related to consumer acceptance of GMOs cannot be resolved, traits such as herbicide tolerance in transgenic bean cultivars which would help farmers reduce production costs and decrease soil erosion will remain unrealized.  相似文献   

18.
揭示全球玉米分子育种技术发展态势,旨在为国内玉米分子育种领域相关从业人员在科研或产业化方面提供参考。利用文献计量法,结合专家咨询和调研分析,针对全球玉米分子育种的专利年代趋势、技术生命周期、主要来源和受理国家/地区、主要专利权人、技术主题分布进行分析。为阐释典型机构的技术发展历程,依据专利间的相互引证关系,绘制该领域重要专利权人——杜邦公司的技术路线图。最后利用Emergency Indicator算法对专利标题和摘要中的主题词进行创新性得分计算,预测该领域的新兴技术。结果表明,全球玉米分子育种正处于稳步发展阶段,美国是该领域主要的技术来源国家,同时也是主要的技术流向市场,中国专利数量排名第二,但专利质量和海外布局意识有待提高;大型跨国企业是创新技术的主要来源机构,技术体系完善;转基因技术是目前应用最多的育种技术,加倍单倍体、分子标记辅助选择、单倍体诱导等技术为该领域的新兴技术,值得关注。中国应加大对玉米分子育种的扶持力度,捕捉技术空白点提升专利质量和技术竞争力,同时积极推进专利技术在国际市场的布局。  相似文献   

19.
塘四平头种质的遗传改良与利用   总被引:1,自引:0,他引:1  
高翔  曹绍书 《中国农学通报》2006,22(10):154-154
自20世纪70年代以来,优质、抗逆、高配合力和适应性广的新种质匮乏,已成为影响玉米商业育种进一步发展的“瓶颈”。生产用种质的遗传脆弱性受到普遍关注,种质扩增、改良与创新成为作物育种研究最重要的发展方向。塘四平头种质对中国玉米育种和生产贡献巨大,因此,玉米育种工作者系统了解、掌握和应用其遗传改良和利用的目标、原则与依据、材料与方法以及途径非常必要,对新世纪继续沿用原有典型的杂种优势利用模式和创建新的杂种优势利用模式奠定基础,具有十分重要的现实意义和深远的历史意义。  相似文献   

20.
中国糯玉米wx基因种质资源遗传多样性   总被引:8,自引:1,他引:7  
Waxy(Wx)基因是众多作物导致糯性突变的关键基因,在玉米作物群体内深入研究Wx基因对中国糯玉米品质育种和种质创新具有重要意义。本研究利用325份(309份来自中国,11份来自泰国和5份来自韩国)糯玉米种质材料做了wx基因突变类型的调查和表观直链淀粉含量(AAC)测定。结果表明, 中国糯玉米的wx基因的遗传多样性很低,主要存在wx-D7和wx-D10两种突变类型,占96.9%;中国北方及韩国的糯玉米wx基因突变类型都是wx-D7类型,南方及泰国糯玉米wx基因突变类型都是wx-D10类型;糯玉米地方品种的wx基因型以wx-D10为主,占78.9%,而商业杂交种和自交系的wx基因型以wx-D7为主,分别占88.7%和86.6%。分析表明,中国糯玉米商业杂交种和自交系的AAC均值较低(小于2.2%)且无显著差异,但地方品种的AAC均值较高;wx-D7基因型糯玉米的AAC均值低且变化幅度较小,而wx-D10基因型糯玉米的AAC均值最高且变化幅度较大。本文还讨论了中国糯玉米主要wx基因型的地理分布、起源以及其他的wx基因突变类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号