首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historically, conventional breeding has been the primary strategy used to develop a number of Striga‐resistant varieties currently grown in the Sahel of Western Africa. In this study, we have successfully developed and applied a marker‐assisted selection strategy that employs a single backcross programme to introgress Striga resistance into farmer preferred varieties of cowpea for the Nigeria savannas. In this strategy, we have introduced the Striga resistance gene from the donor parent IT97K‐499‐35 into an elite farmer preferred cowpea cultivar ‘Borno Brown’. The selected 47 BC1F2 populations confirmed the recombinants with desirable progeny having Striga resistance gene(s). The 28 lines selected in the BC1F2:4 generation with large seed size, brown seed coat colour and carrying marker alleles were evaluated in the field for resistance to Striga resistance. This led to the selection of a number of desirable improved lines that were immune to Striga having local genetic background with higher yield than those of their parents and standard varieties.  相似文献   

2.
Summary The genetics of resistance to angular leaf spot caused by Pseudomonas syringae pv. tabaci in Nicotiana tabacum cultivars Burley 21 and Kentucky 14 was investigated by studying disease reactions to three isolates of parental, F1, F2 and backcross generations derived from crosses between the resistant cultivars and the susceptible cultivar Judy's Pride. Studies were conducted in the greenhouse and in field plant beds. Chi-square values were computed to determine whether the observed ratios for disease reactions deviated from expected Mendelian ratios for a single, dominant gene controlling resistance to angular leaf spot in tobacco. Based on the resistance of the F1 and the backcross generation to the resistant parent (BC-R), a 3 resistant: 1 susceptible segregation ratio in the F2, and a 1 resistant: 1 susceptible segregation ratio in the backcross generation to the susceptible parent (BC-S), it was concluded that resistance to three isolates of Pseudomonas syringae pv. tabaci is governed by a single, dominant gene.  相似文献   

3.
Six blast‐resistant pearl millet genotypes, ICMB 93333, ICMB 97222, ICMR 06444, ICMR 06222, ICMR 11003 and IP 21187‐P1, were crossed with two susceptible genotypes, ICMB 95444 and ICMB 89111 to generate F1s, F2s and backcrosses, BC1P1 (susceptible parent × F1) and BC1P2 (resistant parent × F1) for inheritance study. The resistant genotypes were crossed among themselves in half diallel to generate F1s and F2s for test of allelism. The F1, F2 and backcross generations, and their parents were screened in a glasshouse against Magnaporthe grisea isolates Pg 45 and Pg 53. The reaction of the F1s, segregation pattern of F2s and BC1P1 derived from crosses involving two susceptible parents and six resistant parents revealed the presence of single dominant gene governing resistance in the resistant genotypes. No segregation for blast reaction was observed in the F2s derived from the crosses of resistant × resistant parents. The resistance reaction of these F2s indicated that single dominant gene conferring resistance in the six genotypes is allelic, that is same gene imparts blast resistance in these genotypes to M. grisea isolates.  相似文献   

4.
Pot and laboratory experiments were performed in order to elucidate the genetics of resistance of three cowpea (Vigna unguiculata (L.) Walp.) resistant sources to two biotypes of the parasitic weed Striga gesnerioides (Willd.) Vatke (witchweed). B301, Suvita-2 and IT82D-849 were crossed to susceptible cultivars. Roots of each plant of parental, F1, F2, BC1 and BC2 populations were washed free of soil and examined closely for S. gesnerioides attachment. Data on resistant and susceptible cowpea plants were analyzed using the chi-square test to ascertain the goodness of fit to different genetic ratios. Segregation patterns indicate monogenic dominant inheritance of resistance to both S. gesnerioides biotypes in B301. Suvita-2, which is susceptible to the biotype from Maradi, Niger, showed segregation patterns that indicate monogenic dominant inheritance of resistance to S. gesnerioides biotype from Cinzana, Mali. Results also indicate monogenic dominant inheritance of resistance to S. gesnerioides biotype from Cinzana in IT82D-849. However, the inheritance of resistance to the biotype from Maradi would be monogenic and recessive in this line. These results suggest that the resistance of all three sources would be easy to transfer to promising breeding lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
M. Mert    S. Kurt    O. Gencer    Y. Akiscan    K. Boyaci  F. M. Tok 《Plant Breeding》2005,124(1):102-104
Verticillium wilt, caused by Verticillium dahliae Kleb., is a major constraint to cotton production in almost all countries where cotton is cultivated. Developing new cotton cultivars resistant to Verticillium wilt is the most effective and feasible way to combat the problem. Little is known about the inheritance of resistance to Verticillium wilt of cotton, especially that caused by the defoliating (D) and nondefoliating (ND) pathotypes of the soil‐borne fungus V. dahliae. The objective of this study was to determine the inheritance of resistance in cotton against both pathotypes of V. dahliae. Crosses were made between the susceptible parent ‘Cukurova 1518’ and each of four resistant parents PAUM 401, PAUM 403, PAUM 405 and PAUM 406 to produce F2 generations in 2002 and F2:3 families in 2003. Disease responses of parent and progeny populations to the D and ND pathotypes were scored based on a scale of 0‐4 (0, resistant; 4, susceptible). F2 populations inoculated with the D pathotype showed a 3 : 1 (resistant : susceptible) plant segregation ratio. Tests of F2:3 families confirmed that resistance was controlled by a single dominant gene. In contrast, analysis of data from F2‐ and F2‐derived F3 families suggested that resistance to the ND pathotype is controlled by dominant alleles at two loci.  相似文献   

6.
The peach root‐knot nematode, Meloidogyne floridensis (MF), infects majority of available nematode‐resistant peach rootstocks which are mostly derived from peach (Prunus persica) and Chinese wild peach (P. davidiana). Interspecific hybridization of peach with its wild relative, Kansu peach (P. kansuensis), offers potential for broadening the resistance spectrum in standard peach rootstocks. We investigated the inheritance of resistance to MF in segregating populations of peach (‘Okinawa’ or ‘Flordaguard’) × P. kansuensis. A total of 379 individuals from 13 F2 and BC1F1 families were challenged with a pathogenic MF isolate “MFGnv14” and were classified as resistant (R) or susceptible (S) based on root galling intensity. Segregation analyses in F2 progeny revealed the involvement of a major locus with a dominant or recessive allele determining resistance in progeny segregating 3R:1S and 1R:3S, respectively. Testcrosses with a homozygous‐susceptible peach genotype (‘Flordaguard’ or ‘UFSharp’) confirmed P. kansuensis as a source of new resistance and the heterozygous allelic status of P. kansuensis at the locus conferring resistance to MF. We propose a single‐locus dominant/recessive model for the inheritance of resistance.  相似文献   

7.
Striga hermonthica can cause as high as 100% yield loss in maize depending on soil fertility level, type of genotype, severity of infestation and climatic conditions. Understanding the mode of inheritance of Striga resistance in maize is crucial for introgression of resistance genes into tropical germplasm and deployment of resistant varieties. This study examined the mode of inheritance of resistance to Striga in early‐maturing inbred line, TZdEI 352 containing resistance genes from Zea diploperennis. Six generations, P1, P2, F1, F2, BC1P1 and BC1P2 derived from a cross between resistant line, TZdEI 352 and susceptible line, TZdEI 425 were screened under artificial Striga infestation at Mokwa and Abuja, Nigeria, 2015. Additive‐dominance model was adequate in describing observed variations in the number of emerged Striga plants among the population; hence, digenic epistatic model was adopted for Striga damage. Dominance effects were higher than the additive effects for the number of emerged Striga plants at both locations signifying that non‐additive gene action conditioned inheritance of Striga resistance. Inbred TZdEI 352 could serve as invaluable parent for hybrid development in Striga endemic agro‐ecologies of sub‐Saharan Africa.  相似文献   

8.
A new race F of broomrape overcomes all known resistance genes in cultivated sunflower, but recently, sources of resistance against race F have been developed. The objective of the present research was to study the inheritance of resistance to race F in crosses between 12 resistant sunflower breeding lines, derived from three different sources of resistance, and the susceptible male‐sterile line P‐21. Parental lines and F1, F2, F3 and BC1 generations were evaluated for broomrape resistance. Segregations in the F2 and BC1 to resistant parent approached resistant to susceptible ratios of 1: 15 and 1: 3, respectively, in most of the crosses, suggesting a double dominant epistasis. However, segregations of 3: 13 and 1: 1 for F2 and BC1, respectively, indicating a dominant‐recessive epistasis, were also found. The F3 data confirmed these results. Owing to the recessive nature of this resistance, it must be incorporated into both parental lines for developing resistant hybrid cultivars.  相似文献   

9.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

10.
An experiment was conducted to study the genetics and nature of gene action of resistance to watermelon bud necrosis orthotospovirus (WBNV) in watermelon. The experimental materials comprised of two resistant (BIL‐53 and IIHR‐19) and one susceptible (IIHR‐140) parents. Each of the resistant parents was crossed with the susceptible parent to develop six generations (P1, P2, F1, F2, BC1 and BC2) to study genetics. The results of segregation in F2 and backcross progenies suggested that resistance is governed by a major dominant gene along with other background minor genes in both the crosses. BIL‐53 was found to possess higher degree of resistance with simple inheritance and hence may be of interest to breeders. Simple selection can be effective for improving the trait in the cross BIL‐53 × IIHR‐140 as additive gene action is prevalent.  相似文献   

11.
The most effective strategy to control Fusarium head blight (FHB), a devastating disease of small‐grain cereals, is breeding resistant cultivars. This resistance study of F1 crosses, F2 and backcross generations of triticale estimates heterosis, general and specific combining ability (GCA, SCA), additive and dominance effects and compares parents with segregating generations. The genetic material consisted of 10 parents with their 45 F1 crosses and of six parents with their 15 F2 progeny and backcrosses to each parent. Genotypes were grown in various environments and artificially inoculated with an aggressive isolate of F. culmorum. FHB was assessed, by visual rating, as the mean of four to five individual ratings of disease development. Heterosis for FHB was of little importance. The correlation between the FHB rating of F1 crosses and their mid‐parent performance was close. GCA was the predominant source of variation, although the significance of the SCA variance also implied non‐additive allelic interaction. The preponderance of additive gene effects is encouraging for increasing resistance by a recurrent selection programme. The relationship between the GCA effect of a parent and its per se performance was close, which gives the possibility of predicting FHB resistance in F1 crosses. Additive effects were predominant in the F2 progeny and also in the backcrosses. Transgressive segregants could not be detected. Searching for them should be postponed to the F3 or later generations.  相似文献   

12.
Cowpea is an important legume in sub-Saharan Africa where its protein rich grains are consumed. Insect pests constitute a major constraint to cowpea production. Flower bud thrips (FTh) is the first major pest of cowpea at the reproductive stage and if not controlled with insecticides is capable of reducing grain yield significantly. Information on the inheritance of resistance to FTh is required to facilitate breeding of resistant cultivars. The genetics of resistance was studied in crosses of four cowpea lines. Maternal effect was implicated while frequency distributions of the F2 and backcross generations suggest quantitative inheritance. Additive, dominance and epistatic gene effects made large contributions and since improved inbred lines are the desired product, selection should not be too severe in the early generations to allow for desirable gene recombination. This study suggested that some of the genes involved in the control of resistance to FTh are different in TVu1509 and Sanzi. Broad sense heritability ranged from 56% to 73%. Choice of maternal parent in a cross will be critical to the success of resistance breeding.  相似文献   

13.
M. T. Assad 《Plant Breeding》2002,121(2):180-181
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a major economic pest of small grains in many countries. An experiment was therefore conducted to determine the inheritance of gene(s) controlling resistance to RWA in a resistant tetraploid durum wheat line. This resistant line,‘1881′, was crossed to a susceptible line, ‘Orejy‐e‐Kazeroon’, and then F1 F2 and BCF1 (backcross to susceptible line) seedlings were screened in a greenhouse for RWA resistance following artificial infection. Resistance in ‘1881’ was apparently controlled by one dominant gene. Since Dnl, Dn2, dn3, Dn4 and Dn5 have been reported to be located on genome D, it was reasoned that the resistance gene in ‘1881’ is not allelic to them.  相似文献   

14.
Interspecific hybridization between foxtail millet cultivars (Setaria italica) and a green foxtail (S. viridis) resistant to the herbicide sethoxydim were undertaken to breed foxtail millet for improved herbicide resistance. Parents, reciprocal F1 hybrids, F2 selfed derived populations and BC1 backcross progeny were produced and analysed for mortality and fresh weight over a range of dosages. All resistant progeny were 700 times more resistant than susceptible cultivars and was symptom free under current field dosages. Segregations of resistant and susceptible progeny (3:1 in F2 and 1:1 in BC1) were not dependent upon dosage. Heterozygous individuals displayed the same magnitude of resistance as homozygous plants at twelve times the recommended field dosage. Results suggested that sethoxydim resistance in foxtail millet was controlled by a single, completely dominant, nuclear gene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Sunflower downy mildew caused by Plasmopara halstedii is an important disease of sunflower capable of causing losses of more than 80% of production. Races 100, 300, 310, 330, 710, 703, 730 and770 of the fungus have been identified in Spain. Race 703, of high virulence, has been identified frequently in the northeast, while race 310 seems to occur over the south, the main sunflower growing region of the country. Oil sunflower lines RHA-274 and DM4 were studied for their resistance to races 310(RHA-274 and DM4) and 703 (DM4). In each cross, only one plant of the resistant parent was crossed to the inbred susceptible line HA-89 (or cmsHA-89).Plants from F2 and backcross(BC1F1 to susceptible parent)generations were evaluated for fungal sporulation on true leaves and/or cotyledons. The resistant-to-susceptible ratios obtained in the F2 and BC1F1 progenies from the crosses cmsHA-89 × RHA-274 and HA-89 × DM4suggested that one major gene in each line is responsible for resistance to race 703.The segregations of the progenies of the cross HA-89 × DM4 inoculated with race 703also fitted the ratios 1:1 and 3:1 (for BC1F1 and F2, respectively)corresponding to control of resistance by a single dominant gene. In RHA-274, the gene for resistance to race 310 was designated Pl 9, whereas Pl v is tentatively proposed to designate the gene in DM4 responsible for resistance to races310 and 703. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Phytophthora drechsleri causes stem blight, which is one of the most serious diseases of pigeonpea. Eight races of this fungus have been identified, but the inheritance of resistance to all these races is not clear except for race P2. This study examined the inheritance of resistance to race ‘Kanpur’ (KPR) of P. drechsleri in eight crosses involving four resistant parents, viz.‘KPBR 80‐2‐1′, ‘KPBR 80‐2‐2′, ‘Hy 3C and ‘BDN 1′, and two susceptible parents, viz.‘Bahar’ and ‘PDA 10′. The reactions of the parental lines, and their F1, F2 and backcross generations were studied in an infected plot. In the F1 generation of all crosses, a susceptible reaction was observed that indicated dominance of susceptibility over resistance. The segregation pattern in F2 indicated that two homozygous recessive genes (pdr1pdr1pdr2pdr2) were responsible for imparting resistance in the parents, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2′, and that a single homozygous recessive gene (pdrpdr) was responsible for resistance in the parents ‘Hy 3C and ‘BDN 1′. Therefore, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2’ with two genes for resistance are better donors because the resistance transferred from them will be more durable compared with ‘Hy3C and ‘BDN1’ with only one gene for resistance.  相似文献   

17.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

18.
Six intervarietal crosses involving two resistant and three susceptible genotypes of mungbean were attempted with the objectives to determine the mode of inheritance of gene‐specific Mungbean Yellow Mosaic Virus (MYMV) resistance. An infector row technique along with artificial inoculation was used for evaluating parents, F1, F2 and F3 plants for MYMV resistance. Disease scoring for MYMV indicated that F1s were highly susceptible as were the susceptible parents while resistant parent exhibited resistant reaction. The F2 progeny segregated in the ratio of 9 S:3 MS:3 MR:1 R suggesting that the resistance was governed by digenic recessive genes (rm1 and rm2). When one gene (rm1) was present in the homozygous recessive condition in different plants, it conferred moderately susceptible (MS) reaction, whereas when other gene (rm2) was in homozygous condition, moderately resistant (MR) reaction was obvious. When both genes (rm1 and rm2) were present together in the homozygous recessive condition, resistant reaction (R) was observed. The F2 segregation explained on the basis of phenotypic expression was further confirmed by F3 segregation.  相似文献   

19.
Interspecific hybrids and backcross generations between the wild perennial species Helianthus resinosus, Helianthus paucifiorus, Helianthus laevigatus, Helianthus nuttallii ssp. nuttallii T. & G. and Helianthus giganteus, resistant to broomrape (Orobanche cernua) and susceptible inbred lines were obtained to study crossability to cultivated sunflower and the transmission and expression of resistance to this parasitic weed. Conventional crosses with all the species tested were successful except for the crosses with diploid H. giganteus, for which embryo rescue techniques were needed to overcome hybrid incompatibility. Pollen viability and seed set were highest for F1 hybrids with hexaploid species and lowest for those with the diploid H. giganteus. We evaluated F1, BC1F1, some BC2F1 plants and the wild and cultivated parents. The wild species and interspecific hybrids were resistant to broomrape infection except for H. nuttallii, which showed segregation, indicating that the resistance is dominant. The crossability and resistance of F1, and back-cross generations of species with different ploidy levels indicate that the transfer of broomrape resistance to cultivated sunflower is feasible.  相似文献   

20.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号