首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
Cold tolerance is a complex trait, and QTL pyramiding is required for rice breeding. In this study, a total of seven QTLs for cold tolerance in the Japonica rice variety ‘Nipponbare’ were identified in an F2:3 population. A stably inherited major QTL, called qCTS11, was detected in the region adjacent to the centromere of chromosome 11. In a near‐isogenic line population, the QTL was further dissected into two linked loci, qCTS11.1 and qCTS11.2. Both of the homozygous alleles of qCTS11.1 and qCTS11.2 from ‘Nipponbare’ showed major positive effects on cold tolerance. Through pyramiding the linked QTLs in the cold‐sensitive Indica rice cultivar ‘93‐11’, we have developed a new elite, high‐yielding Indica variety with cold tolerance.  相似文献   

2.
Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in Australia and elsewhere. In order to identify molecular markers associated with partial seedling resistance to this disease, bulked segregant analysis and quantitative trait loci (QTL) mapping approaches were undertaken using a population of 145 doubled haploid lines constructed from ‘2‐49’ (partially resistant) × ‘Janz’ (susceptible) parents. Phenotypic data indicated that the trait is quantitatively inherited. The largest QTLs were located on chromosomes 1D and 1A, and explained 21% and 9% of the phenotypic variance, respectively. Using the best markers associated with five QTLs identified by composite interval mapping, the combined effect of the QTLs explained 40.6% of the phenotypic variance. All resistance alleles were inherited from ‘2‐49’ with the exception of a QTL on 2B, which was inherited from ‘Janz’. A minor QTL on 4B was loosely linked (19.8 cM) to the Rht1 locus in repulsion. None of the QTLs identified in this study were located in the same region as resistance QTLs identified in other populations segregating for Fusarium head blight, caused by Fusarium graminearum.  相似文献   

3.
K. Sasaki    Y. Fukuta  T. Sato 《Plant Breeding》2005,124(4):361-366
Seed longevity varies considerably in cultivated rice (Oryza sativa L.), but the underlying genetic mechanism of longevity has not been well elucidated. Quantitative trait loci (QTL) that control seed longevity after various periods of seed storage were sought using recombinant inbred lines derived from a combination involving ‘Milyang23’(Indica‐type) and ‘Akihikari’ (Japonica‐type). In all, 12 QTLs for germination and normal seedling growth were detected as indices of seed longevity on chromosome 7 (one region) and chromosome 9 (two regions) in treated seeds that had been stored under laboratory conditions for 1, 2 or 3 years.‘Milyang23’ alleles of all QTLs promoted germination and normal seedling growth after all durations of storage. These QTL regions were detected repeatedly in more than one seed condition. Therefore, we infer that these regions control seed longevity.  相似文献   

4.
C. A. McCartney  D. J. Somers    O. Lukow    N. Ames    J. Noll    S. Cloutier    D. G. Humphreys    B. D. McCallum 《Plant Breeding》2006,125(6):565-575
Wheat grain quality is a complex group of traits of tremendous importance to wheat producers, end‐users and breeders. Quantitative trait locus (QTL) analysis studied the genetics of milling, mixograph, farinograph, baking, starch and noodle colour traits in the spring wheat population RL4452/‘AC Domain’. Forty‐seven traits were measured on the population and 99 QTLs were detected over 18 chromosomes for 41 quality traits. Forty‐four of these QTLs mapped to three major QTL clusters on chromosomes 1B, 4D, and 7D. Fourteen QTLs mapped near Glu‐B1, 20 QTLs mapped near a major plant height QTL on chromosome 4D, and 10 QTLs mapped near a major time to maturity QTL on chromosome 7D. Large QTLs were detected for grain and flour protein content, farinograph absorption, mixograph parameters, and dietary fibre on chromosome 2BS. QTLs for yellow alkaline noodle colour parameter L* mapped to chromosomes 5B and 5D, while the largest QTL for the b* parameter mapped to 7AL.  相似文献   

5.
Nitrogen (N) deficiency is a major yield‐limiting factor in rice production. The objective of this study was to identify putative QTLs for low‐N stress tolerance of rice, using an advanced backcross population derived from crosses between an indica cultivar ‘93‐11’ and a japonica cultivar ‘Nipponbare’ and genotyped at 250 marker loci. Plant height, maximum root length, root dry weight, shoot dry weight and plant dry weight under two N conditions and their relative traits were used to evaluate low‐N tolerance at the seedling stage. A total of 44 QTLs were identified on chromosomes 1, 2, 3, 4, 5, 6, 8 and 9. Eight intervals on five chromosomes were identified to harbour multiple QTLs, suggesting pleiotropism or multigenic effects according to the contributor of alleles. Some QTL clusters were found in the nearby regions of genes associated with N recycling in rice, indicating that the key N metabolism genes might have effects on the expression of QTLs. Several unique QTLs for relative traits were detected, which suggested the specific genetic basis of relative performance.  相似文献   

6.
Rice stripe virus (RSV) predominantly affects rice. In this study, we attempted to localize the quantitative trait locus (QTL) conferring RSV resistance in the ‘Zenith’ variety, which is known to harbour Stv‐a and Stv‐b. The resistant variety Zenith was crossed with the susceptible variety ‘Ilpum’ to generate a mapping population comprising 180 F2:3 lines for QTL analysis. Contrary to previous findings, we could not detect Stv‐a‐specific QTLs on chromosome 6. Stv‐b‐specific QTL was detected on the long arm of chromosome 11; it was designated qSTV11z. Six F4:5 lines were selected from the F3:4 population and fine‐mapped using insertion/deletion (InDel) markers. qSTV11z was mapped to a 520‐kb region between the InDel markers Sid2 and Indel8. This region included OsSOT1 (candidate gene for STV11) and other previously reported RSV resistance QTLs. The OsSOT1 sequence in Ilpum and Zenith was identical to that of the susceptible variety ‘Koshihikari’, indicating that OsSOT1 is not the candidate gene of qSTV11z. The localization of qSTV11z should provide useful information for marker‐assisted selection and determination of genetic resources in rice breeding.  相似文献   

7.
Soybean (Glycine max (L.) Merr.) seed contains small amounts of tocopherol, a non‐enzymatic antioxidant known as lipid‐soluble vitamin E (VE). Dietary VE contributes to a decreased risk of chronic diseases in humans and has several beneficial effects on resistance to stress in plants, and increasing VE content is an important breeding goal for increasing the nutritional value of soybean. In this study, quantitative trait loci (QTLs) underlying VE content with main, epistatic and QTL × environment effects were identified in a population of F5 : 6 recombinant inbred lines from a cross between ‘Hefeng 25’ (a low‐VE cultivar) and ‘OAC Bayfield’ (a high‐VE cultivar). A total of 18 QTLs were detected that showed additive main effects (a) and/or additive × environment interaction effects (ae) in different environments. Moreover, 19 epistatic pairs of QTLs were found to be associated with α‐tocopherol (α‐Toc), γ‐tocopherol (γ‐Toc), δ‐tocopherol (δ‐Toc) and total VE (TE) contents. The QTLs identified in multienvironments could provide more information about QTL by environment interactions and could be useful for the marker‐assistant selection of soybean cultivars with high seed VE contents.  相似文献   

8.
In an earlier advanced‐backcross quantitative trait locus (QTL) analysis of an interspecific cross of Gossypium hirsutum cv. ‘Xinluzhong 36’(‘XLZH36’) and G. barbadense cv. ‘Xinhai 21’(‘XH21’), a QTL for fibre strength in the chromosome segment introgression line IL23‐09 was analysed. Single marker analysis revealed that the markers on chro.23 were associated with fibre strength. Using composite interval mapping with the F2 population (1296 plants), a QTL for fibre strength was detected on chro. 23. The QTL explained 8.9% and 15.9% of phenotypic variances in the F2 and F2 : 3 generations, respectively. Substitution mapping suggested that the QTL was located at a physical distance of 23.4 kb between the markers BNL1414 and the single nucleotide polymorphism (SNP) locus D09_43776813 C‐G. We designated this QTL as qFS‐chr.23 (quantitative trait locus for fibre strength on chro.23). This work provides a valuable genetic resource for the breeding of high fibre quality in cotton and will facilitate future efforts for map‐based cloning.  相似文献   

9.
Wheat leaf rust (LR), caused by the obligate biotrophic fungus Puccinia triticina (Pt), is a destructive foliar disease of common wheat (Triticum aestivum L.) worldwide. The most effective, economic means to control the disease is resistant cultivars. The Romanian wheat line Fundulea 900 showed high resistance to LR in the field. To identify the basis of resistance to LR in Fundulea 900, a population of 188 F2:3 lines from the cross Fundulea 900/‘Thatcher’ was phenotyped for LR severity during the 2010–2011, 2011–2012 and 2012–2013 cropping seasons in the field at Baoding, Hebei Province. Bulked segregant analysis and simple sequence repeat markers were used to identify the quantitative trait loci (QTLs) for LR adult‐plant resistance in the population. Three QTLs were detected and designated as QLr.hebau‐1BL, QLr.hebau‐2DS and QLr.hebau‐7DS. Based on the chromosome positions and molecular marker tests, QLr.hebau‐1BL is Lr46, and QLr.hebau‐7DS is Lr34. QLr.hebau‐2DS was derived from ‘Thatcher’ and was close to Lr22. This result suggests that Lr22b may confer residual resistance on field nurseries when challenged with isolates virulent on Lr22b, or another gene linked to Lr22b confers this resistance from ‘Thatcher’. This study confirms the value of Lr34 and Lr46 in breeding for LR resistance in China; the contribution of the QTL to chromosome 2D needs further validation.  相似文献   

10.
X. J. Ge    Y. Z. Xing    C. G. Xu  Y. Q. He 《Plant Breeding》2005,124(2):121-126
The traits of elongation, volume expansion, and water absorption are very important in determining the quality of cooked rice grains. In this study, quantitative trait loci (QTL) analysis of these traits was performed using a recombinant inbred population derived from a cross between two indica cultivars, ‘Zhenshan 97’ and ‘Minghui 63 ,’ which are the parents of the most widely grown hybrid rice in China. Using a linkage map based on 221 molecular marker loci covering a total of 1796 cM, a total of 33 QTLs were identified for the nine traits tested. QTLs were detected on chromosomes 1– 3 , 5– 9 , and 11 , respectively. The QTLs identified included three for cooked rice grain length elongation (chromosomes 2 , 6 , and 11), six for width expansion (chromosomes 1‐ 3 , 6 , 9 , and 11) and two for water absorption (chromosomes 2 and 6). Interestingly, a single QTL located near the wx gene on chromosome 6 seemed to influence all the traits tested for the cooked rice quality.  相似文献   

11.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating fungal disease in common wheat (Triticum aestivum L.) worldwide. Chinese wheat cultivars ‘Lumai 21’ and ‘Jingshuang 16’ show moderate levels of adult‐plant resistance (APR) to stripe rust in the field, and they showed a mean maximum disease severity (MDS) ranging from 24 to 56.7% and 26 to 59%, respectively, across different environments. The aim of this study was to identify quantitative trait loci (QTL) for resistance to stripe rust in an F3 population of 199 lines derived from ‘Lumai 21’ × ‘Jingshuang 16’. The F3 lines were evaluated for MDS in Qingshui, Gansu province, and Chengdu, Sichuan province, in the 2009–2010 and 2010–2011 cropping seasons. Five QTL for APR were detected on chromosomes 2B (2 QTL), 2DS, 4DL and 5DS based on mean MDS in each environment and averaged values from all three environments. These QTL were designated QYr.caas‐2BS.2, QYr.caas‐2BL.2, QYr.caas‐2DS.2, QYr.caas‐4DL.2 and QYr.caas‐5DS, respectively. QYr.caas‐2DS.2 and QYr.caas‐5DS were detected in all three environments, explaining 2.3–18.2% and 5.1–18.0% of the phenotypic variance, respectively. In addition, QYr.caas‐2BS.2 and QYr.caas‐2BL.2 colocated with QTL for powdery mildew resistance reported in a previous study. These APR genes and their linked molecular markers are potentially useful for improving stripe rust and powdery mildew resistances in wheat breeding.  相似文献   

12.
Rice brown spot (BS), caused by Bipolaris oryzae, causes yield loss and deterioration of grain quality. Using single-nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between an American rice cultivar, ‘Dawn’ (resistant), and ‘Koshihikari’ (susceptible). Four QTLs for BS resistance were detected in a three-year field evaluation, and ‘Dawn’ contributed the resistance alleles at all QTLs. The QTL with the greatest effect, qBSR6-kd, explained 15.1% to 20.3% of the total phenotypic variation. Although disease score and days to heading (DTH) were negatively correlated in all three years, qBSR6-kd was located near a QTL for DTH at which the ‘Dawn’ allele promoted heading. Another BS resistance QTL (qBSR3.1-kd) was unlinked to the QTLs for DTH. Therefore, these two QTLs are likely to be useful for breeding BS-resistant varieties without delaying heading. The other two BS resistance QTLs (qBSR3.2-kd and qBSR7-kd) were located near DTH QTLs at which the ‘Dawn’ alleles delayed heading. The QTLs reported here will be good candidates for developing BS-resistant cultivars.  相似文献   

13.
Capsaicinoids are pungent compounds used for industrial and medical purposes including food, medicine and cosmetics. The Indian local variety ‘Bhut Jolokia’ (Capsicum chinense Jacq.) is one of the world's hottest chilli peppers. It produces more than one million Scoville heat units (SHUs) in total capsaicinoids. In this study, our goal was to identify quantitative trait loci (QTLs) responsible for the high content of capsaicin and dihydrocapsaicin in ‘Bhut Jolokia’. Capsicum annuum ‘NB1’, a Korean pepper inbred line containing 14 000 SHUs, was used as a maternal line. An F2 population derived by crossing between ‘NB1’ and ‘Bhut Jolokia’ was generated to map QTLs for capsaicinoids content. A total of 234 markers, including 201 HRM, 21 SSR, 2 CAPS and 10 gene‐based markers of the capsaicinoid synthesis pathway, were mapped. The final map covered a total distance of 1175.2 cM and contained 12 linkage groups corresponding to the basic chromosome number of chilli pepper. Capsaicin and dihydrocapsaicin content were analysed in 175 F2 pepper fruits using the HPLC method. The maximum total capsaicinoids content was 1389 mg per 100g DW (dry weight), and the minimum content was 11 mg per 100g DW. Two QTLs (qcap3.1 and qcap6.1) for capsaicin content were identified on LG3 and LG6, and two QTLs (qhdc2.1 and qdhc2.2) for dihydrocapsaicin content were located on LG2. We did not detect QTLs for total capsaicinoids content. The QTL positions for capsaicin content were different from those for dihydrocapsaicin content. These results indicate that the complexity of selecting for more pungent chilli peppers must be considered in a chilli pepper breeding programme. The QTL‐linked markers identified here will be helpful to develop more pungent pepper varieties from ‘Bhut Jolokia’, a very hot pepper.  相似文献   

14.
The objective of this study was to identify quantitative trait loci (QTLs) controlling 100‐seed weight in soybean using 188 recombinant inbred lines (RIL) derived from a cross of PI 483463 and ‘Hutcheson’. The parents and RILs were grown for 4 years (2010–2013), and mature, dry seeds were used for 100‐seed weight measurement. The variance components of genotype (a), environment (e) and a × e interactions for seed weight were highly significant. The QTL analysis identified 14 QTLs explaining 3.83–12.23% of the total phenotypic variation. One of the QTLs, qSW17‐2, was found to be the stable QTL, being identified in all the environments with high phenotypic variation as compared to the other QTLs. Of the 14 QTLs, 10 QTLs showed colocalization with the seed weight QTLs identified in earlier reports, and four QTLs, qSW5‐1, qSW14‐1, qSW15‐1 and qSW15‐2, found to be the novel QTLs. A two‐dimensional genome scan revealed 11 pairs of epistatic QTLs across 11 chromosomes. The QTLs identified in this study may be useful in genetic improvement of soybean seed weight.  相似文献   

15.
Tan spot, caused by a necrotrophic fungus Pyrenophora tritici‐repentis (Ptr), has become an important foliar disease of wheat worldwide. Effective control of tan spot can be achieved by deployment of resistant wheat cultivars. An F2:3 population derived from a cross between synthetic hexaploid wheat (SHW), TA4161‐L1 (moderately resistant) and susceptible winter wheat cultivar, ‘TAM105’ was evaluated with race 1 of Ptr under controlled conditions. The population was genotyped using Diversity Arrays Technology (DArT). Presence of transgressive segregants indicated contribution of positive alleles from both parents. Two major QTLs were located on the short arm of chromosomes 1A and 6A and designated as QTs.ksu‐1A and QTs.ksu‐6A, respectively. Two additional QTLs were identified on chromosome 7A. Resistant alleles of all the QTLs were contributed by TA4161‐L1. Novel QTLs on 6A and 7A can be a valuable addition to known resistance genes and utilized in breeding programmes to produce highly resistant cultivars.  相似文献   

16.
Heterosis is a phenomenon whereby hybrids of inbred lines produce favourable phenotypes that exceed those of their parents. Traits of interest are higher yield and stronger stress tolerance. The two‐line super‐hybrid rice ‘Liangyoupei9’ (LYP9) shows superiority to both its elite inbred line ‘93‐11’ and ‘Pei'ai64s’ (‘PA64s’) parents and conventional hybrids. However, the genetic basis of its hybrid vigour, especially yield determination, remains elusive. In the present study, a set of 156 chromosome segment substitution lines (CSSLs) carrying overlapping segments from ‘PA64s’ in a genetic background of ‘93‐11’ were constructed and planted in six environments. Three major agronomic traits, viz. panicle length (PL), heading date (HD) and plant height (PH), and five yield‐related traits, viz. grain weight per panicle (GWP), number of grains per panicle (GPP), 1000‐grain weight (TGW), seed set (SS) and number of panicles of per plant (PPP), were evaluated over 3 years. Quantitative trait loci (QTL) analysis was conducted using a likelihood ratio test based on stepwise regression. Forty‐six putative QTL distributed on 11 chromosomes were detected in more than one year. Remarkably, GWP of four CSSLs carrying positive yield QTL outperformed the recurrent parent ‘93‐11’ by more than 15%, in at least two environments. These results indicate that CSSLs are effective in identifying yield‐associated traits, and lines harbouring such QTL will be rich in resources for future molecular breeding programmes.  相似文献   

17.
J. Jensen    G. Backes    H. Skinnes  H. Giese 《Plant Breeding》2002,121(2):124-128
Three quantitative trait loci (QTL) for scald resistance in barley were identified and mapped in relation to molecular markers using a population of chromosome doubled‐haploid lines produced from the F1 generation of a cross between the spring barley varieties ‘Alexis’ and ‘Regatta’. Two field experiments were conducted in Denmark and two in Norway to assess disease resistance. The percentage leaf area covered with scald (Rhynchosporium secalis) ranged from 0 to 40% in the 189 doubled‐haploid (DH) lines analysed. One quantitative trait locus was localized in the centromeric region of chromosome 3H, Qryn3, using the MAPQTL program. MAPQTL was unable to provide proper localization of the other two resistance genes and so a non‐interval QTL mapping method was used. One was found to be located distally to markers on chromosome 4H (Qryn4) and the other, Qryn6, was located distally to markers on chromosome 6H. The effects of differences between the Qryn3, Qryn4 and Qryn6 alleles in two barley genotypes for the QTL were estimated to be 8.8%, 7.3% and 7.0%, respectively, of leaf covered by scald. No interactions between the QTLs were found.  相似文献   

18.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

19.
S.-J. Lee    C.-S. Oh    J.-P. Suh    S. R. McCouch  S.-N. Ahn 《Plant Breeding》2005,124(3):209-219
Asian cultivated rice was domesticated from the wild rice, Oryza rufipogon and throughout the domestication process, a wide range of morphological and physiological changes altered the ancestral form. This study was conducted to identify the genetic basis of changes associated with the domestication process. An recombinant Inbred line (RIL) population consisting of 120 lines was developed from a cross between the Juponica cultivar.‘Hwayeongbyeo’and a presumed wild progenitor. O. rufipogon Griff. Acc.01944. The population was genotyped with 124 simple sequence length repeat (SSR) markers, providing an average interval size of 15 cM, and also evaluated for 20 traits related to domestication and agricultural performance. A total of 63 quantitative trait locus (QTLs) and one locus associated with qualitative variation for pericarp coloration were identified using single point and composite interval analysis. The number of QTLs per trait ranged from one to seven. Phenotypic variation associated with each QTL ranged from 3.7 to 40.4%. with an average of 15.3%. The results indicated that most domestication‐related traits clustered in chromosomal blocks, and the positions of many of these clusters were consistent with those reported in previous studies and with skewed segregation ratios in these BC1,F7 RILs. For 13 (20.6%) of the QTLs identified in this study. the O. rufipogan ‐derived allele contributed a desirable agronomic effect despite the overall undesirable characteristics of the wild phenotype. Favourable alleles from O. rufipogan were detected for panicle length, spikelets per panicle, days to heading and leaf discoloration associated with cold stress. When compared with previous studies involving interspecific crosses, it can be concluded that O. rufipogon is useful as a source of valuable alleles for rice improvement and that many of the introgressed regions contain genes that have a favourable impact on phenotype in different genetic backgrounds and different environments.  相似文献   

20.
Molecular marker analysis can be an effective tool when searching for new fire blight resistance donors. It can speed up the breeding process as well, even though many of the available markers linked to fire blight resistance QTLs have not yet been tested by screening a large number of cultivars. The aim of this study was to search for alternate sources of the three major QTLs of fire blight resistance; FBF7, FB_MR5 and FB_E, as well as to test the efficiency of some markers linked to minor QTLs. Altogether, nine primer pairs were used on 77 genotypes including new Hungarian cultivars and old apple cultivars from the Carpathian basin. Several marker alleles of FB resistance QTLs have been detected in the screened genotypes, most importantly the alleles coupling with FB_MR5 in the old cultivars ‘Kéresi muskotály’, ‘Szabadkai szercsika’ and ‘Batul’. We propose these cultivars as the first available resistance donors of FB_MR5 instead of the crabapple Malus × robusta 5. The results also bring new information regarding the resistance alleles of new Hungarian cultivars and selections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号