首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g?1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe?=?5.4 mg g?1). The maximum values of distribution coefficients (Kd) were 23?±?7 L kg?1, 545?±?64 L kg?1, and 1178?±?229 L kg?1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.  相似文献   

2.
The Paraíba do Sul river is located in one of the most developed part of Brazil and receives many organic and industrial effluents directly affecting the ichthyofauna. Concentration of four heavy metals (Cu, Cr, Zn and Pb) were determined in two tissues (muscle and gonads) of three abundant fish species from different trophic levels (Oligosarcus hepsetus—carnivore, Geophagus brasiliensis—omnivore and Hypostomus luetkeni—detritivore) between November 2002 and April 2003. The aim was to test the hypothesis that the trophic level and the proximity from impacted areas influence levels of contamination and to assess if these species are indicators of large-scale habitat quality. Levels of heavy metals were detected by Total Reflection X-ray Fluorescence with Synchrotron Radiation (SR-TXRF) at the Brazilian National Synchrotron Radiation Laboratory (LNLS). Generally, gonads showed higher metal concentration than muscles, except for Cr. All examined metals, but Cu, exceeded the maximum permitted concentration (mpc) by the Brazilian legislation for human consumption in at least one tissue. O. hepsetus (carnivore) showed the highest contamination levels, followed by G. brasiliensis (omnivore) and H. luetkeni (detritivore). The middle-upper segment, which encompasses large urban areas, showed the highest levels of metal contamination in most cases. O. hepsetus showed the highest levels of contamination in muscles for Pb in the middle-upper river segment (7.98?±?3.73; mpc?=?2.0 μg g?1) and for Cr in the upper (5.53?±?0.05; mpc?=?0.10 μg g?1) and middle-upper (4.20?±?0.85; mpc?=?0.10 μg g?1) segments, which indicates that human population should avoid to consume these fishes species from these segments of the Paraíba do Sul river.  相似文献   

3.
The sorption behavior of fluoride ions by hydroxyapatite in a column system from both fluoride aqueous solutions and drinking water from Ojocaliente, Zacatecas, Mexico, was evaluated. The time between two consecutive elutions allowed the rearrangement of the active sites and diffusion of fluoride ions in the hydroxyapatite, resulting in an increase of its sorption capacity. This behavior was not observed with drinking water, probably due to its high bicarbonate ion concentration. The maximum value of C e/C 0 reached for both drinking water and fluoride solutions was 0.73?±?0.05. The data were fitted to the model of Thomas. Both values of K Th and q 0 increased with the number of elutions, and their maximum values were 1.72?×?10?3?L?min?1?mg?1 and 9.91 mg?g?1, respectively.  相似文献   

4.
Contact time, pH, fluoride concentration, and sorbent dose effects on the removal of fluoride ions by a carbonaceous material obtained from pyrolysis of sewage sludge (CM) were evaluated. Equilibrium was reached after 18?h of contact time and the maximum sorption was found at pHeq?=?7.06?±?0.08, which corresponds to the zero charge point of the CM. The highest efficiency in the sorption system for fluoride removal (2.84?±?0.03?mg?F?? $ g_{{CM}}^{{ - 1}} $ ) was found with 0.4?gCM?L?1 and with 20?gCM?L?1, 82.2?±?0.5% of fluoride was removed. The kinetic data of the process could be fitted to the pseudosecond order and the intraparticle mass transfer diffusion models, whereas isotherm to the Langmuir?CFreundlich equation. These results indicate that the mechanism is chemisorption on a heterogeneous material. Fluoride ions were best partially desorbed using a bicarbonate ions solution and the material was partially regenerated by using a solution of HCl (pH?=?1).  相似文献   

5.
1.3-β-Glucanase (laminarinase) activity in soil was measured using laminarin as the substrate. Activity was optimal in sodium acid-maleate buffer at pH 5.4 and followed Michaelis-Menten kinetics. Three methods of analysing kinetic data gave Km values of 0.23, 0.21 and 0.20 mg.ml?1. Vmax values were 0.41, 0.39 and 0.39 μmole glucose, g?1. h?1. The activation energy of the reaction was 49 kJ. mole?1. A proportion of the activity was highly resistant to storage at various temperatures: at 50 C 1,3-β-glucanase had a half-life of 28 days.  相似文献   

6.
Earthworms have an important role in ‘bioturbation’—the mixing of soil due to biological processes. Quantification of earthworm bioturbation relies on estimating earthworm egestion rates which in turn depend on two parameters: the gut content of the worms and the gut transit time (GTT). Gut content can be determined relatively easily, but determining GTT is problematic. The present study aimed at estimating daily soil egestion rates of Aporrectodea caliginosa and Lumbricus terrestris, refining the most common approach for estimating GTT by using fungal spores as natural markers in ingested soil. This approach avoids the use of artificial markers that may adversely affect the earthworms. Gut transit time was estimated by tracking the passage of marked soil through the gut by the appearance of the spores in the egested faeces. Gut transit time was estimated to be 9.6?±?0.3 h for A. caliginosa and 11.6?±?0.5 h for L. terrestris. Gut content averaged 465?±?40(± standard error (SE))?mg dw g?1 dw worm for A. caliginosa and 265?±?80 mg dw g?1 dw worm for L. terrestris. From these values, daily egestion rates of 1.16 and 0.66 g dw faeces g?1 dw worm d?1 were calculated for A. caliginosa and L. terrestris, respectively. Both values compare well to literature values for each species. The presented method for GTT estimation is inexpensive, rapid and easy to evaluate, with spores being a good alternative to existing markers.  相似文献   

7.
Heavy metal extraction and processing from ores releases elements into the environment. Soil, being an "unfortunate" sink, has its bionomics impaired and affected by metal pollution. Metals sneak into the food chain and pose risk to humans and other edaphicdependent organisms. For decontamination, the use of an ecosystem-friendly approach involving plants is known as phytoremediation.In this study, different lead(Pb) concentrations(80, 40, 20, and 10 mg kg~(-1)) were used to contaminate a well-characterized soil,(un)supplemented with organic waste empty fruit bunch(EFB) or spent mushroom compost(SMC), with non-edible plant—Lantana camara. Lead removal by L. camara ranged from 45.51% to 88.03% for supplemented soil, and from 23.7% to 57.8% for unsupplemented soil(P 0.05). The EFB-supplemented and L. camara-remediated soil showed the highest counts of heavy metal-resistant bacteria(HMRB)(79.67 × 10~6–56.0 × 10~6 colony forming units(CFU) g~(-1) soil), followed by SMC-supplemented and L. camara-remediated soil(63.33 × 10~6–39.0 × 10~6 CFU g~(-1) soil). Aerial metal uptake ranged from 32.08 ± 0.8 to 5.03 ± 0.08 mg kg~(-1) dry weight, and the bioaccumulation factor ranged from 0.401 to 0.643(P 0.05). Half-lives(t_(1/2)) of Pb were 7.24–2.26 d in supplemented soil,18.39–11.83 d in unsupplemented soil, and 123.75–38.72 d in the soil without plants and organic waste. Freundlich isotherms showed that the intensity of metal absorption(n) ranged from 2.44 to 2.51 for supplemented soil, with regression coefficients of determination(R~2) between 0.901 2 and 0.984 0. The computed free-energy change(?G) for Pb absorption ranged from -5.01 to 0.49 kJ mol~(-1) K~(-1) for EFB-supplemented soil and -3.93 to 0.49 k J mol~(-1) K~(-1) for SMC-supplemented soil.  相似文献   

8.
Paper mulberry (Broussonetia papyrifera) leaf powder was used to remove heavy metal ions from aqueous solutions. The specific uptakes of Cu (II), Pb (II), and Cd (II) by the leaf powder were 43.40?±?0.2, 43.9?±?0.5, and 30.65?±?0.9 mg g?1, respectively, when 500 mg L?1 of the metal solutions were used. The data fitted well to the Langmuir isotherm. The process followed the pseudo-second-order kinetic equation and intraparticle diffusion played an important role in the adsorption process. On the basis of the calculated thermodynamic parameters such as standard enthalpy (??H°), entropy (??S°) and free energy change (??G°), it was inferred that the sorption process was endothermic and spontaneous in nature. The surface properties of the leaf powder (revealed by scanning electron microscopic observations) were suitable for the metal adsorption process. Energy dispersive X-ray fluorescence analysis confirmed the sequestration of the metal ions by the leaf powder. Fourier transform infrared spectroscopy implicated that different functional groups on the leaf powder were involved in the metal adsorption process. The results obtained from this study implicated that the B. papyrifera leaf powder was a good choice as a metal adsorbent. This abundantly available natural and eco-friendly biosorbent could be effectively used to develop a technology in the future.  相似文献   

9.
The main objective of this study was to evaluate the contribution of sorption to the removal of two commonly used antibiotics (amoxicillin and ciprofloxacin) from wastewater. These antibiotics are excreted in large quantities with more than 75% of them being unmetabolized and are therefore likely to end up in domestic wastewater in significant quantities. The specific objectives were to determine the sorption behavior in synthetic wastewater (SWW), the effect of pH and contribution of microbial surfaces, to the sorption of these antibiotics. The SWW, adjusted to various pH levels, was used and sorption kinetics conducted at 100 and 250 ??g L?1 concentrations. Adsorption isotherms were determined at different pH levels. The SWW (pH 6.6) was inoculated with Rhodococcus sp. B30 strain to determine the contribution of microbial surfaces to sorption. Generally, both antibiotics revealed a decrease in sorption with pH increase, suggesting that lowering the solution pH of the wastewater may reduce their amounts in wastewater solution. Comparatively, ciprofloxacin exhibited higher sorption than amoxicillin. The sorption distribution coefficient (K d) values for ciprofloxacin ranged from 0.4356 to 0.8902 L?g?1, with pH?=?5.5 exhibiting the highest K d, while that for amoxicillin ranged from 0.1582 to 0.3858 L?g?1 with the highest K d at pH?=?3.5. There was a significant difference (p?<?0.05) in K d values between various pH levels for both antibiotics except between the pH of 5.5 and 6.6. Both antibiotics were not degraded within 48 h by Rhodococcus sp. B30 strain. These results indicate that degradation may not be the major process of removal of compounds from wastewater treatment plants and hence the importance of sorption as an intervention technique.  相似文献   

10.
Bioretention cells, also known as raingardens, are increasingly being constructed as a means to collect, infiltrate, and treat stormwater runoff. There are concerns, however, about how stormwater management practices might function in terms of infiltration and pollutant removal as they age. Saturated hydraulic conductivity (K sat) values were obtained for eight cells in 2006 and again for three of those cells in 2010 using an infiltrometer. A strong positive correlation of mean K sat with service time was observed (slope = 10.2?±?2.4 cm/h per year, R 2 = 0.67). Results from metals analyses of bioretention media cores collected from six bioretention cells showed the expected trend of Cu and Zn enrichment at the surface while Cd was detected only in one out of 72 media samples analyzed. Sorption isotherms from batch testing of field media samples (T = 22.5 °C, pH = 7.2) were used to estimate metal sorption capacities based on representative stormwater Cd and Zn concentrations. Cu was not considered, as very little of the metal is dissolved under these conditions (22.8?±?7.1 %). The mean equilibrium sorption capacities for Cd (10.2?±?3.1 mg/kg) and Zn (294.9?±?14.9 mg/kg) far exceeded observed levels in the bioretention media such that the remaining sorption capacity was ≥83 % for Zn and ≥90 % for Cd for the cells. Overall, the results of this investigation suggest that bioretention cells can provide many years of effective infiltration (>6 years) and metals removal performance (>25 years).  相似文献   

11.
Abstract

A rapid, sensitive, and accurate method for the separation and speciative determination of chromium (Cr)(VI) and Cr(III) in water samples has been developed using sorption as the separation technique in conjunction with final determination by electrothermal atomic absorption spectroscopy (ETAAS). The present method, where granular calcite is used as selective sorbent, separates Cr(III) with retention values up to 99%, resulting in high accuracy determination of Cr(VI). Total Cr was likewise determined by ETAAS after an efficient reduction of Cr(VI) to Cr(III) using ascorbic acid as reducing agent, deriving Cr(III) concentration from the difference between total Cr and Cr(VI). The parameters of the separation technique, solution pH (4.5–5.5), solution flow rate through the calcite column (0.14–0.42 mL min?1), and calcite column internal diameter (1.5–3.0 cm), were evaluated. Best results were achieved with pH of 5.5, flow rate of 0.42 mL min?1, and column internal diameter of 1.5 cm. Optimum determination conditions were found using magnesium nitrate [Mg(NO3)2] as chemical modifier, pyrolysis, and atomization temperatures of 1400 and 2200°C, respectively. In such conditions, the detection limits (n=10) were 1.5 and 0.8 µg L?1 for Cr(III) and Cr(VI), respectively.  相似文献   

12.
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h?1, which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l?1 h?1], specific rate [0.95 mg Cr(VI) g?1 biomass h?1] and capacity [44.38 mg Cr(VI) g?1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents.  相似文献   

13.
Cattle manure vermicompost has been used for the adsorption of Al(III) and Fe(II) from both synthetic solution and kaolin industry wastewater. The optimum conditions for Al(III) and Fe(II) adsorption at pH?2 (natural pH of the wastewater) were particle size of ≤250?µm, 1 g/10 mL adsorbent dose, contact time of 4 h, and temperature of 25°C. Langmuir and Freundlich adsorption isotherms fitted reasonably well in the experimental data, and their constants were evaluated, with R 2 values from 0.90 to 0.98. In synthetic solution, the maximum adsorption capacity of the vermicompost for Al(III) was 8.35 mg g?1 and for Fe(II) was 16.98 mg g?1 at 25°C when the vermicompost dose was 1 g 10 mL?1, and the initial adjusted pH was 2. The batch adsorption studies of Al(III) and Fe(II) on vermicompost using kaolin wastewater have shown that the maximum adsorption capacities were 1.10 and 4.30 mg g?1, respectively, at pH?2. The thermodynamic parameter, the Gibbs free energy, was calculated for each system, and the negative values obtained confirm that the adsorption processes were spontaneous.  相似文献   

14.
The purpose of this study is to evaluate the combined Cr(VI) removal capacities of nonliving (untreated rubber wood sawdust, URWS) and living biomass (URWS-immobilized Acinetobacter haemolyticus) in a continuous laboratory scale downward-flow two column system. Synthetic solutions of Cr(VI) between 237 and 320 mg L?1 were mixed with 1 g L?1 brown sugar in a nonsterile condition. Final Cr(VI) of between 0 and 1.6 mg L?1 indicate a Cr(VI) removal capacity of 99.8–100%. The bacterial Cr(VI) reduction capacity increased with column length. This study shows the feasibility of using the two column system consisting of living (bacteria) and nonliving biomass (URWS) as a useful alternative treatment for Cr(VI) contamination in the aqueous system.  相似文献   

15.
In this study, p-tert-butylcalix[4]-aza-crown (CAC) immobilized sporopollenin (Sp) was used as a sorbent for the removal of Cu(II), Pb(II) and Zn(II) from aqueous media. Sporopollenin was firstly functionalized with 3-chloropropyltrimethoxysilane (CPTS) in order to obtain chloro-sporopollenin (Sp-Cl). The Sp-Cl was reacted subsequently with CAC yielding CAC-bonded sporopollenin (Sp-Cl-CAC). The new sorbent was characterized by infrared spectroscopy (FTIR), thermal analysis (TG/DTG) and scanning electron microscopy (SEM). The sorption properties of modified sorbent (Sp-Cl-CAC) are also investigated. The optimum pH values for the separation of metal ions from aqueous solution onto Sp-Cl-CAC were 5.0 for Pb(II) and Cu(II) and 5.5 for Zn(II). The maximum sorption capacities for Cu(II), Pb(II) and Zn(II) were 0.07 (4.44?mg?g?1), 0.07 (4.58?mg?g?1) and 0.14 (29.00?mg?g?1) mmol?g?1, respectively. Sorption thermodynamic parameters of such as free energy (?G o), enthalpy (?H o), and entropy (?S o) were evaluated.  相似文献   

16.
A method to determine pyrophosphate (PP) and tripolyphosphate (TPP) in sediments was developed. Sediment was extracted with 2% EDTA + 0.1 M NH4F followed by a second extract of 2% EDTA + 1 N NaOH. Orthophosphate (OP), PP, and TPP were separated by anion exchange chromatography, the fractions collected, and P determined after extraction into isobutanol. The limit of detection of the method was 0.5 μg P g?1 sediment. Fourteen sediments were tested and the highest TPP found was 1.8 μg P g?1 sediment. Thirteen of the sediment samples contained less than 1 μg P g?1 as TPP. Only three of the 14 samples contained more than 1 μg P g?1 as PP. The highest level of PP (8.5 μg P g?1) was found in sediment from an animal waste lagoon. Estimates of error and reproducibility were made from analysis of samples with added PP and TPP. The error for samples containing 36.9 μg P g?1 as PP was ± 7.6, and for TPP at 12.3 μg P g?1 the error was ± 3.3. The values for PP and TPP were underestimated by 6 and 36%, respectively.  相似文献   

17.
Studies to determine the kinetic parameters of the rhodanese-catalyzed reaction in soils showed that the Km values of thiosulfate and cyanide for this enzyme are similar to those for the same enzyme isolated from other biological systems. Application of the three linear transformations of the Michaelis-Menten equation indicated that the apparent Km constants of thiosulfate and cyanide varied among the soils used, but the results obtained by the three plots were similar. By using the Lineweaver-Burk plot. the Km values of S2O3?2 and CN? for rhodanese activity in five soils ranged from 1.20 to 10.3 (av 5.46) and from 2.48 to 10.20 (av 5.81) mM, respectively. The Vmax values ranged from 511 to 1431 (av 759) nmoles SCN? produced · g?1 soil · h?1. The activation energy values ranged from 21.6 to 34.0 (av 28.0) kJ · mole?1, and the average Q10 for temperatures ranging from 10 to 60 C ranged from 1.25 to 1.45 (overall average. 1.37).  相似文献   

18.
Azaarenes are one of several classes of organic compounds which contain mutagenic and carcinogenic substances that are found in synthetic fuels effluents. This study investigated the potential for a mutagenic azaarene, acridine, to accumulate in freshwater fish (Pimephales promelas) via four possible pathways: (1) direct uptake from water, (2) uptake via interaction with contaminated sediments, (3) uptake via ingestion of contaminated zooplankton (Daphnia pulex), and (4) uptake via ingestion of benthic invertebrates (Chironomus tentans) living in contaminated sediments. The results showed that acridine was rapidly accumulated from water by fathead minnows. Equilibrium concentration was attained within 24 h at a concentration factor ([acridine]fish, wet wt/[acridine]water) of 125±10. Depuration was rapid and appeared to occur in two stages, with a net elimination rate of 0.23 h?1 [acridine]fish at equilibrium. Equilibrium concentration factors of 51±5, 30±2, and 874±275 were observed forChironomus, Daphnia, and sediment, respectively. The calculated rates of uptake of acridine via ingestion of contaminated invertebrates (0.02 μg g?1 h?1) and ingestion of sediment (0.01 μg g?1 h?1) were negligible compared with direct uptake from water (1.40 μg g?1 h?1) in a hypothetical system with all compartments in equilibrium.  相似文献   

19.
Acute toxicity of Pb to the water flea; (Daphnia sp) and Copepod, (Cyclop sp) both important component of zooplankton diet of fish was determined by static assay. A positive relationship between percentage mortality and exposure concentration was found in all tests. Mean 24-h LC50, 48-h LC50 and 96-h LC50 values were 2.51?±?0.0.04 mg l?1, 1.88?±?0.06 mg l?1 and 1.65?±?0.19 mg l?1 for Daphnia spp and 3.11?±?0.03 mg l?1, 2.97?±?0.05 mg l?1 and 2.61?±?0.09 mg l?1 for Cyclop spp, respectively. For all tested species did the LC50 values decrease with time; the decrease was more marked for Daphnia spp. Observed symptoms include spiral movement followed by change of body colour to white and rapid disintegration of the skin. The Daphnia spp. appear to be more sensitive to Pb poison than Cyclop spp. The results showed that concentrations of Lead (Pb) in excess of 0.19 mg l?1 and 0.30 mg l?1 can be potentially harmful to Daphnia magna and Cyclop spp respectively.  相似文献   

20.
Litterfall can be an important flux of mercury (Hg) to soils in forested landscapes, yet typically the only available data to evaluate Hg deposition is from precipitation Hg monitoring. Litterfall was collected at 39 sampling sites in two small research watersheds, in 2003 and 2004, and analyzed for total Hg. Four vegetation classes were designated in this study as hardwoods, softwoods, mixed and scrub. The mean litter Hg concentration in softwoods (58.8 ± 3.3 ng Hg g?1 was significantly greater than in mixed (41.7 ± 2.8 ng Hg g?1 and scrub (40.6 ± 2.7 ng Hg g?1, and significantly lower than in hardwoods (31.6 ± 2.6 ng Hg g?1. In contrast, the mean weighted litter Hg flux was not significantly different among vegetation classes. The lack of a significant difference in litter Hg flux between hardwoods and softwoods was attributable to the large autumnal hardwood litter Hg flux being balanced by the higher softwood litter Hg concentrations, along with the higher chronic litterfall flux throughout the winter and spring in softwoods. The estimated annual deposition of Hg via litterfall in Hadlock Brook watershed (10.1 μg m?2 and Cadillac Brook watershed (10.0 μg m?2 was greater than precipitation Hg deposition and similar to or greater than the magnitude of Hg deposition via throughfall. These results demonstrate that litterfall Hg flux to forested landscapes can be at least as important as precipitation Hg inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号