首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
梭梭(HaloxylonAmmodendronBge,一种C4灌木)苗种植在15升的容器中,给予不同的水分胁迫处理,研究了其水分关系和气体交换特征。结果表明:当土壤水分含量大于11%时,梭梭苗有高的蒸腾量;土壤水分含量低于6%时,苗木就不能从土壤中吸取水分;很好供水的苗木的蒸腾量与潜在蒸发量成线型相关。气体交换测定发现,随着土壤水分含量的下降,造成了不同程度的气孔导度、叶蒸腾强度和光合作用的下降。对同一苗木而言,由于这个地区有高的水气压亏缺(VPD),很好和中度供水的苗木在气孔反应方面有较宽的范围,气孔在决定光合作用方面起着较小的作用,二者没有明显的线型相关关系。虽然水分胁迫使蒸腾速率比光合速率下降的更快,提高了水分利用效率,而较高的蒸发需求增加了蒸腾量,限制了光合作用,但是总的趋势是光合作用和蒸腾强度成线型相关。图6表2参15。  相似文献   

2.
One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%,61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smaliest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.  相似文献   

3.
Khurana  Ekta  Singh  J.S. 《New Forests》2004,27(2):139-157
The impact of seed size and successional status on seedling growth under elevated CO2 was studied for five dry tropical tree species viz. Albizia procera, Acacia nilotica, Phyllanthus emblica, Terminalia arjuna and Terminalia chebula. Seedlings from large (LS) and small seeds (SS) were grown at two CO2 levels (ambient and elevated, 700–750 ppm). CO2 assimilation rate, stomatal conductance, water use efficiency and foliar N were determined after 30 d exposure to elevated CO2. Seedlings were harvested after 30 d and 60 d exposure periods. Height, diameter, leaf area, biomass and other growth traits (RGR, NAR, SLA, R:S) were determined. Seedling biomass across species was positively related with seed mass. Within species, LS seedlings exhibited greater biomass than SS seedlings. Elevated CO2 enhanced plant biomass for all the species. The relative growth rate (RGR), net assimilation rate (NAR), CO2 assimilation rate, R:S ratio and water use efficiency increased under elevated CO2. However, the positive impact of elevated CO2 was down regulated beyond 30 d exposure. Specific leaf area (SLA), transpiration rate, stomatal conductance declined due to exposure to elevated CO2. Fast growing, early successional species exhibited greater RGR, NAR and CO2 assimilation rate. Per cent enhancement in such traits was greater for slow growing species. The responses of individual species did not follow functional types (viz. legumes, non-legumes). The enhancement in biomass and RGR was greater for large-seeded species and LS seedlings within species. This study revealed that elevated CO2 could cause large seeded, slow growing and late successional species to grow more vigorously.  相似文献   

4.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

5.
Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area.  相似文献   

6.
Pinus sylvestriformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11-year old) was studied on response to elevated CO2 concentration at 500±100 μL·L−1 by directly injecting CO2 into the canopy under natural condition in 1998–1999. The results showed that the elevated CO2 concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated CO2 reduced the transpiration and enhances the water use efficiency (WUE) of plant. The project was supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

7.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

8.
Four different kinds of water treatment were applied to examine the photosynthetic characteristics of baldcypress (Taxodium distichum) seedlings in the hydro-fluctuation belt of the Three Gorges Reservoir area. The aim was to shed light on the physio-ecological adaptation of this species to changing water levels for revegetation purposes. The water treatments were normal growth water condition (CK), light drought water stress (T1), growth under soil water saturation (T2) and growth with soil submersion (T3). T3 had the lowest content of photosynthetic pigment; T1 and T2 did not differ from CK in the content of chlorophyll and carotenoid. The ratio of chlorophyll a to b in the four groups ranged from 2.04 to 2.69 and the ratio of chlorophyll to carotenoid from 3.08 to 4.51. In group T1, the seedling of baldcypres had lower apparent light use efficiency, lower apparent CO2 use efficiency and a lower net photosynthetic rate, with the net photosynthetic rate 24.9% lower than that of group CK. However, T2 and T3 did not differ from CK in apparent light use efficiency, apparent CO2 use efficiency and net photosynthetic rate. Water use efficiency of the four treatments consistently increased as treatment was prolonged; the average water use efficiency of T3 was the lowest while that of CK was the highest. Correlation analysis showed that the net photosynthetic rate of baldcypress seedlings was positively related to transpiration rate, stomatal conductance, water use efficiency, apparent light use efficiency and apparent CO2 use efficiency, but highly negatively related to the ratio of chlorophyll a to b. Net photosynthetic rate was not significantly related to the contents of chlorophyll and carotenoid, the ratio of chlorophyll to carotenoid, relative air humidity and intercellular CO2 concentration. The transpiration rate was positively correlated with stomatal conductance and negatively related to water use efficiency. The results showed that different water treatments could effectively influence the baldcypress seedlings’ content of photosynthetic pigment, leaf gas exchange and apparent resources use efficiency. The results verified that the species T. distichum takes on the features of a water-tolerant and hydrophilic plant, which can be considered as one of the species for the building of a forest protection system for the hydro-fluctuation belt in the Three Gorges Reservoir area. Baldcypress should not be planted in drought-stricken soils. __________ Translated from Acta Ecologica Sinica, 2005, 25(8) [译自:生态学报, 2005, 25(8)]  相似文献   

9.
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2. Foundation Item: This paper was supported by Chinese Academy of Sciences. Biography: HAN Shi-jie (1956-), male, Ph. Doctor, Professor in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

10.
Eco-physiological responses of seedlings of eight species,Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica andAcer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998–1999). Two concentrations of CO2 were designed: elevated CO2 (700 μmol·mol−1) and ambient CO2 (400 μmol·mol−1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%–40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2. Foundation item: The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX 406-4, KZCX1 SW-01 of the Chinese Academy of Sciences Biography: WANG Miao (1964-), maie, associate professor in Institute of applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

11.
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the single leaf net CO2 assimilation, which acts as a function of different light, carbon dioxide and temperature conditions. The relationships between leaf net photosynthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf temperature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic of plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and better understand the interaction between vegetation and atmosphere. Foundation Item: This paper was supported by Natural Science Foundation of China (Grant No. 39900084) Biography: ZHANG Jia-hua (1966-), male, Ph. Doctor, Associate professor in START, Institute of Atmospheric Physics. Chinese Academy of SciencesBeijing, 100029, P. R. China Responsible editor: Chai Ruihai  相似文献   

12.
The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g−1DW·h−1, respectively. Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407) Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

13.
目的]探究抑制剂对大叶黄杨生长的抑制作用以及对其叶片形态和光合作用的影响,为灌木绿篱的化学修剪提供技术指导。[方法]在北京林业大学林场苗圃采用3种生长抑制剂(多效唑(PP_(333))、三碘苯甲酸(TIBA)以及脱落酸(ABA))对密植成绿篱状的1年生大叶黄杨扦插苗进行叶面喷施,对其生长、叶片形态及光合作用等指标进行测定。[结果]3种抑制剂均有矮化植株、抑制新梢生长的作用,矮化效果最佳、抑制作用最强的为PP_(333),且高浓度PP_(333)对于高生长的抑制作用持效性较长。叶宽、叶厚以及叶面积在短期PP_(333)处理下高于对照。PP_(333)能提高大叶黄杨净光合速率,主要通过增加叶厚、气孔导度、叶肉导度及叶绿素含量来实现,并且PP_(333)使蒸腾速率提高的同时降低了水分利用效率。TIBA有显著减小叶长、叶宽的作用,但能使叶厚增加,且随浓度的增加作用效果增强,主要通过减小叶面积,降低叶肉导度、气孔导度、胞间CO_2浓度及叶绿素含量来降低净光合速率。ABA能增加叶面积(10 mg·L~(-1)处理除外)、叶长以及减小叶片厚度,通过抑制气孔导度、叶肉导度、叶绿素含量降低净光合速率。TI-BA及ABA均通过降低蒸腾速率,使水分利用效率提高。[结论]3种抑制剂均有矮化植株、抑制新梢生长的作用,并且影响叶片发育,进而影响叶片光合作用,且800 mg·L~(-1)的多效唑对大叶黄杨具有较好的正向作用。  相似文献   

14.
In 2000, one-year-old seedlings of pyrenean oak (Quercus pyrenaica Willd.) and sessile oak (Quercus petraea [Matt.] Liebl) were planted in a thinned and an unthinned plot in a pinewood (Pinus sylvestris), and in a nearby clearing. In summer 2002 and 2003, water relations and gas exchange parameters were measured to address the impact of drought on the seedlings. Chlorophyll a fluorescence was also measured to explore leaf photochemistry and a possible non-stomatal limitation to photosynthesis (A). Reduction in stomatal conductance (g) in response to the decrease of predawn water potential (Ψpd) resulted the main cause affecting net carbon uptake. Water potential at midday (Ψmd) was similar in both species but Quercus petraea was more sensitive to soil water deployment occurred along summer, showing slightly lower Ψpd because worse recover of water potential during night. Rate of photosynthesis was higher in Q.␣pyrenaica probably in relation to its greater leaf mass per area (LMA) and nitrogen content per leaf area (Na). Mortality was highest in the clearing and lowest in the thinned pinewood. Throughout the summer, soil moisture was higher in the thinned area, possibly because of the reduction in tree transpiring surface and interception of rainfall. Accordingly, Ψpd of both species was higher in the thinned site.  相似文献   

15.
Responses of soil microbial activities to elevated CO2 in experiment sites ofPinus sylvestriformis andPinus koraiensis seedlings were studied in summer in 2003. The results indicated the number of bacteria decreased significantly (p<0.05) under elevated CO2 forPinus sylvestriformis andPinus koraiensis. Amylase and invertase activities in soil increased forPinus sylvestriformis and decreased forPinus koraiensis with CO2 enrichment compared with those at ambient (350 μmol·mol−1). The size of microbial biomass C also decreased significantly at 700 μmol·mol−1 CO2. Bacterial community structure had some evident changes under elevated CO2 by DGGE (Denaturing Gradient Gel Electrophoresis) analysis of bacterial 16S rDNA gene fragments amplified by PCR from DNA extracted directly from soil. The results suggested that responses of soil microorganisms to elevated CO2 would be related to plant species exposed to elevated CO2. Foundation item: The study was supported by Major State Basic Research Development Program of China (2002CB412502) and the Knowledge Innovation Project from Chinese Academy of Sciences (KZCX1-SW-01-03). Biography: JIA Xia (1975), female, Ph. D. candidate of Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

16.
One-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 ώmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 ώmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 (ώmol/mol CO2 was more remarkable than 500 ώmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerantPinus koraiensis seedlings was bigger in July than in August and September, while those ofPinus sylvestriformis andPhellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth ofPinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species. Foundation Item: This paper was supported by Chinese Academy of Sciences and the Open Research Station of Changbai Mountain Forest Ecosystem.  相似文献   

17.
Four-year-oldPinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol−1) and high CO2 concentrations (500 and 700 μmol·mol−1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42°N, 128°E). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (g s), ratio of intercellular to ambient CO2 concentration (c i/c a) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol−1 CO2. grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol−1CO2). High-[CO2]-grown plants exhibited lowerc i/c a ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However,c i/c a ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle. Foundation Item: This research was supported by National Basic Research Program of China (2002CB412502), Project of Key program of the National Natural Science Foundation of China (90411020) and National Natural Science Foundation of China (30400051). Biography: ZHOU Yu-mei (1973-), female, Ph. Doctor, assistant research fellow, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

18.
The competition effects of the perennial bunch-grass (Elymus glaucus B.B.) on the growth and survival of the oak seedlings (Quercus douglasii H. & A.) were investigated. There were four levels of Elymus competition, replicated three times. The three densities ofElymus employed were zero (control), 50 (Low — ‘L’ -), 116 (Medium — ‘M’ -) and 199 (High — ‘H’ -) plants m?2. Rates of soil water depletion, stomatal conductance, transpiration, shoot elongation and leaf expansion rates were measured between 23 March and 26 May 1988. Rates of soil water depletion, stomatal conductance and transpiration differed amongst the treatments and were higher in the control for the duration of the experiment. Shoot elongation rate (SER) and leaf expansion rate (LER) of blue oak seedling were directly related to soil water potentials. Zero values of LER rates for all treatments were observed at soil water potentials lower than?1.91 MPa, and concurrent reductions of stomatal conductance indicated stomatal closure due to the soil water deficit. In the control treatment, transpiration alone was not high enough to deplete soil moisture and to reduce LER of the oak seedlings. Leaf dessication occurred first in the H and M treatments (53% of seedlings dessicated) and two weeks later in the L treatment (37% dessicated) when the soil water potential was approximately ?4.0 MPa. The number of reproductive tillers and seed dry weight indicated thatElymus plants were under water stress from April 25 and concluded on May 25 with an early summer dormancy in all treatments. Data indicated that light intensity of 50% of ambient did not limit the development of oak seedlings. The results suggested that density of the perennial bunch-grassElymus glaucus lower than 50 plants m?2 could allow survival and successful establishment of blue oak in understories.  相似文献   

19.
  • ? Variation in the ability of western redcedar (Thuja plicata Donn ex D. Don) populations to withstand water stress may exist because this species is found in coastal and interior biogeoclimatic subzones representing the full range of precipitation regimes in British Columbia, Canada.
  • ? Seven western redcedar populations from locations in British Columbia, representing a wide range of habitat types, were assessed for their gas exchange and water relations response to controlled drought.
  • ? Before drought, population variation occurred in stomatal conductance, net CO2 assimilation rate and intrinsic water use efficiency and the relative water content at turgor loss point. During drought, populations had different responses of net CO2 assimilation to decreasing predawn shoot water potential. After drought, populations differed in stomatal conductance and intrinsic water use efficiency, plus osmotic potential at turgor loss point, osmotic potential at saturation and apparent cuticular transpiration. Western redcedar populations from drier-inland habitats had a lower osmotic potential at turgor loss point, lower relative water content at turgor loss point and lower apparent cuticular transpiration in response to drought than populations from coastal origin with temperate maritime habitat.
  • ? Reduction of cuticular water loss and adjustments of cellular water relations in response to drought was found to occur among seven western redcedar populations originating along a precipitation gradient while; there were minimal population differences in the gas exchange response to drought.
  •   相似文献   

    20.
    光叶子花不同叶位叶片叶绿素含量和光合作用研究   总被引:1,自引:0,他引:1  
    本文以光叶子花炼苗60 d组培苗为材料,对光叶子花不同叶位叶绿素含量、呼吸作用(Re)、气孔导度(Gs)、胞间CO2浓度(Ci)、净光合速(Pn)、蒸腾速率(Tr)、叶面饱和水汽压亏缺(Vpdl)等进行了测定。试验结果表明,光叶子花叶片单位重量和单位面积叶绿素含量、净光合速度和水分利用效率(WUE)均随叶位上升呈先增大后减小趋势变化,其最大值都出现在第6叶位叶片;叶片呼吸速率、气孔导度和蒸腾速率均随叶位上升而减小;叶片胞间CO2浓度随叶位上升呈先减小后增大变化;叶面饱和水汽压亏缺随叶位上升而增大。由于光叶子花中部叶片叶绿素含量、Pn和WUE相对较高,因此在今后的栽培管理中应对中部叶片加强保护。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号