首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
More than half of the barley grown in the USA is used for livestock feed, with the remaining stocks diverted for human food and malting purposes. The use of barley grain as a major source of cattle feed has been criticized because of its rapid digestion in the rumen, which can result in digestive disorders in cattle. In sacco dry matter digestibility (ISDMD) and particle size (PS) after dry rolling have been found to play a role in the feedlot performance of barley as a feed grain. Reducing the rate of ISDMD is predicted to result in significantly improved animal health and average daily gain. A recombinant inbred line population derived from a cross between a high ISDMD, two-rowed barley cultivar (Valier) and a six-rowed Swiss landrace line (PI370970) exhibiting far slower ISDMD has been developed for studying the underlying genetic locations and mechanisms of these traits. To detect associated quantitative trait loci (QTLs), we collected and analyzed data from irrigated and rain-fed environments. A significant negative correlation was observed between ISDMD and PS. High heritability estimates for ISDMD and PS suggest that early selection for these traits during breeding would be achievable. Four QTLs were identified on chromosomes 2H, 6H, and 7H, explaining 73–85% of ISDMD phenotypic variation, while three QTLs on 2H and 7H were associated with variation in PS and explained 58–77% of its variation. A major QTL on chromosome 2H tightly linked to the morphology-modifying gene vrs1 was found to dramatically control 35–62% of the phenotypic variation of ISDMD and 26–53% of that of PS. The impact of the vrs1 locus on ISDMD was validated in two populations representing different genetic backgrounds. Our results suggest that it may also be advantageous to simultaneously overlap these QTLs around the vrs1 locus.  相似文献   

2.
Mapping quantitative trait loci (QTLs) responsible for malting quality traits in barley populations has been the main genetic approach to malting quality breeding. A ‘winter × spring’ doubled haploid barley population ‘Nure’ × ‘Tremois’, where such traits were segregating, has been recently developed. Our objective was to map QTLs for malting quality from 2 years of trials in two contrasting locations. QTLs were found on six chromosomes, with a main cluster on chromosome 1H. For wort viscosity and malt extract, favourable alleles at two loci on chromosome 5H were carried by the winter feeding parent ‘Nure’. Doubled‐haploids with higher quality than the spring malting cultivar ‘Tremois’ showed either a facultative or a winter growth habit and a level of frost tolerance comparable with that of the winter tolerant parent ‘Nure’. Markers and QTLs of quality traits were further validated on a separate set of DH lines, coming from the same cross, by means of marker‐assisted selection. This showed that, at least in the present cross combination, positive contributions to malting quality can be found in winter feed barley.  相似文献   

3.
Phosphorus (P) is an important macronutrient required for plant growth and yield formation. Since decades, breeders aim to optimize P efficiency in crops. We studied a set of 47 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) in hydroponic culture to identify quantitative trait loci (QTLs) improving growth and nutrient content under P deficiency. Applying a mixed model analysis, a total of 91 independent QTLs were located among 39 ILs, of which 64 QTLs displayed trait‐improving Hsp effects. For example, an unknown Hsp allele on barley chromosome 4H increased shoot dry weight under P deficiency in three overlapping ILs by 25.9%. Likewise, an Hsp allele on barley chromosome 6H increased root dry weight under P deficiency in two overlapping ILs by 27.6%. In total, 31 QTLs confirmed Hsp effects already identified in previous field and glasshouse experiments with the same ILs. We conclude that wild barley contains numerous trait‐improving QTL alleles, which are active under P deficiency. In future, the underlying genes can be subjected to cloning and, simultaneously, used in elite barley breeding.  相似文献   

4.
Cultivated barley is the major livestock feed grain in the Northern Plains and Northwestern United States due to the fact that its short growing season and limited rainfall limit the planting and production of corn. Starch and fiber content play a significant role in feedlot performance of animals raised on barley feed. To study the underlying genetic locations and mechanisms for these traits, a recombinant inbred line population was derived from a cross between the hulled barley cultivar Valier and a hull-less Swiss landrace line, PI370970. Valier has a high acid detergent fiber content (ADF) and low starch and protein while PI370970 contains low ADF and high starch and protein content. To detect associated QTLs, data were collected and analyzed from irrigated and rain-fed environments. A total of 30 main effect QTLs and four epistatic QTLs were identified which conditioned ADF, starch and protein content under rain-fed, irrigated and combined analyses. These QTLs were located on chromosomes 2H, 3H, 5H, 6H and 7H. Major ADF and starch QTL were identified on chromosome 7H near the nud locus (the locus controlling hulled vs. hull-less caryopsis). High heritability estimates for both ADF and starch content suggest that early selection for these traits during breeding would be productive. Low ADF-QTL were independently verified in a second population in a different genetic background.  相似文献   

5.
In order to analyse the genetic control of anther culture response in barley, a doubled-haploid (DH) population from the cross between a medium responsive cultivar ‘Dobla’ and the model cultivar ‘Igri’ was produced. A linkage map was constructed with 91 markers. A sub-population of 41 lines was characterised for different components of the anther culture response, and was used for quantitative trait loci (QTL) analysis. The vrs1 locus region on chromosome 2H, which determines inflorescence row type, was coincident with the largest putative QTL for number of embryos (nEMB) and albino plants. A region of chromosome 6H was associated with QTLs for nEMB and green plants. QTLs for number and percentage of green plants were located on the long arm of chromosome 5H. Therefore, new QTLs for main components of barley anther culture response were identified on chromosomes 2H, 5H and 6H, indicating that anther culture response in barley could be controlled by relative few genes of large effect. This work is a useful step towards the identification of new regions on the barley genome that could be associated with fundamental biological process implicated in the anther culture response.  相似文献   

6.
Fusarium head blight (FHB) caused by Fusarium species, is among the most devastating wheat diseases, causing losses in numerous sectors of the grain industry through yield and quality reduction, and the accumulation of poisonous mycotoxins. A germplasm collection of spring and winter wheat, including nine reference cultivars, was tested for Type II FHB resistance and deoxynivalenol (DON) content. Genetic diversity was evaluated on the basis of Simple Sequence Repeat (SSR) markers linked to FHB resistance quantitative trait loci (QTLs) and Diversity Arrays Technology (DArT) markers. The allele size of the SSR markers linked to FHB resistance QTLs from known resistance sources was compared to a germplasm collection to determine the presence of these QTLs and to identify potentially novel sources of resistance. Forty-two accessions were identified as resistant or moderately resistant to Fusarium spread, and two also had very low DON concentrations. Genetic relationships among wheat accessions were generally consistent with their geographic distribution and pedigree. SSR analysis revealed that several resistant accessions carried up to four of the tested QTLs. Resistant and moderately resistant lines without any known QTLs are considered to be novel sources of resistance that could be used for further genetic studies.  相似文献   

7.
Cotton is one of the most important oil-producing crops and the cottonseed meal provides important protein nutrients as animal feed. However, information on the genetic basis of cottonseed oil and protein contents is lacking. A backcross inbred line (BIL) population from a cross between Gossypium hirsutum as the recurrent parent and G. barbadense was used to identify quantitative trait loci (QTLs) for cottonseed oil, protein, and gossypol contents. The BIL population of 146 lines together with the two parental lines was tested in the same location for three years in China. Based on a genetic map of 392 SSR markers and a total genetic distance of 2,895.2 cM, 17 QTLs on 12 chromosomes for oil content, 22 QTLs on 12 chromosomes for protein content and three QTLs on two chromosomes for gossypol content were detected. Seed oil content was significantly and negatively correlated with seed protein content, which can be explained by eight QTLs for both oil and protein contents co-localized in the same regions but with opposite additive effects. This research represents the first report using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for seed quality traits in cotton in three environments.  相似文献   

8.
Quantitative trait loci (QTLs) for resistance against non-parasitic leaf spots (NPLS) were first characterized in a spring barley double haploid population derived from the cross IPZ 24727/Barke (Behn et al., 2004). The aim of the present study was to identify QTLs for NPLS resistance in the half-sibling DH population IPZ 24727/Krona and to compare them with the QTLs of the population IPZ 24727/Barke. An anther culture-derived doubled haploid population of 536 DH lines was developed from the cross IPZ 24727 (resistant)/Krona (susceptible). Field trials were performed over two years in two replications, scoring NPLS and agronomic traits that might interact with NPLS. A molecular linkage map of 1035 cM was constructed based on AFLPs, SSRs and the mlo marker. QTL analyses for NPLS identified three QTLs that accounted for 30% of the phenotypic variation. For comparison of the QTLs from each DH population, a consensus map was generated comprising 277 markers with a length of 1199 cM. In both populations, the QTLs for NPLS mapped to chromosomes 1H, 4H and 7H. A common QTL with a great effect in both populations and over all environments was localized at the mlo locus on chromosome 4H, indicating that the mlo powdery mildew resistance locus has a considerable effect on NPLS susceptibility. The steps necessary to validate the QTLs and to improve the NPLS resistance by breeding were discussed.  相似文献   

9.
Nitrogen (N) is one of the most important plant nutrients, controlling growth and, ultimately, yield of a cultivar. Hordeum vulgare ssp. spontaneum, the wild barley progenitor of cultivated barley, is known to possess genes that can improve tolerance against biotic and abiotic stresses. A quantitative trait locus (QTL) study with two levels of N fertilization was conducted under glasshouse in order to locate wild barley alleles that improve N stress tolerance in the genetic background of an elite barley cultivar. For this, a set of 28 barley introgression lines (S42ILs), which originate from the cross ??Scarlett???×???ISR42-8??, was studied. The S42ILs, containing single or multiple wild barley introgressions, and ??Scarlett?? were evaluated in regard to a total of 15 traits, related to morphological parameters, grain parameters as well as to carbon (C) and N content parameters. A mixed model analysis and a subsequent Dunnett test was conducted to identify S42ILs that significantly deviate from the recurrent parent ??Scarlett??, either tested separately for each N level, or simultaneously across both N levels. In total, 65 QTLs were detected for the S42IL set. Most QTLs were found for chlorophyll content during heading (10 QTLs) and the fewest for C/N ratio of straw (1 QTL). The individual S42ILs possessed different numbers of QTLs. For S42IL-108, a maximum of eight QTLs were found whereas S42IL-145 did not show any significant difference from ??Scarlett??. Wild barley alleles revealed decreasing effects at 32 QTLs and increasing effects at 33 QTLs. Although 25 QTLs exhibited similar effects across both N levels, 18 and 22 QTLs exhibited effects that were only detected under N0 or N1, respectively. We, thus, conclude that it may be worth to select improved barley cultivars for N stress tolerance separately under low N fertilization, rather than extrapolating trait performances from experiments carried out under standard N fertilization conditions. A number of wild barley QTL alleles improved N stress tolerance. For example, a wild barley QTL allele on chromosome 4H, present in the Hsp introgression of S42IL-119, was associated with a 13.0?% increase of thousand grain weight across both N levels and a 20?% increase under low N supply. QTLs detected in the present study were compared with those of previous field studies of the same cross and with other QTL studies in barley and other small grains. Accordance between QTL studies (QTLs showing similar effects at the same map location) is documented and discussed. Based on our study, promising wild barley QTL alleles are available in S42ILs, which can be readily utilized to select for improved N use efficiency in barley breeding.  相似文献   

10.
A partial genetic linkage map was constructed on 71 doubled-haploid lines derived from a cross between the barley lines Tadmor and WI2291 with 181 molecular markers. The segregating population was used to detect markers linked to the gene Mlg conferring resistance to powdery mildew (Erysiphe graminis f. sp. hordei) and to genes for quantitative resistance to scald (Rhynchosporium secalis). The gene Mlg on chromosome 4H was flanked by two AFLP markers at a distance of 2.0 and 2.4 cM, respectively. QTLs for resistance to scald were detected on chromosomes 2H and 3H. This association of molecular markers with qualitative and quantitative disease resistance loci represents a valuable starting-point for marker-assisted selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Salinity is a major abiotic stress to barley (Hordum vulgare L.) growth and yield. In the current study, quantitative trait loci (QTL) for yield and physiological components at the late growth stage under salt stress and non-stress environments were determined in barley using a double haploid population derived from a cross between CM72 (salt-tolerant) and Gairdner (salt-sensitive). A total of 30 QTLs for 10 traits, including tiller numbers (TN), plant height, spikes per line (SPL), spikes per plant (SPP), dry weight per plant, grains per plant, grain yield, shoot Na+ (NA) and K+ concentraitions (K) in shoot, and Na+/K+ ratio (NAK), were detected, with 17 and 13 QTLs under non-stress and salt stress, respectively. The phenotypic variation explained by individual QTL ranged from 3.25 to 29.81%. QTL flanked by markers bPb-1278 and bPb-8437 on chromosomes 4H was associated with TN, SPL, and SPP under salt stress. This locus may be useful in the breeding program of marker-assisted selection for improving salt tolerance of barley. However, QTLs associated with NA, K, and NAK differed greatly between non-stress and salt stress environments. It may be suggested that only the QTLs detected under salt stress are really associated with salt tolerance in barley. D. Xue and Y. Huang contributed equally to the article.  相似文献   

12.
Preharvest sprouting (PHS) and dormancy (DOR) can be problems in barley production and end use quality, especially for barley used for seed and malting. Three crosses previously analyzed for DOR inheritance, were reanalyzed for PHS and DOR inheritance using artificial rain to calculate sprout score (SSc) and measure alpha-amylase activity (AA). Germination percentage of untreated grain for DOR was also measured. The crosses are ‘Steptoe’/’Morex’ (previously published), ‘Harrington’/TR306, and ‘Triumph’/Morex. Among the three crosses, DOR QTLs were located to six and PHS QTLs to five chromosomes, respectively. Chromosome 6H was never implicated. Previously identified DOR QTLs were confirmed in each cross, and most PHS QTLs coincided with DOR QTLs, but not all. Unique PHS QTLs were identified on chromosomes 1H (AA), 2H (SSc, AA), 3H (SSc, AA), and 7H (SSc, AA) and unique DOR QTLs on 1H, 2H, and 7H. Results indicate that PHS susceptibility and DOR are not always represented by opposite alleles at a locus. Some QTL regions for a given trait are conserved across crosses and some are not. Several QTLs are suitable for marker-assisted selection to balance PHS and DOR in breeding new cultivars.  相似文献   

13.
J. Jensen    G. Backes    H. Skinnes  H. Giese 《Plant Breeding》2002,121(2):124-128
Three quantitative trait loci (QTL) for scald resistance in barley were identified and mapped in relation to molecular markers using a population of chromosome doubled‐haploid lines produced from the F1 generation of a cross between the spring barley varieties ‘Alexis’ and ‘Regatta’. Two field experiments were conducted in Denmark and two in Norway to assess disease resistance. The percentage leaf area covered with scald (Rhynchosporium secalis) ranged from 0 to 40% in the 189 doubled‐haploid (DH) lines analysed. One quantitative trait locus was localized in the centromeric region of chromosome 3H, Qryn3, using the MAPQTL program. MAPQTL was unable to provide proper localization of the other two resistance genes and so a non‐interval QTL mapping method was used. One was found to be located distally to markers on chromosome 4H (Qryn4) and the other, Qryn6, was located distally to markers on chromosome 6H. The effects of differences between the Qryn3, Qryn4 and Qryn6 alleles in two barley genotypes for the QTL were estimated to be 8.8%, 7.3% and 7.0%, respectively, of leaf covered by scald. No interactions between the QTLs were found.  相似文献   

14.
Cotton (Gossypium spp) is the world's leading natural fiber crop. Genetic manipulation continues to play a key role in the improvement of fiber quality properties. By use of DNA-based molecular markers and a polymorphic mapping population derived from an inter specific cross between TM-1 (G. hirsutum) and 3-79 (G. barbadense), thirteen quantitative trait loci (QTLs) controlling fiber quality properties were identified in 3-79, an extra long staple (ELS) cotton. Four QTLs influenced bundle fiber strength, three influenced fiber length, and six influenced fiber fineness. These QTLs were located on different chromosomes or linkage groups and collectively explained 30% to 60%of the total phenotypic variance for each fiber quality property in the F2 population. The effects and modes of action for the individual QTLs were characterized with 3-79 alleles in TM-1 genetic background. The results indicated more recessive than dominant, with much less additive effect in the gene mode. Transgressive segregation was observed for fiber fineness that could be beneficial to improvement of this trait. Molecular markers linked to fiber quality QTLs would be most effective in marker-assisted selection (MAS) of these recessive alleles in cotton breeding programs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The association between high malting quality and pre-harvest sprouting (PHS) susceptibility is a key challenge when developing new malting barley varieties. A new malting barley variety Baudin has successfully combined high malting quality and PHS tolerance. A doubled haploid population was developed for mapping PHS tolerance and seed dormancy from a cross of Baudin?×?AC Metcalfe using 233 molecular markers. Three QTLs were mapped for seed dormancy based on the standard germination test at 24, 48 and 72?h. One major QTL was mapped to the long arm of chromosome 5H controlling seed dormancy and PHS tolerance from Baudin. Two other minor QTLs were identified from Baudin on chromosomes 3 and 7H. QTL/QTL interaction was detected for seed dormancy between chromosomes 3 and 5H. The PHS tolerance allele of the 5H QTL from Baudin contributes to higher malt yield without significant impact on diastatic power, beta-glucan content and wort viscosity. QTL from Baudin provide new sources to integrate PHS tolerance and high malting quality.  相似文献   

16.
Quantitative trait loci (QTLs) controlling salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) were identified by interval mapping analysis using marker information from two doubled haploid (DH) populations derived from the crosses, Steptoe/Morex and Harrington/TR306. Interval mapping analysis revealed that the QTLs for salt tolerance at germination in the DH lines of Steptoe/Morex were located on chromosomes 4 (4H), 6(6H), and 7(5H), and in the DH lines of Harrington/TR306 on chromosomes 5(1H) and 7(5H). In both DH populations, the most effective QTLs were found at different loci on chromosome 7(5H). Genetic linkage between salt tolerance at germination and abscisic acid (ABA) response was found from QTL mapping. The QTLs for the most effective ABA response at germination were located very close to those for salt tolerance on chromosome 7 (5H) in both crosses. The QTLs for salt tolerance at the seedling stage were located on chromosomes 2(2H), 5(1H), 6(6H), and 7(5H) in the DH lines of Steptoe/Morex, and on chromosome 7(5H) in the DH lines of Harrington/TR 306. Their positions were different from those of QTLs controlling salt tolerance at germination, indicating that salt tolerance at germination and at the seedling stage were controlled by different loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The Russian wheat aphid (RWA) is one of the most aggressive pests of barley and wheat. The outbreak of RWA occurred in Argentina in 2008 caused serious damage to barley cultivars. The most effective and sustainable method of RWA control is to identify new resistance genes. The purpose of the current research was to map RWA resistance genes in a set of double haploid (DH) lines of the Oregon-Wolfe Barley (OWB) mapping population derived from the cross between OWBDOM and OWBREC. The DH and both parental lines were screened for antixenosis, tolerance and antibiosis to RWA. There was significant variation among the DH lines in most of the traits studied. However, only tolerance resulted in significant quantitative trait loci (QTLs) associated with the molecular markers. Two main QTLs were identified. These explained 90 and 79 % of the variability of foliar area and chlorophyll content, respectively, of infested and control plants. The initial and final foliar area and the variation in foliar area were associated with the same molecular markers on chromosome 2H (BmAc0125, Vrs1, BmAc0144f and BmAg0113e). The positive alleles were provided by OWBDOM. The content of chlorophyll was associated with the marker loci WMC1E8, MWG912, ABC261, MWG2028 and Blp on chromosome 1H, with the positive alleles provided by OWBREC. Both parents contributed to different tolerance traits, with foliar area and chlorophyll content remaining as the plant traits most affected by aphid feeding. The QTLs found in this population are new RWA resistance loci. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs.  相似文献   

18.
Two hundred ninety-six Asian barley (Hordeum vulgare L.) accessions were assessed to detect QTLs underlying salt tolerance by association analysis using a 384 single nucleotide polymorphism (SNP) marker system. The experiment was laid out at the seedling stage in a hydroponic solution under control and 250 mM NaCl solution with three replications of four plants each. Salt tolerance was assessed by leaf injury score (LIS) and salt tolerance indices (STIs) of the number of leaves (NL), shoot length (SL), root length (RL), shoot dry weight (SDW) and root dry weight (RDW). LIS was scored from 1 to 5 according to the severity of necrosis and chlorosis observed on leaves. There was a wide variation in salt tolerance among Asian barley accessions. LIS and STI (SDW) were the most suitable traits for screening salt tolerance. Association was estimated between markers and traits to detect QTLs for LIS and STI (SDW). Seven significant QTLs were located on chromosomes 1H (2 QTLs), 2H (2 QTLs), 3H (1 QTL), 4H (1 QTL) and 5H (1 QTL). Five QTLs were associated with LIS and 2 QTLs with STI (SDW). Two QTLs associated with LIS were newly identified on chromosomes 3H and 4H.  相似文献   

19.
不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析   总被引:1,自引:0,他引:1  
胡德益  蔡露  陈光登  张锡洲  刘春吉 《作物学报》2017,43(12):1746-1759
磷素营养与大麦品质及产量密切相关,磷高效遗传机制和品种改良是近年的研究热点之一。本研究利用由大麦栽培品种Baudin和种质材料CN4079杂交构建的重组自交系(RIL)群体,低磷胁迫(0.02 mmol L~(-1) KH_2PO_4)与正常供磷(0.2 mmol L~(-1) KH_2PO_4)条件下,对地上部和地下部磷素利用效率、磷素吸收效率和干重,以及分蘖数相关的QTL定位,并预测相关位点基因。表型鉴定结果表明,各性状在RIL群体中表现连续变异,并存在超亲分离。两种磷水平下,共检测到16个QTL,分布在2H、3H和5H染色体上,表型贡献率14.1%~28.5%。3H染色体上含有3个磷素利用效率位点,其增效等位基因均来源于Baudin,其中Qspue.sau-3H.1和Qrpue.sau-3H与控制磷素吸收效率的Qspae.sau-3H和Qrpae.sau-3H处于同一区段,而Qspue.sau-3H.2与控制分蘖数的位点Qtn.sau-3H处于同一区段。5H染色体上含有3个磷素吸收效率位点,其中Qspae.sau-5H.2和Qrpae.sau-5H的增效等位基因来自CN4079,且与控制磷素利用效率的Qspue.sau-5H和Qrpue.sau-5H,以及控制干重的Qsdw.sau-5H和Qrdw.sau-5H处于同一区段。在磷效率相关的4个区段中,除Qspue.sau-3H.1所处区间仅含有磷酸代谢与磷脂代谢相关基因外,其他区间均包含磷酸盐转运蛋白基因、磷酸代谢与磷脂代谢相关基因。  相似文献   

20.
Quantitative trait locus (QTL) analysis of nitrogen use efficiency (NUE) of barley (Hordeum vulgare L.) was conducted on data generated from two pot experiments carried out in 2005 (using four nitrogen rates) and 2008 (with three rates) with AFLP markers and 94 recombinant inbred lines (RILs) of the Prisma × Apex mapping population. In total 41 QTLs were detected on 6 chromosomes and for 18 traits in both trials. About 95 % of the detected QTLs were with major additive effects. The percentage of variance accounted for by individual QTLs in the multiple QTL mapping model ranged from 8.4 to 54.4 % across all mapped traits in both years. Fifteen QTLs were related to NUE and its components; most of these QTLs were detected at lower nitrogen rates and none at the highest rate in both trials. These QTLs were found on Chromosomes 3(3H) and 7(5H) in 2005 and Chromosome 2(2H) in 2008. Except for the QTLs of plant height and NUE based on grain yield, none of the QTLs which were detected for a given trait in 2005, expressed themselves in 2008 irrespective of the nitrogen levels. QTLs controlling some traits were co-located in each year, and QTLs for many traits were detected on the same chromosome and close to the denso locus. Further research is needed to investigate the possibility to reduce nitrogen fertilizer requirements through breeding while maintaining high yield of barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号