首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.  相似文献   

2.
Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.  相似文献   

3.
Measurements of the changes in orbital period of the Pioneer Venus orbiter have yielded estimates of the density of the upper atmosphere of Venus at altitudes in the range from 150 to 200 kilometers. At the lower limit of this range, the density on the dayside of the terminator exhibits a temporal variation of amplitude near 4 x 10(-14) gram per cubic centimeter aboult a mean of approximately 1.4 x 10(-13) gram per cubic centimeter. The variation appears oscillatory, with a 4- to 5-day period, but barely one cycle was observed. The density on the nightside of the terminator, sampled inthe same 150-kilometer altitude range, fluctuates about a smaller mean of approximately 4 x 10(-14) gram per cubic centimeter. The density between the altitudes of 150 and 200 kilometers, sampled only on the dayside of the terminator, imply a scale height of between 15 and 20 kilometers. The interpretation of this estimate is uncertain, however, in view of the measurements at the different altitudes having been made at different times and, hence, at different values of solar phase.  相似文献   

4.
Analysis of the radio-tracking data from Mariner 10 yields 6,023,600 +/- 600 for the ratio of the mass of the sun to that of Mercury, in very good agreement with values determined earlier from radar data alone. Occultation measurements yielded values for the radius of Mercury of 2440 +/- 2 and 2438 +/- 2 kilometers at laditudes of 2 degrees N and 68 degrees N, respectively, again in close agreement with the average equatorial radius of 2439 +/- 1 kilometers determined from radar data. The mean density of 5.44 grams per cubic centimeter deduced for Mercury from Mariner 10 data thus virtually coincides with the prior determination. No evidence of either an ionosphere or an atmosphere was found, with the data yielding upper bounds on the electron density of about 1500 and 4000 electrons per cubic centimeter on the dayside and nightside, respectively, and an inferred upper bound on the surface pressure of 10(-8) millibar.  相似文献   

5.
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .  相似文献   

6.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

7.
It is argued that the single-layer ionosphere at 125 kilometers discovered in the Mariner IV occultation experiment is an Fl region coinciding with the ultraviolet photoionization peak. The CO(2) density there must be of the order of 10(11) molecules per cubic centimeter. Such a density is consistent with the properties of the lower atmosphere by Mariner IV anid the temperature model of Chamberlain and McElroy if the atmosphere is mainly CO(2) below 70 kilometers. The absence of an F2 region can be explained even if the density ratio of O to CO(2) is 100 at 230 kilometers on the basis of the rapid conversion of O(+) to O(2) by CO(2). Thus a model with an exospheric temperature of 400 degrees K, a modest degree of CO(2) dissociation, and diffusive separation above 70 kilometers is possible.  相似文献   

8.
The preliminary analysis of data from the Pioneer 10 S-band radio occultation experinment has revealed the presence of an ionosphere on the Jovian satellite Io (JI) having an electron density peak of about 6 x 10(4) electrons per cubic centimeter at an altitude of approximately 60 to 140 kilometers. This suggests the presence of an atmosphere having a surface number density of about 10(10) to 10(12) per cubic centimeter, corresponding to an atmospheric surface pressure of between 10(-8) and 10(-10) bar, at or below the detection threshold of the Beta Scorpii stellar occultation. A measurement of the atmosphere of Jupiter was obtained down to the level of about 80 millibars, indicating a large temperature increase at about the 20 millibar level, which cannot be explained by the absorption of solar radiation by methane alone and can possibly be due to absorption by particulate matter.  相似文献   

9.
Radio occultation measurements at S band (2.293 gigahertz) of the ionosphere and upper neutral atmosphere of Saturn were obtained during the flyby of the Pioneer 11 Saturn spacecraft on 5 September 1979. Preliminary analysis of the occultation exit data taken at a latitude of 9.5 degrees S and a solar zenith angle of 90.6 degrees revealed the presence of a rather thin ionosphere, having a main peak electron density of about 9.4 x 10/(3) per cubic centimeter at an altitude of about 2800 above the level of a neutral number density of 10(19) per cubic centimeter and a lower peak of about 7 x 10(3) per cubic centimeter at 2200 kilometers. Data in the neutral atmosphere were obtained to a pressure level of about 120 millibars. The temperature structure derived from these data is consistent with the results of the Pioneer 11 Saturn infrared radiometer experiment (for a helium fraction of 15 percent) and with models derived from Earth-based observations for a helium fraction by number of about 4 to 10 percent. The helium fraction will be further defined by mutual iteration with the infrared radiometer team.  相似文献   

10.
A preliminary analysis of 15 radio occultation measurements taken on the day side of Mars between 40 degrees S and 33 degrees S has revealed that the temperature in the lower 15 to 20 kilometers of the atmosphere of Mars is essentially isothermal and warmer than expected. This result, which is also confirmed by the increased altitude of the ionization peak of the ionosphere, can possibly be caused by the absorption of solar radiation by fine particles of dust suspended in the lower atmosphere. The measurements also revealed elevation differences of 13 kilometers and a range of surface pressures between 2.9 and 8.3 millibars. The floor of the classical bright area of Hellas was found to be about 6 kilometers below its western rim and 4 kilometers below the mean radius of Mars at that latitude. The region between Mare Sirenum and Solis Lacus was found to be relatively high, lying 5 to 8 kilometers above the mean radius. The maximum electron density in the ionosphere (about 1.5 x 10(5) electrons per cubic centimeter), which was found to be remarkably constant, was somewhat lower than that observed in 1969 but higher than that observed in 1965.  相似文献   

11.
Measurements of the frequency, phase, and amplitude of the S-band radio signal of Mariner V as it passed behind Venus were used to obtain the effects of refraction in its atmosphere and ionosphere. Profiles of refractivity, temperature, pressure, and density in the neutral atmosphere, as well as electron density in the daytime ionosphere, are presented. A constant scale height was observed above the tropopause, and the temperature increased with an approximately linear lapse rate below the tropopause to the level at which signal was lost, presumably because heavy defocusing attenuation occurred as critical refraction was approached. An ionosphere having at least two maxima was observed at only 85 kilometers above the tropopause.  相似文献   

12.
The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.  相似文献   

13.
Abrupt changes in the amplitude of the magnetic fluctuations, in the field strength, and in the plasma properties, were observed with Mariner V near Venus. They provide clear evidence for the presence of a bow shock around the planet, similar to, but much smaller than, that observed at Earth. The observations appear consistent with an interaction of the solar wind with the ionosphere of Venus. No planetary field could be detected, but a steady radial field and very low plasma density were found 10,000 to 20,000 kilometers behind Venus and 8,000 to 12,000 kilometers from the Sun-Venus line. These observations may be interpreted as relating to an expansion wave tending to fill the cavity produced by Venus in the solar wind. The upper limit to the magnetic dipole moment of Venus is estimated to be within a factor of 2 of 10(-3) items that of Earth.  相似文献   

14.
The four Pioneer Venus entry probes transmitted data of good quality on the structure of the atmosphere below the clouds. Contrast of the structure below an altitude of 50 kilometers at four widely separated locations was found to be no more than a few degrees Kelvin, with slightly warmer temperatures at 30 degrees south latitude than at 5 degrees or 60 degrees north. The atmosphere was stably stratified above 15 or 20 kilometers, indicating that the near-adiabatic state is maintained by the general circulation. The profiles move from near-adiabatic toward radiative equilibrium at altitudes above 40 kilometers. There appears to be a region of vertical convection above the dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. This is where the 4-day wind is believed to occur. The temperature wave may be related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photographs.  相似文献   

15.
A sporadic third layer in the ionosphere of Mars   总被引:1,自引:0,他引:1  
The daytime martian ionosphere has been observed as a two-layer structure with electron densities that peak at altitudes between about 110 and 130 kilometers. The Mars Express Orbiter Radio Science Experiment on the European Mars Express spacecraft observed, in 10 out of 120 electron density profiles, a third ionospheric layer at altitude ranges of 65 to 110 kilometers, where electron densities, on average, peaked at 0.8 x 10(10) per cubic meter. Such a layer has been predicted to be permanent and continuous. Its origin has been attributed to ablation of meteors and charge exchange of magnesium and iron. Our observations imply that this layer is present sporadically and locally.  相似文献   

16.
Radio occultation measurements with Mariners 6 and 7 provided refractivity data in the atmosphiere of Mars at four points above its surface. For an atmosphere consisting predominantly of carbon dioxide, surface pressures between 6 and 7 millibars are obtained at three of the points of measurement, and 3.8 at the fourth, indicating an elevation of 5 to 6 kilometers. The temperature profile measured by Mariner 6 near the equator in the daytime indicates temperatures in the stratosphere about 100 degrees K warmer than those predicted by theory. The measurements of Mariner 6 taken at 79 degrees N at the beginning of polar night indicate that conditions are favorable for the condensation of carbon dioxide at almost all altitudes. Mariner 7 measurements taken at 58 degrees S in daytime and 38 degrees N at night also show that carbon dioxide condensation is possible at altitudes above about 25 kilometers. Measurements of the electron density in the ionosphere show that the upper atmosphere is substantially warmer than it was in 1965, possibly because of increased solar activity and closer proximity to the sun.  相似文献   

17.
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.  相似文献   

18.
The small magnetic field strength observed near Mars by Mariner IV suggests that protons from the solar wind may enter the Martian atmosphere and produce ionization in addition to that produced by ultraviolet light and x-rays. It is found that solar protons produce a thin ionized layer at a rate of the order of 3 x 10(3) per cubic centimeter per second at a depth corresponding to the F(1) region in the terrestrial atmosphere. Unless the effective recombinative coefficient is very large (greater than 10(-5) centimeter cubed per second) or unless unusual diffusion effects are present, this layer should have been detected by Mariner IV, and therefore must be present in one of the observed ionized regions. Because of its very compact shape, the subsidiary maximum near 95 kilometers discovered in the Mariner-IV occultation experiment may be the proton ionization peak. If so, the major 120-kilometer maximum is an F(2) layer. Distinction between photon and proton ionization regions can be made by microwave occultation experiments aboard planetary orbiters.  相似文献   

19.
A preliminarv profile of the atmosphere of Jupiter in the South Equatorial Belt shows (i) the tropopause occurring at a pressure level of 100 millibars and temperature of about 113K, (ii) a higher warm inversion layer at about the 35-millibar level, and (iii) a lower-altitude constant lapse rate matching the adiabatic value of about 2 K per kilometer, with the temperatutre reaching 150 K at the 600-millibar level. Preliminary afternoon and predawn ionospheric profiles at 12 degrees south latitude and near the equator, respectively, have topside plasma scale heights of 590 kilometers changing to 960 kilometers above an altitucde of 3500 kilometers for the dayside, and about 960 kilomneters at all measured heights above the peak for the nightside. The higher value of scale height corresponds to a plasma temperature of 1100 K under the assumption of a plasma of protons and electrons in ambipolar diffusive equilibrium. The peak electron concentration in the upper ionosphere is approximately 2 x 10(5) per cubic centimeter for the dayside and about a factor of 10 less for the nightside. These peaks occur at altitudes of 1600 and 2300 kilometers, respectively. Continuing analyses are expected to extend and refine these results, and to be used to investigate other regions and phenomena.  相似文献   

20.
Snyder CW 《Science (New York, N.Y.)》1967,158(3809):1665-1669
On 19 October 1967 the Mariner V spacecraft passed by Venus 10,151 kilometers from the center of the planet; the gravitational field, atmosphere, ionosphere, hydrogen corona, and interaction with the solar wind were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号