首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
【目的】通过对帽儿山不同红松人工林凋落物的分析测定,研究不同红松人工林凋落物含量、组成以及凋落物碳密度的动态规律和特点,为其区域尺度上森林碳储量的估测和碳汇林业的开展提供科学和理论依据。【方法】运用凋落物筐收集法对帽儿山地区红松人工纯林、白桦—红松人工混交林和蒙古栎—红松人工混交林的凋落物进行研究。【结果】不同林型凋落物组成不同,凋落物含量和凋落物碳密度随着林龄的增长也逐渐增加,3种林型42年林龄凋落物含量和碳密度均明显大于20年;不同林型的人工林凋落物碳密度差异显著,20年人工林凋落物碳密度表现为:白桦—红松林[0.751 t/(hm2·a)]蒙古栎—红松林[0.721 t/(hm2·a)]红松纯林[0.688 t/(hm2·a)](P0.05);42年生人工林凋落物碳密度依次为:蒙古栎—红松林[2.995 t/(hm2·a)]白桦—红松林[2.779 t/(hm2·a)]红松纯林[2.007 t/(hm2·a)](P0.05)。【结论】不同林型的红松人工林凋落物碳密度差异显著,混交林明显大于纯林;林分凋落物碳密度随着林龄的增长而增加。  相似文献   

2.
在长白山北部、张广才岭西坡,东北林业大学老山人工林实验站,测试与计算天然次生白桦林(Betula platyphylla Suk.)和蒙古栎林(Quercus mongolica Fisch.ex Ledeb.)凋落物碳密度。结果表明:20年生白桦林凋落物碳密度为1.049 t·hm~(-2)·a~(-1),42年生白桦林凋落物碳密度为2.477 t·hm~(-2)·a~(-1),相差136.13%;20年生蒙古栎林凋落物碳密度为0.948 t·hm~(-2)·a~(-1),50年生蒙古栎林凋落物碳密度为2.686 t·hm~(-2)·a~(-1),相差183.33%;经方差分析,均相差显著(P0.05),说明林龄是影响碳密度变化的主要因素。2种林分类型凋落物碳密度的变化,经方差分析均无显著(P0.05),在数量上虽有小的差异,但在理论上没有变化。不同凋落物器官碳密度的平均值,经方差分析相差显著(P0.05),从大到小,依次为叶、枝、皮、果、粪便、虫卵,随着林龄增大排序还会有变化。白桦与蒙古栎林分凋落物碳密度,随季节的变化而有规律变化;根据凋落物碳密度季节的变化特点,分为3个凋落期,即生长季节凋落期、停止生长凋落期、冬季休眠凋落期,停止生长期凋落量最多,冬季休眠期凋落量最少。  相似文献   

3.
基于相容性生物量模型的樟子松林碳密度与碳储量研究   总被引:6,自引:3,他引:3  
基于不同林龄樟子松人工林生物量调查数据,建立了樟子松林生物量相容性模型,探讨了不同林龄樟子松人工林中乔木层、林下植被层、死地被物层碳密度和碳储量的变化规律。结果表明:樟子松人工林各器官碳密度值的排序为:树叶树枝树干树根;各器官碳密度均随着林龄的增大而增加,27、30、32、36、40和44年生樟子松各器官的平均碳密度分别为449.5、460.2、470.8、485.1、489.2和513.6 g/kg,林下植被与死地被物的碳密度随林龄的变化规律不明显。27~44年期间樟子松人工林群落碳储量都随林龄的增大而增加,从27年生的37.14 t/hm2增加到44年生的168.46 t/hm2,其顺序为:乔木层死地被物层林下植被层,分别占群落总碳储量的90.97%、1.13%和7.90%,乔木层碳储量占主导地位。不同林龄樟子松乔木层、林下植被层和死地被物层年固碳量分别为2.043、0.025 和0.182 t/hm2。研究认为,樟子松人工林群落碳密度及碳储量随林龄的增加变化显著,碳汇作用明显。   相似文献   

4.
不同林龄刺槐人工林碳储量及分配规律   总被引:2,自引:0,他引:2  
为研究林龄对刺槐林生态系统碳储量的影响,在样地调查与实测生物量的基础上,对河南省洛宁县灌木林人工改造的8、15和22年生刺槐人工林进行了研究,测定了刺槐林及同区域灌木林不同层次的的碳含量(乔木层、灌草层、枯落物层和土壤层(0~50 cm)),结合生物量及土壤数据分析其生态系统的碳储量和层次分布特征。结果表明,刺槐各器官碳含量在42.60%~50.92%之间,大小顺序为:树干树皮树枝根桩树叶粗根小根大根中根细根;各林分的灌草层、枯落物层碳含量无显著差异;土壤层碳含量均表现为随土壤深度增加而降低,而随着种植年限的增加而增加;灌木林及8、15和22年生刺槐人工林生态系统碳储量分别为78.96、99.78、110.85和132.75 t·hm-2,对比灌木林,8、15和22年生刺槐林碳储量年均增长量分别为2.60、2.13和2.44 t·hm-2·a-1;乔木层及土壤层是刺槐人工林生态系统碳储量的主要来源,两者占生态系统碳储量85.14%~96.63%。随种植年限增加刺槐林土壤层碳储量所占比重下降而乔木层碳储量比重逐渐上升,灌草层、枯落物层碳储量无明显变化规律。  相似文献   

5.
辽宁省落叶松人工林生物量碳库特征   总被引:2,自引:0,他引:2  
利用辽宁省东部山区落叶松人工林典型分布区样地清查资料,构建了不同林龄落叶松生物量与蓄积量转换模型,结合辽宁省2006年森林资源二类调查资料,估算全省落叶松林生物量碳密度和碳储量.研究表明,干碳量比、根碳量比和根冠碳量比随着林龄的增加而增大,叶碳量比、枝碳量比随着林龄的增加而降低,方差结果显示不同林龄落叶松单木碳分配模式...  相似文献   

6.
为了在更深层面上了解不同林龄下黄山松的生物量分配模式的变化,所应用到的是嵌套回归方法建立了黄山松各器官生物量、胸径和树高的回归方程,并分析了各器官上下的生物量比例随林龄的变化趋势。分析了每个器官的上层和下层生物量比值随林龄的变化趋势。结果表明,黄山松树林的生物量分布模式随林龄的变化而有明显的差异。各器官生物量与胸径和树高呈显著的指数生长模型(P<0.01);各器官碳含量大小依次表现为:针叶>枝条>树干>总根>细根;各器官碳含量随林龄的增加均呈先增加后降低的趋势,在32年达到最大,32年以后有所降低。黄山松林各组分的生物量都与林龄呈显著的正相关关系,这在一定程度上显示出来了林龄对各组分生物量的分配比例凸显出来了明显的影响(P<0.05),树干所占的生物量比例最高。黄山松各器官平均生产力大小依次表现为:针叶>枝条>树干>总根>细根;黄山松各器官碳密度变化范围在5.342~13.26 t·hm-2之间,各器官碳密度大小依次表现为:针叶>枝条>树干>总根>细根;各器官平均生产力随林龄的增加...  相似文献   

7.
基于2009年徐州市森林资源二类调查数据,运用生物量换算因子连续函数法研究了徐州城市森林植被碳储量和碳密度。结果表明:徐州城市森林植被碳储量为1.934 8 Mt,植被碳密度为37.218 5 t.hm-2。徐州城市森林植被碳储量均由人工林提供。森林植被碳储量按林分类型划分,从大到小依次为:阔叶林、针叶林、针阔混交林;按不同林龄划分,从大到小依次为:中龄林、幼龄林、近熟林、成熟林和过熟林。森林植被碳密度的特征为:阔叶林>针叶林>针阔混交林,且随着林龄的增加而增大。建议对现有侧柏人工林过密林分,通过间伐、开设林窗等措施,把侧柏纯林改造为针阔混交林。该研究可为今后徐州城市森林的综合经营和管理提供一定的科学依据。  相似文献   

8.
落叶松人工林土壤中磷的研究   总被引:5,自引:0,他引:5  
文章分析了原始阔叶红松林和次生杂木林采伐后,人工更新红松、落叶松、天然更新白桦林和撩荒地土壤磷含量的影响。以及落叶松二代林中土壤磷素的变化。其方法是选择不同林龄阶段的落叶松人工林及相邻的红松人工林。天然白桦林和杂木林进行对比研究。研究结果表明,落叶松人工林下土壤磷的含量大于红松人工林和天然白桦林;撩荒的采伐迹地磷的含量显著小于有林地;二代林中土壤磷含量与一代林无显著差异。同时,从速效磷的水平来看,  相似文献   

9.
系统估算云南省森林植被的碳储量和碳密度,为研究区域尺度的森林碳储量提供科学依据。以云南第9次森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种的含碳率,分析乔木林中不同优势树种、林种、起源和龄组的碳储量分布特征。结果表明:1)云南不同森林类型的总碳储量为1.05×109 t,平均碳密度44.96 t·hm-2;2)乔木林中不同龄组的总碳储量大小排序为幼龄林>中龄林>近熟林>成熟林>过熟林;3)云南省天然乔木林碳储量为9.07×108 t,占乔木林总碳储量的90.76%;4)天然林的平均碳密度为62.44 t·hm-2,近人工林的3倍。云南省森林碳储量、碳密度与林龄结构和起源关系密切,表现出森林碳密度随林龄增长而增加,森林碳储量随林龄增长而减少的趋势,天然林碳密度和碳储量均远远大于人工林,该研究为区域尺度的森林碳储量提供了科学依据。  相似文献   

10.
通过在湖北全省内的12种森林类型中设置212块样地,采用标准木全株收获法测定林下灌木层生物量和碳密度,评估不同森林类型和不同地区间林下灌木层生物量和碳密度现状。结果表明,湖北省不同森林类型灌木层碳密度介于0.44~8.35 t·hm-2之间,平均碳密度为2.80 t·hm-2,最大的为天然阔叶中龄林,最小的为人工针阔混交林。从森林起源上比较,天然林灌木层生物量和碳密度明显高于人工林;从森林类型上比较,阔叶林>针叶林>针阔混交林;而从龄组上比较,灌木层碳密度随着林龄的增加而不断增加。不同地区间天然林灌木层碳密度除神农架林区与其他地区间均存在显著差异外,其他地区间无差异。因此灌木层生物量和碳密度只与森林起源、森林类型和林龄具有密切联系,与地区间的分布相关性不大。  相似文献   

11.
为探究杉木纯林引入观光木转化为异龄复层林后土壤理化性质和土壤养分含量的变化特征,以及驱动土壤肥力变化的主要影响因子,以观光木纯林、杉木纯林和杉木林下套种观光木形成的杉木×观光木异龄复层林为对象,测定了3种林型下林分生长、林地土壤理化性质和养分含量及其化学计量比等指标,分析杉木×观光木异龄复层林林分结构、林木生长和土壤肥力质量特点。结果表明:1)异龄复层林中观光木和杉木的树高、胸径分别为5.3 m、2.52 cm和18.56 m、20.19 cm,显著高于纯林;2)3种林型间土壤物理性质差异显著。异龄复层林相比较纯林,土壤密度降低4.84%~11.94%,土壤孔隙度分别增加10.29%~22.27%,持水量增加8.62%~34.54%,有效改善了土壤孔隙结构和持水状况。3)各层土壤有机质、全N、全P、全K及速效养分与观光木、杉木纯林均差异显著,土壤养分含量随着土层加深而递减。各养分含量分别比杉木、观光木纯林高出7.87%~41.31%、14.32%~53.57%,各层土壤有机质和养分含量由大到小呈现为:异龄复层林、杉木纯林、观光木纯林。4)异龄复层林中C∶N、C∶P平均值分别为16.62、61.46,均低于杉木和观光木纯林,促进了土壤中N、P的有效释放。因此,在异龄复层林中观光木获得更适宜其生长的良好的遮阴环境,2个树种间形成生态位互补,提高了空间和自然资源的利用率,促进了树木生长。异龄复层林能显著提高土壤有机碳和养分含量,且明显高于纯林,在杉木林中套种观光木能加快土壤微生物的转化和矿化作用。  相似文献   

12.
辽宁仙人洞典型林分森林土壤碳氮分布特征   总被引:1,自引:0,他引:1  
以辽宁省仙人洞自然保护区内阔叶混交林、红松林、日本落叶松林、针阔混交林、赤松林以及栎类林6种典型林分为研究对象,分析了不同林分类型下土壤有机碳的含量、有机碳储量、全氮含量、碳氮比(C/N)及有机碳含量与全氮、速效磷、速效钾的相关关系。结果表明:随着土壤剖面深度的增加,不同林分的土壤有机碳、全氮含量逐渐降低,且不同土壤层次间呈现出显著性差异;不同林分土壤有机碳含量平均值为15.11~47.07 g/kg;不同林分土壤全氮含量为2.83~11.17 g/kg;不同林分的C/N为9.27~28.23,平均值大小为栎类林红松林赤松林日本落叶松阔叶混交林针阔混交林;不同林分0~50 cm土层的土壤有机碳储量大小为针阔混交林(230.64 t/hm~2)日本落叶松(210.46 t/hm~2)阔叶混交林(136.26 t/hm~2)赤松林(122.84 t/hm~2)红松林(97.84 t/hm~2)栎类林(68.55 t/hm~2);在0~10 cm土层,各个林分土壤有机碳含量与土壤全氮、速效磷、速效钾呈显著正相关(P0.05),在10~20 cm土层,各个林分土壤有机碳含量与土壤全氮、速效磷呈显著正相关(P0.05),土壤有机碳与速效钾不存在显著相关性。  相似文献   

13.
利用64个样地实测数据,运用SPSS软件,以江西省杉木林、马尾松林、阔叶林、针阔混交林4种主要森林类型为研究对象,比较分析了土壤有机碳分布特征及其与土壤容重的关系。结果表明:江西省4种主要森林类型的土壤有机碳含量在1 m土壤剖面分布均表现为:表层>亚表层>底层,森林土壤有机碳主要分布在土壤表层,在同一土壤层次均表现为阔叶林>针阔混交林>杉木林>马尾松林,不同森林类型和土壤层次有机碳含量差异性明显;4种森林类型在不同土壤层次土壤有机碳含量均与容重呈显著负相关;森林土壤有机碳密度阔叶林(13.2265±1.18197 kg/m2)>针阔混交林(11.1804±1.78677 kg/m2)>杉木林(9.1065±1.18197 kg/m2)>马尾松林(6.2019±0.94853 kg/m2),不同森林类型的土壤有机碳密度差异性显著,江西省主要森林类型的土壤有机碳密度为10.1740±0.6935 kg/m2。  相似文献   

14.
河南省鸡公山位于暖温带-亚热带过渡区,落叶栎类栓皮栎(Quercus variabilis Blume.)和麻栎(Q.acu-tissima Carr.)混交林和马尾松(Pinus massoniana Lamb)栎类混交林是该区域的2种典型林分类型。分别在海拔200、400和600 m的落叶栎林和松栎混交林中设置样地,比较土壤有机碳(SOC)含量和碳密度的变化。结果表明,随着海拔升高,2种类型林分的土壤有机碳含量和密度显著增加(P0.05);在200和400 m海拔高度上,松栎混交林分土壤有机碳密度高于落叶栎林。在600 m海拔高度上,落叶栎林土壤有机碳密度高于松栎混交林。对于各个海拔高度林分来说,土壤有机碳含量和密度随着土壤深度增加而降低,0~20 cm土层有机碳密度对剖面总有机碳贡献率为77%~93%。这些结果揭示该地区森林土壤有机碳分布特点,也为当地碳汇林业的经营提供了依据。  相似文献   

15.
以贵州黔东南不同植被类型下森林土壤为研究对象,通过“外调查与室内分析相结合的方法,对黔东 南不同植被类型林下土壤混合样(0耀20 cm)养分含量和土壤酸度进行研究。结果表明院4 种典型植被土壤均呈较强的 酸性,pH 值在4.46耀5.38 之间。4 种植被类型林下土壤有机质大小关系为阔叶混交林(52.16 g/kg)>杉木林(50.16 g/ kg)>针阔混交林(40.07 g/kg)>马尾松林(30.61 g/kg);全氮含量最低的是马尾松林(1.13 g/kg),最高的是阔叶混交林 (2.31 g/kg)。全磷与全氮大小关系均表现为院阔叶混交林>针阔混交林>杉木林>马尾松林;土壤全钾含量依次为阔叶 混交林(14.33 g/kg)>杉木林(12.30 g/kg)>马尾松林(11.35 g/kg)>针阔混交林(10.5 g/kg);不同植被类型林下土壤颗粒 态有机碳大小为院马尾松林>针阔混交林>阔叶混交林>杉木林。  相似文献   

16.
采伐强度对林分蓄积生长量的影响   总被引:8,自引:1,他引:8  
以云冷杉林、阔叶红松混交林、针阔混交林、落叶松林4种林分分类型为例,分析了讨论了采代强度对不同林分蓄积生长量的影响。结果表明:采代强度因林分类型不同,伐后林分蓄积生长量也不相同。云冷杉林、阔叶红松混交林、针阔混交林、落叶松林,采伐强度分别在60%、30%-50%、20%、40%时林分蓄积生长量较大。  相似文献   

17.
采伐对森林生态系统碳密度和固碳能力有重要的影响,且影响的程度因采伐强度和方式不同而有巨大差异.以长白山地区原始阔叶红松林在不同采伐方式、采伐强度干扰后形成的次生林为研究对象,通过对2007至2009年建立的11块1 hm2永久样地中植被层、凋落物层和土壤层碳密度在采伐前后变化特征的分析,研究了采伐强度与恢复时间对阔叶红松林生态系统碳密度的影响.结果表明:在短期内,采伐导致了植被层和土壤表层(0-20cm)碳密度值的减少,其中植被碳密度与采伐强度有显著的线性负相关关系(y=-0.9x+91.17,R2=0.626,P<0.01),而后,随着植被的恢复,生态系统碳密度增加,其中植被、土壤层碳密度呈显著线性正相关关系.根据植被碳密度与恢复时间之间的相关关系,确定以生态系统恢复、木材生产与固碳三者兼顾的合适采伐强度为30%,轮伐期为45a.  相似文献   

18.
秦岭火地塘林区3种森林类型乔木层碳密度和碳储量研究   总被引:1,自引:0,他引:1  
以秦岭火地塘林区锐齿栎(Quercus aliena var.acuteserrata)、华山松(Pinus armandi)和油松(Pinus tabulaeformis)3种主要森林类型为研究对象,通过标准地调查和生物量回归模型计算其碳储量,并在此基础上估算了碳密度以及不同器官的碳储量。结果表明:不同森林类型碳密度具有显著差异,其中锐齿栎最高(118.724t/hm2),油松次之(106.062t/hm2),华山松最低(94.227t/hm2);3种森林类型的碳储量均随着林分径级的增大呈现出上升、下降和再上升的趋势,而大径级碳储量的上升主要取决于大径级单株林木的出现,具有明显的随机性;碳储量在不同树种各器官的分布表现为:干>枝>根>皮>叶(锐齿栎),干>枝>根>叶>皮(华山松),干>枝>叶>根>皮(油松),且不同树种同一器官及同一树种不同器官之间的碳储量所占比重差异显著。  相似文献   

19.
于2012 年,对旺业甸林场进行了较为系统的野生大型真菌资源调查,先后在断木沟、新开坝、六道沟、美林、 茅荆坝等地的油松林地,落叶松林地,桦树、山杨天然混交林地及落叶松或油松、桦树、蒙古栎天然人工针阔混交林 地等采集标本350 余份。多样性分析表明:旺业甸林场野生大型真菌种类较为丰富,共发现大型真菌162 种,隶属 于2 门4 纲12 目41 科79 属。依据林型的差异,大型真菌分布的多样性和丰富度由大到小依次为天然混交林、落 叶松林、天然人工针阔混交林和油松林;分布种数最多的3 个科依次为蘑菇科、红菇科和多孔菌科;调查同时发现 内蒙古新纪录种12 个,中国新纪录种2 个,并在该地发现珍稀野生药用真菌———猪苓,极大丰富了该地区的野生 大型真菌资源,并首次提供了调查名录,为后期的保护和开发利用奠定了基础   相似文献   

20.
采用根钻法和内生长土芯法对小兴安岭阔叶红松林3种林型(云冷杉红松林、椴树红松林、蒙古栎红松林)细根(≤2 mm)的生物量、垂直分布、生产与周转进行了研究,考察了细根生物量与土壤环境的相关性。结果表明:3种林型的活细根生物量均高于死细根生物量,且随土壤深度增加而逐渐降低;0-10 cm土层,3种林型活细根生物量在幼龄林和成熟林之间差异显著;细根生物量与土壤有机碳、易氧化碳、微生物生物量碳、全氮、 C/N、含水率之间呈显著正相关,与土壤水溶性碳、 pH、容重之间呈显著负相关(P<0.05);细根年生产量在0.14-0.64 kg?m-2?a-1之间,年死亡量在0.07-1.43 kg?m-2?a-1之间,云冷杉红松林成熟林细根周转率较高(1.61 a-1),椴树红松林幼龄林细根周转率最低(0.63 a-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号