首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective —To measure pullout strength of four pin types in avian humeri and tibiotarsi bones and to compare slow-speed power and hand insertion methods.
Study Design —Axial pin extraction was measured in vitro in avian bones.
Animal Population —Four cadaver red-tailed hawks and 12 live red-tailed hawks.
Methods —The pullout strength of four fixator pin designs was measured: smooth, negative profile threaded pins engaging one or two cortices and positive profile threaded pins. Part 1: Pins were placed in humeri and tibiotarsi after soft tissue removal. Part 2: Pins were placed in tibiotarsi in anesthetized hawks using slow-speed power or hand insertion.
Results —All threaded pins, regardless of pin design, had greater pullout strength than smooth pins in all parts of the study ( P < .0001). The cortices of tibiotarsi were thicker than the cortices of humeri ( P < .0001). There were few differences in pin pullout strengths between threaded pin types within or between bone groups. There were no differences between the pullout strength of pins placed by slow-speed power or by hand.
Conclusions —There is little advantage of one threaded pin type over another in avian humeri and tibiotarsi using currently available pin designs. There were few differences in pin pullout strengths between humeri and tibiotarsi bones. It is possible that the ease of hand insertion in thin cortices minimizes the potential for wobbling and therefore minimizes the difference between slow-speed drill and hand insertion methods.
Clinical Relevance —Threaded pins have superior bone holding strength in avian cortices and may be beneficial for use with external fixation devices in birds.  相似文献   

2.
This study tested the hypothesis that two-way insertion of an external skeletal fixator trans-fixation pin would weaken the pin-bone interface. Smooth and partially threaded (end) trans-fixation pins were placed in tibiae of 32 cadavers by slow speed drilling or hand placement through a predrilled pilot hole. In one bone of each tibial pair, pins were inserted 2 cm beyond the distal cortex and retracted to a predetermined position (two-way). In the contralateral limb, the pins were inserted in one forward motion to the predetermined position (one-way). The peak force (Newtons) required to extract the pins (pull-out strength) axially at a rate of 1 mm/sec was determined by using a universal testing machine. A significant (p < .05) decrease in pull-out strength was found in pins placed by two-way insertion (674 +/- 410) as opposed to one-way insertion (766 +/- 432). The results of this in vitro study suggest that one-way insertion should be used clinically to decrease weakening of the pin-bone interface and prevent possible failure of external fixators. A significantly greater pull-out strength was found for threaded pins placed in the proximal diaphysis (1459 +/- 330 Newtons) compared to the distal metaphysis (873 +/- 297 Newtons).  相似文献   

3.
The strength and holding power of four pin designs for use with half pin (type I) external skeletal fixation were evaluated. Pins that were tested were fully threaded, nonthreaded, two cortices partially threaded, and one cortex partially threaded. The study involved three parts: (1) resistance of the pins to axial extraction immediately after insertion; (2) resistance of the pins to axial extraction 8 weeks after being inserted into the tibiae of live dogs; and (3) resistance of the pins to bending load. Pins with threads engaging two cortices were more resistant to axial extraction than nonthreaded pins in both the acute (p less than 0.0001) and chronic (p less than 0.0001) studies. Nonthreaded pins were more resistant to bending than fully threaded and two cortices partially threaded pins (p less than 0.0005). One cortex partially threaded pins possessed similar bending strength to nonthreaded pins (p = 0.21) and had 5.3 times more resistance to axial extraction in the acute study (p less than 0.0001) and 6.9 times more in the chronic study (p less than 0.0001). Though one cortex partially threaded pins were not as resistant to axial extraction as pins with threads engaging two cortices (p less than 0.0001), they were more resistant to bending loads (p less than 0.0005). Loss of holding power and pin failure are two of the most serious problems associated with fracture stabilization using external skeletal fixation. The results of this study suggest that one cortex partially threaded pins are better at maintaining holding power and resisting bending and breaking than nonthreaded pins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Objective— (1) To evaluate resistance to axial extraction of 3 pin designs in avian humerus and tibiotarsus; (2) to assess the effect of pin location within the bone on holding power; and (3) to assess the influence of thread pitch on holding power. Study Design— Resistance of pins to axial extraction was measured immediately after insertion. Animals— Adult common buzzards (Buteo buteo; n=9). Methods— Different pin designs (1 smooth; 2 threaded pins, differing in pitch) were inserted into the proximal and distal metaphysis and the proximal, middle, and distal diaphysis of the humerus and tibiotarsus. Maximum force required for axial extraction of pins was recorded. Results— Smooth pins had the lowest extraction force (P<.05). Pins inserted into the diaphysis (proximal, middle and distal) of the humerus and the distal metaphysis of the tibiotarsus had a greater pullout strength than pins in other locations. Pins with a smaller pitch inserted into the proximal diaphysis and distal metaphysis of the humerus, and the proximal metaphysis of the tibiotarsus had significantly greater holding power than pins with a larger pitch (P<.05). Conclusions— Pins inserted into the diaphysis of humerus and the distal metaphysis of the tibiotarsus are better at resisting extraction. Pins with a smaller pitch possess greater holding power than pins with a larger pitch in avian humerus and tibiotarsus. Clinical Relevance— Consideration should be given to pin location and thread pitch, when choosing external skeletal fixation to repair an avian humeral or tibiotarsal fracture.  相似文献   

5.
OBJECTIVE: To compare the in vitro holding power and associated microstructural damage of 2 large-animal centrally threaded positive-profile transfixation pins in the diaphysis of the equine third metacarpal bone. SAMPLE POPULATION: 25 pairs of adult equine cadaver metacarpal bones. PROCEDURE: Centrally threaded positive-profile transfixation pins of 2 different designs (ie, self-drilling, self-tapping [SDST] vs nonself-drilling, nonself-tapping [NDNT] transfixation pins) were inserted into the middiaphysis of adult equine metacarpal bones. Temperature of the hardware was measured during each step of insertion with a surface thermocouple. Bone and cortical width, transfixation pin placement, and cortical damage were assessed radiographically. Resistance to axial extraction before and after cyclic loading was measured using a material testing system. Microstructural damage caused by transfixation pin insertion was evaluated by scanning electron microscopy. RESULTS: The temperature following pin insertion was significantly higher for SDST transfixation pins. Periosteal surface cortical fractures were found in 50% of the bones with SDST transfixation pins and in none with NDNT transfixation pins. The NDNT transfixation pins were significantly more resistant to axial extraction than SDST transfixation pins. Grossly and microscopically, NDNT transfixation pins created less damage to the bone and a more consistent thread pattern. CONCLUSIONS AND CLINICAL RELEVANCE: In vitro analysis revealed that insertion of NDNT transfixation pins cause less macroscopic and microscopic damage to the bone than SDST transfixation pins. The NDNT transfixation pins have a greater pull out strength, reflecting better initial bone transfixation pin stability.  相似文献   

6.
Three different pin types (Ellis, enhanced threaded, and nonthreaded) were used in type 1 external skeletal fixation after transverse osteotomy of the radius and ulna in 12 skeletally mature dogs. Dogs were placed into three groups of four dogs based on the pin type used. Axial extraction forces were determined for each of the pin types after 8 weeks of weight bearing (chronic study). Nine contralateral radii were used to determine axial extraction forces for nine of each pin type not subjected to weight bearing forces (acute study). The force required for extraction of the enhanced threaded and Ellis pins in the chronic and acute studies was not significantly different. The force required to extract the nonthreaded pins was significantly less than that required for the other two pin types. Ground reaction forces had returned to levels measured before surgery by 2 weeks after surgery in the enhanced threaded and Ellis pin groups, however, dogs in the nonthreaded pin group required 4 weeks until normal ground reaction forces were measured. Radiographic evaluations 1,2,4, 6, and 8 weeks after surgery showed no difference among groups in the number of pin tract radio-lucencies, however, the enhanced threaded pins had caused more trans-cortical chip fractures than the other two pin types. None of the pins broke during the eight-week chronic study.  相似文献   

7.
A simulated lateral humeral condylar fracture was created in each of the 52 humeri collected from 26 dogs. One humerus from each pair was stabilized with a 2.0 mm cortical bone screw which was inserted in lag fashion. The other humerus from each pair was stabilized with a 2.2 mm threaded diameter Orthofix pin inserted across the condyle. Prior to each repair, an antirotational K-wire was placed and then the Pressurex Sensitive film was inserted in the osteotomy site in order to determine the compressive pressure (MPa), compressive force (KN), and area of compression (cm(2)) achieved during fixation. The maximum insertional torque achieved before stripping was measured for each implant. The mean compression generated by insertion of a 2.0 mm lag screw was 20.36 +/- 1.51 MPa compared to 18.88 +/- 1.76 MPa generated by a 2.2 mm Orthofix pin (p < 0.003). The mean area of compression generated by insertion of a 2.0 mm lag screw was 2.39 +/- 1.29 cm(2), compared to 1.16 +/- 0.84 cm(2) generated by insertion of a 2.2 mm Orthofix pin (p < 0.0001). The mean compressive force (compression x area compressed) generated by insertion of a 2.0 mm lag screw was 4.96 +/- 2.90 Kn, compared to 2.20 +/- 1.65 Kn generated by insertion of a 2.2 mm Orthofix pin (p < 0.0001). The mean insertion torque to failure for the lag screws was 0.49 +/- 0.07 NM, compared to 0.91 NM +/- 0.18 NM generated by the Orthofix pins (P < 0.0001). Both repair methods are likely to be acceptable for the repair of similar fractures in small breed dogs.  相似文献   

8.
External skeletal fixation is generally considered the best stabilization technique for immobilizing avian long bone fractures, but one of its major complications is the failure of bone-fixation pin interface or the loss of holding power. Consequently, this study is aimed at elucidating which pin design offers more pull-out strength in certain bones of the common buzzard (Buteo buteo). To achieve this objective, three pin designs (a smooth design and two negative profile threaded designs, with different thread pitch) were placed in five positions along the femur and ulna of the common buzzard. The pin pull-out strength was measured with the purpose of comparing medullary and pneumatic bones, insertion sites, and pin designs. Threaded pins with negative profile showed greater holding power than smooth pins (P < 0.05). When comparing holding power between the ulna and femur, no differences were found for smooth pins, whereas threaded pins showed more pull-out strength in the ulna than in the femur (P < 0.05). There were no differences observed related to pin location along the same bone when considering the same pin type. These results suggest that negative profile threaded pins have more holding power than smooth pins and that pneumatic bones provide less pull-out strength to negative profile threaded pins than medullary bones.  相似文献   

9.
Objectives— To describe the clinical outcome of a 4 pin lumbosacral fixation technique for lumbosacral fracture–luxations, and to refine placement technique for iliac pins based on canine cadaver studies.
Study Design— Retrospective and anatomic study.
Sample Population— Dogs (n=5) with lumbosacral fracture-luxations and 8 cadaveric canine pelvi.
Methods— Lumbosacral fracture–luxations were stabilized with a 4 pin (positive-profile threaded) and bone cement fixation. Caudal pins were inserted in the iliac body and cranial pins were inserted into the L7 or L6 pedicle and body. Follow-up examinations and radiographs were performed to assess patient outcome. Intramedullary pins were inserted into the iliac bodies of 8 cadaver pelvi. Radiographs were taken to measure pin insertion angles and define ideal insertion angles that would maximize pin purchase in the ilium.
Results— Follow-up neurologic examination was normal in 4 dogs. Radiographic healing of the fracture was evident in 5 dogs. One implant failure occurred but did not require re-operation. For cadaver iliac pins, mean craniocaudal insertion angle was 29° and mean lateromedial insertion angle was 20°.
Conclusions— Four pin and bone cement fixation effectively stabilizes lumbosacral fracture luxations. The iliac body provides ample bone stock, which can be maximized using an average craniocaudal pin trajectory of 29° and an average lateromedial pin trajectory of 20°.
Clinical Relevance— Lumbosacral fracture–luxations can be stabilized with 4 pin and bone cement fixation in the lumbar vertebrae and iliac body, using 29 and 20° as guidelines for the craniocaudal and lateromedial pin insertion angles in the ilium.  相似文献   

10.
OBJECTIVE: To compare the microstructural damage created in bone by pins with lathe-cut and rolled-on threads, and to determine the peak tip temperature and damage created by positive-profile external fixator pins with either hollow ground (HG) or trocar (T) tips during insertion. STUDY DESIGN: An acute, in vitro biomechanical evaluation. SAMPLE POPULATION: Twenty-seven canine tibiae. METHODS: Lathe-cut thread design with T point (LT-T), rolled-on thread design with T point (RT-T), and rolled-on thread design with HG point (RT-HG) pins were evaluated. Twenty pins of each type were inserted under constant drilling pressure into 12 canine tibiae (12 diaphyseal and 8 metaphyseal sites per pin type). Peak pin tip temperature, drilling energy, end-insertional pin torque, and pullout force were measured for each pin. For the histologic study, five pins of each type were inserted into cortical and cancellous sites in 15 additional tibiae. Entry and exit damage, and thread quality were assessed from 100 micron histologic sections by using computer-interfaced videomicroscopy. RESULTS: T-tipped pins reached higher tip temperature in both diaphyseal and metaphyseal bone compared with HG-tipped pins. RT-T pins had higher pullout strength (diaphyseal) and end-insertional torque compared with other combinations. No differences in drilling energy or insertional bone damage was found between the three pin types (P < .05). CONCLUSIONS: T-tipped pins mechanically outperformed HG-tipped pins. Pin tip and thread design did not significantly influence the degree of insertional bone damage. CLINICAL RELEVANCE: T-tipped pins may provide the best compromise between thermal damage and interface friction for maximizing performance of threaded external fixator pins.  相似文献   

11.
Application of external skeletal fixation involves preoperative assessment of the fracture with regards to healing potential of the bone and stabilizing requirements of the fixator. The fixator can be used alone or with supplemental (IM pin, cerclage, hemicerclage, Kirschner wires, bone screws) fixation to counteract shear, bending, and torsional forces at the fracture site. In addition, cancellous bone grafting can be used to enhance fracture healing. Rigid frames should be based on predrilling pilot holes followed by slow speed or hand insertion of smooth and threaded pins. Precise knowledge of regional anatomy precludes iatrogenic neurovascular or muscular tissue damage, which, subsequently, improves patient morbidity. Postoperative care of the fixator consists of bulky wraps to control pin-skin motion and cleaning of pin tract drainage sites. "Dynamization" or bone loading can be performed during fracture healing to stimulate osteosynthesis. This involves staged disassembly and reduction of frames by removing pins and connecting rods.  相似文献   

12.
OBJECTIVE: To evaluate in vitro holding power and associated microstructural and thermal damage from placement of positive-profile transfixation pins in the diaphysis and metaphysis of the equine third metacarpal bone. SAMPLE POPULATION: Third metacarpal bones from 30 pairs of adult equine cadavers. PROCEDURE: Centrally threaded positive-profile transfixation pins were placed in the diaphysis of 1 metacarpal bone and the metaphysis of the opposite metacarpal bone of 15 pairs of bones. Tensile force at failure for axial extraction was measured with a materials testing system. An additional 15 pairs of metacarpal bones were tested similarly following cyclic loading. Microstructural damage was evaluated via scanning electron microscopy in another 6 pairs of metacarpal bones, 2 pairs in each of the following 3 groups: metacarpal bones with tapped holes and without transfixation pin placement, metacarpal bones following transfixation pin placement, and metacarpal bones following transfixation pin placement and cyclic loading. Temperature of the hardware was measured with a surface thermocouple in 12 additional metacarpal bones warmed to 38 C. RESULTS: The diaphysis provided significantly greater resistance to axial extraction than the metaphysis. There were no significant temperature differences between diaphyseal and metaphyseal placement. Microstructural damage was limited to occasional microfractures seen only in cortical bone of diaphyseal and metaphyseal locations. Microfractures originated during drilling and tapping but did not worsen following transfixation pin placement or cyclic loading. CONCLUSIONS AND CLINICAL RELEVANCE: Centrally threaded, positive-profile transfixation pins have greater resistance to axial extraction in the diaphysis than in the metaphysis of equine third metacarpal bone in vitro. This information may be used to create more stable external skeletal fixation in horses with fractures.  相似文献   

13.
OBJECTIVE: To determine the effect of 2 hydroxyapatite pin coatings on heat generated at the bone-pin interface and torque required for insertion of transfixation pins into cadaveric equine third metacarpal bone. SAMPLE POPULATION: Third metacarpal bone pairs from 27 cadavers of adult horses. PROCEDURES: Peak temperature of the bone at the cis-cortex and the hardware and pin at the trans-cortex was measured during insertion of a plasma-sprayed hydroxyapatite (PSHA)-coated, biomimetic hydroxyapatite (BMHA)-coated, or uncoated large animal transfixation pin. End-insertional torque was measured for each pin. The bone-pin interface was examined grossly and histologically for damage to the bone and coating. RESULTS: The BMHA-coated transfixation pins had similar insertion characteristics to uncoated pins. The PSHA-coated pins had greater mean peak bone temperature at the cis-cortex and greater peak temperature at the trans-cortex (70.9 +/- 6.4(o)C) than the uncoated pins (38.7 +/- 8.4(o)C). The PSHA-coated pins required more insertional torque (10,380 +/- 5,387.8 Nmm) than the BMHA-coated pins (5,123.3 +/- 2,296.9 Nmm). Four of the PSHA-coated pins became immovable after full insertion, and 1 gross fracture occurred during insertion of this type of pin. CONCLUSIONS AND CLINICAL RELEVANCE: The PSHA coating was not feasible for use without modification of presently available pin hardware. The BMHA-coated pins performed similarly to uncoated pins. Further testing is required in an in vivo model to determine the extent of osteointegration associated with the BMHA-coated pins in equine bone.  相似文献   

14.
The most common indications for the use of ESF in femoral fractures are closed transverse, short oblique, and minimally comminuted fractures in the central one third of the bone. External skeletal fixation is usually used in combination with IM pins and wiring techniques. During the process of open reduction and internal fixation, the surgeon should strive for accurate anatomic alignment and stability at the fracture site. The fixator is applied after the internal fixation is in place and the surgical wound is closed. The number of fixation pins placed in each fracture fragment depends on the type of fracture and the stability gained by internal fixation. Partially threaded fixation pins are recommended. They are inserted through skin stab incisions with low-speed power equipment. Recent modifications of the Type Ia fixator may increase fixator rigidity. Important postoperative concerns include exercise restriction, pin tract care, and protection of the fixator from the environment. Complications associated with ESF can be minimized by realizing its indications and limitations.  相似文献   

15.
Comparison was made of the holding power of orthopedic screws inserted self-tapped or after pre-tapping in foal bone. Third metacarpal and metatarsal bones were used. Comparative trials were made between screws inserted at the same site in the corresponding bones from the contralateral limbs of the same foal. A MTS servohydraulic tensile testing machine was used to perform screw pullouts at a displacement rate of 19 mm/sec. The 5.5 mm cortical screws had significantly greater holding power than 6.5 mm cancellous screws when both were inserted self-tapped (p = 0.0056). Pre-tapped insertion of 5.5 mm screws produced a significantly greater holding power than self-tapped insertion of 5.5 mm screws (p = 0.018). Pre-tapped insertion of 6.5 mm screws produced a significantly greater holding power than self-tapped insertion of 6.5 mm screws (p = 0.0000). In internal fixation of fractures in foals, insertion of 5.5 mm and 6.5 mm screws pre-tapped in metaphyseal bone is recommended because it produces greater holding power than self-tapped insertion.  相似文献   

16.
Objective —To compare the insertional characteristics of external fixator pins with hollow ground (HG), modified HG, and trocar (T) points.
Study Design —An acute, in vitro biomechanical evaluation.
Sample Population—Thirteen radii from canine cadavers.
Methods —A total of 16 T-tipped and 16 HG-tipped pins were inserted into 8 canine radii. Ten pins of each modification of the HG tip (length of the cutting edge reduced by 0.127 mm and 0.254 mm, respectively) were inserted into another five radii. All pins were inserted with low-speed power drilling and 80 N drilling load. Differences between peak tip temperature, drilling energy, and pullout force were determined for each pin type at both diaphyseal and metaphyseal locations.
Results —HG-tipped pins showed a 40% lower tip temperature in diaphyseal bone, a 25% reduction in drilling energy in diaphyseal bone, and a reduction of pullout force in both diaphyseal (65%) and metaphyseal (50%) bone compared with T-tipped pins. HG 0.254-mm pins generated higher tip temperatures and had greater pullout than HG pins in diaphyseal bone.
Conclusions —The HG tip was a more efficient design; however, the reduction in pullout force suggests that, because a better hole was drilled, radial preload is reduced. Reduction of the cutting edge by 0.254 mm increased the pullout force but also increased the temperatures.
Clinical Relevance —Thermal and microstructural damage are reduced by the HG tip, but pin-bone interface stability is also compromised. The use of a tip with 0.254 mm reduction in the cutting edge may optimize the biological and mechanical factors at the pin-bone interface.  相似文献   

17.
The Kirschner-Ehmer splint can be used to treat open, infected or highly comminuted fractures, gunshot fractures, nonunions, delayed unions, mandibular fractures and angular deformities in association with osteotomy, as well as to immobilize joints and as an adjunct to other fixation devices. After the fracture is reduced, 2-4 percutaneous pins are inserted with a Jacobs hand chuck through one or both cortices at 45-60 degrees to the longitudinal axis of the bone and attached to a connecting bar with clamps. Complications are minimized by not inserting the pin through large muscle masses, the fracture hematoma, large blood vessels or the incision line, avoiding encroachment of soft tissue with the clamps, and restricting the animal's activity during healing.  相似文献   

18.
OBJECTIVE: To compare screw insertion variables and pullout mechanical properties between AO 6.5-mm cancellous and 7.3-mm cannulated bone screws in foal femoral bone. STUDY DESIGN: A paired, in vitro mechanical study. SAMPLE POPULATION: Seven pairs of femora from immature (1-7 months) foals. METHODS: The 6.5 cancellous and 7.3-mm cannulated screws were inserted at standardized proximal and distal metaphyseal, and mid-diaphyseal locations. Insertion torque, force, and time to drill, tap (6.5-mm cancellous), guide wire insertion (7.3-mm cannulated), and screw insertion were measured. Screw pullout properties (yield and failure load, displacement, and energy, and stiffness) were determined from mechanical tests. The effects of screw type and location on insertion variables and pullout properties were assessed with repeated measures ANOVA. Pairwise comparisons were examined with post hoc contrasts. Significance was set at P<.05 for all comparisons. RESULTS: Insertion torques for the 7.3-mm cannulated screws were significantly greater than for the 6.5-mm tap, but significantly lower than for the 6.5-mm cancellous screws. Total screw insertion times were similar. Pullout properties of both screws were similar at each femoral location. The holding power of both screws was significantly greater in the mid-diaphysis than in either metaphyseal location. Pullout failure occurred by bone shearing at the bone-screw interface in all specimens. CONCLUSIONS: The 6.5-mm cancellous and 7.3-mm cannulated screws vary in insertion properties, but have similar pullout properties in the mid-diaphysis, proximal, and distal metaphysis of foal femora. Both screw types have greater holding power at the mid-diaphyseal location compared with metaphyseal locations. Based on overall similar holding powers of 6.5-mm cancellous and 7.3-mm cannulated screws, it is unlikely that increasing the screw diameter beyond 6.5 mm will provide increased holding power in foal femoral bone. CLINICAL RELEVANCE: Use of the 7.3-mm cannulated screw should be considered for foal femoral fracture repair when greater accuracy is needed, or when bone threads for the 6.5-mm cancellous screw have been stripped.  相似文献   

19.
Objective—To determine and compare the in vitro pullout strength of 5.5-mm cortical versus 6.5-mm cancellous bone screws inserted in the diaphysis and metaphysis of adult equine third metacarpal (MCIII) bones, in threaded 4.5-mm cortical bone screw insertion holes that were then overdrilled with a 4.5-mm drill bit to provide information relevant to the selection of a replacement screw if a 4.5-mm cortical screw is stripped. Study Design—In vitro pullout tests of 5.5-mm cortical and 6.5-mm cancellous screws in equine MCIII bones. Sample Population—Two independent cadaver studies each consisting of 14 adult equine MCIII bones. Methods—Two 4.5-mm cortical screws were placed either in the middiaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5-mm drill bit and had either a 5.5-mm cortical or a 6.5-mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/second until screw or bone failure occurred. Results—In diaphyseal bone, the screws failed in all tests. Tensile breaking strength for 5.5-mm cortical screws (997.5 ± 49.3 kg) and 6.5-mm cancellous screws (931.6 ± 19.5 kg) was not significantly different. In metaphyseal bone, the bone failed in all tests. The holding power for 6.5-mm cancellous screws (39.1 ± 4.9 kg/mm) was significantly greater than 5.5-mm cortical screws (23.5 ± 3.5 kg/mm) in the metaphysis. There was no difference in the tensile breaking strength of screws in the diaphysis between proximal and distal screw holes; however, the holding power was significantly greater in the distal, compared with the proximal, metaphyseal holes. Conclusions—Although tensile breaking strength was not different between 5.5-mm cortical and 6.5-mm cancellous screws in middiaphyseal cortical bone, holding power of 6.5-mm cancellous screws was greater than 5.5-mm cortical screws in metaphyseal bone of adult horses. Clinical Relevance—If a 4.5-mm cortical bone screw strips in MCIII diaphyseal bone of adult horses, either a 5.5-mm cortical or 6.5-mm cancellous screw, however, would have equivalent pullout strengths. A 6.5-mm cancellous screw, however, would provide greater holding power than a 5.5-mm cortical screw in metaphyseal bone.  相似文献   

20.
Paired equine third metacarpal bones were drilled and tapped for 4.5 mm and 5.5 mm cortical screws. Tapping was done by hand or with an air-driven reversible orthopedic drill. Screws were inserted and subjected to extraction forces to failure of the osseous threads or the screws. There was no difference in holding power of either screw size between hand-tapped and power-tapped holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号