首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sudden touch on one hand can improve vision near that hand, revealing crossmodal links in spatial attention. It is often assumed that such links involve only multimodal neural structures, but unimodal brain areas may also be affected. We tested the effect of simultaneous visuo-tactile stimulation on the activity of the human visual cortex. Tactile stimulation enhanced activity in the visual cortex, but only when it was on the same side as a visual target. Analysis of effective connectivity between brain areas suggests that touch influences unimodal visual cortex via back-projections from multimodal parietal areas. This provides a neural explanation for crossmodal links in spatial attention.  相似文献   

2.
Inferior temporal (IT) cortex is critical for visual memory, but it is not known how IT neurons retain memories while new information is streaming into the visual system. Single neurons were therefore recorded from IT cortex of two rhesus monkeys performing tasks that required them to hold items in memory while concurrently viewing other items. The neuronal response to an incoming visual stimulus was attenuated if it matched a stimulus actively held in working memory, even when several other stimuli intervened. The neuronal response to novel stimuli declined as the stimuli became familiar to the animal. IT neurons appear to function as adaptive mnemonic "filters" that preferentially pass information about new, unexpected, or not recently seen stimuli.  相似文献   

3.
Shuler MG  Bear MF 《Science (New York, N.Y.)》2006,311(5767):1606-1609
We discovered that when adult rats experience an association between visual stimuli and subsequent rewards, the responses of a substantial fraction of neurons in the primary visual cortex evolve from those that relate solely to the physical attributes of the stimuli to those that accurately predict the timing of reward. In addition to revealing a remarkable type of response plasticity in adult V1, these data demonstrate that reward-timing activity-a "higher" brain function-can occur very early in sensory-processing paths. These findings challenge the traditional interpretation of activity in the primary visual cortex.  相似文献   

4.
Unexpected, biologically salient stimuli elicit a short-latency, phasic response in midbrain dopaminergic (DA) neurons. Although this signal is important for reinforcement learning, the information it conveys to forebrain target structures remains uncertain. One way to decode the phasic DA signal would be to determine the perceptual properties of sensory inputs to DA neurons. After local disinhibition of the superior colliculus in anesthetized rats, DA neurons became visually responsive, whereas disinhibition of the visual cortex was ineffective. As the primary source of visual afferents, the limited processing capacities of the colliculus may constrain the visual information content of phasic DA responses.  相似文献   

5.
Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual V1 neurons, increases the sparseness of the population response distribution, and strongly decorrelates the responses of neuron pairs. These effects are due to both excitatory and suppressive modulation of the classical receptive field by the nonclassical receptive field and do not depend critically on the spatiotemporal structure of the stimuli. During natural vision, the classical and nonclassical receptive fields function together to form a sparse representation of the visual world. This sparse code may be computationally efficient for both early vision and higher visual processing.  相似文献   

6.
A map of visual space induced in primary auditory cortex   总被引:7,自引:0,他引:7  
Maps of sensory surfaces are a fundamental feature of sensory cortical areas of the brain. The relative roles of afferents and targets in forming neocortical maps in higher mammals can be examined in ferrets in which retinal inputs are directed into the auditory pathway. In these animals, the primary auditory cortex contains a systematic representation of the retina (and of visual space) rather than a representation of the cochlea (and of sound frequency). A representation of a two-dimensional sensory epithelium, the retina, in cortex that normally represents a one-dimensional epithelium, the cochlea, suggests that the same cortical area can support different types of maps. Topography in the visual map arises both from thalamocortical projections that are characteristic of the auditory pathway and from patterns of retinal activity that provide the input to the map.  相似文献   

7.
Researchers haven't known exactly where in the brain all the signals that allow an animal to keep track of its limbs are located, but now a team may have located some of the neurons that first make these multisensory connections. On page 1782, researchers report evidence that a small region of the parietal cortex of the monkey brain known as area 5 may enable the monkey to integrate many sources of information about its body and thereby update its mental model of what the body is doing. The researchers based this conclusion on their finding that some area 5 neurons fire at their fastest rates when the visual feedback from a monkey's arm matches the sensory feedback, an indication that the neurons are sensitive to both streams of information.  相似文献   

8.
The organization of the visual cortex has been considered to be highly stable in adult mammals. However, 5 degrees to 10 degrees lesions of the retina in the contralateral eye markedly altered the systematic representations of the retina in primary and secondary visual cortex when matched inputs from the ipsilateral eye were also removed. Cortical neurons that normally have receptive fields in the lesioned region of the retina acquired new receptive fields in portions of the retina surrounding the lesions. The capacity for such changes may be important for normal adjustments of sensory systems to environmental contingencies and for recoveries from brain damage.  相似文献   

9.
Schummers J  Yu H  Sur M 《Science (New York, N.Y.)》2008,320(5883):1638-1643
Astrocytes have long been thought to act as a support network for neurons, with little role in information representation or processing. We used two-photon imaging of calcium signals in the ferret visual cortex in vivo to discover that astrocytes, like neurons, respond to visual stimuli, with distinct spatial receptive fields and sharp tuning to visual stimulus features including orientation and spatial frequency. The stimulus-feature preferences of astrocytes were exquisitely mapped across the cortical surface, in close register with neuronal maps. The spatially restricted stimulus-specific component of the intrinsic hemodynamic mapping signal was highly sensitive to astrocyte activation, indicating that astrocytes have a key role in coupling neuronal organization to mapping signals critical for noninvasive brain imaging. Furthermore, blocking astrocyte glutamate transporters influenced the magnitude and duration of adjacent visually driven neuronal responses.  相似文献   

10.
Attention helps us process potentially important objects by selectively increasing the activity of sensory neurons that represent the relevant locations and features of our environment. This selection process requires top-down feedback about what is important in our environment. We investigated how parietal cortical output influences neural activity in early sensory areas. Neural recordings were made simultaneously from the posterior parietal cortex and an earlier area in the visual pathway, the medial temporal area, of macaques performing a visual matching task. When the monkey selectively attended to a location, the timing of activities in the two regions became synchronized, with the parietal cortex leading the medial temporal area. Parietal neurons may thus selectively increase activity in earlier sensory areas to enable focused spatial attention.  相似文献   

11.
Incoming sensory information is often ambiguous, and the brain has to make decisions during perception. "Predictive coding" proposes that the brain resolves perceptual ambiguity by anticipating the forthcoming sensory environment, generating a template against which to match observed sensory evidence. We observed a neural representation of predicted perception in the medial frontal cortex, while human subjects decided whether visual objects were faces or not. Moreover, perceptual decisions about faces were associated with an increase in top-down connectivity from the frontal cortex to face-sensitive visual areas, consistent with the matching of predicted and observed evidence for the presence of faces.  相似文献   

12.
Human motor cortex: sensory input data from single neuron recordings   总被引:6,自引:0,他引:6  
Recordings were made from single neurons in the hand area of the human motor cortex while peripheral physiologic stimuli were applied. Such cells responded only to active and passive hand movements. Tactile and autditory (click) stimuli were itneffective. The majority of cells were activated only by movements of the contralateral hand, but a significant number (4 of 16) could be excited if a given movement was made by either hand. Of the cells responding to active movement, some showed an increased discharge before onset of the voluntary action. Such cells were excited by the same movement executed passively, a result that indicates sensory feedback from receptors activated by that movement.  相似文献   

13.
Physiological evidence for serial processing in somatosensory cortex   总被引:10,自引:0,他引:10  
Removal of the representation of a specific body part in the postcentral cortex of the macaque resulted in the somatic deactivation of the corresponding body part in the second somatosensory area. In contrast, removal of the entire second somatosensory area had no grossly detectable effect on the somatic responsivity of neurons in the postcentral cortex. This direct electrophysiological evidence for serial cortical processing in somesthesia is similar to that found earlier for vision and, taken together with recent anatomical evidence, suggests that there is a common cortical plan for the processing of sensory information in the various sensory modalities.  相似文献   

14.
Selective attention gates visual processing in the extrastriate cortex   总被引:56,自引:0,他引:56  
Single cells were recorded in the visual cortex of monkeys trained to attend to stimuli at one location in the visual field and ignore stimuli at another. When both locations were within the receptive field of a cell in prestriate area V4 or the inferior temporal cortex, the response to the unattended stimulus was dramatically reduced. Cells in the striate cortex were unaffected by attention. The filtering of irrelevant information from the receptive fields of extrastriate neurons may underlie the ability to identify and remember the properties of a particular object out of the many that may be represented on the retina.  相似文献   

15.
A goal in visual neuroscience is to reveal how the visual system reconstructs the three-dimensional (3D) representation of the world from two-dimensional retinal images. Although the importance of texture gradient cues in the process of 3D vision has been pointed out, most studies concentrate on the neural process based on binocular disparity. We report the neural correlates of depth perception from texture gradient in the cortex. In the caudal part of the lateral bank of intraparietal sulcus, many neurons were selective to 3D surface orientation defined by texture gradient, and their response was invariant over different types of texture pattern. Most of these neurons were also sensitive to a disparity gradient, suggesting that they integrate texture and disparity gradient signals to construct a generalized representation of 3D surface orientation.  相似文献   

16.
Attention can be focused volitionally by "top-down" signals derived from task demands and automatically by "bottom-up" signals from salient stimuli. The frontal and parietal cortices are involved, but their neural activity has not been directly compared. Therefore, we recorded from them simultaneously in monkeys. Prefrontal neurons reflected the target location first during top-down attention, whereas parietal neurons signaled it earlier during bottom-up attention. Synchrony between frontal and parietal areas was stronger in lower frequencies during top-down attention and in higher frequencies during bottom-up attention. This result indicates that top-down and bottom-up signals arise from the frontal and sensory cortex, respectively, and different modes of attention may emphasize synchrony at different frequencies.  相似文献   

17.
During development, formation of topographic maps in sensory cortex requires precise temporal binding in thalamocortical networks. However, the physiological substrate for such synchronization is unknown. We report that early gamma oscillations (EGOs) enable precise spatiotemporal thalamocortical synchronization in the neonatal rat whisker sensory system. Driven by a thalamic gamma oscillator and initially independent of cortical inhibition, EGOs synchronize neurons in a single thalamic barreloid and corresponding cortical barrel and support plasticity at developing thalamocortical synapses. We propose that the multiple replay of sensory input in thalamocortical circuits during EGOs allows thalamic and cortical neurons to be organized into vertical topographic functional units before the development of horizontal binding in adult brain.  相似文献   

18.
Fu YX  Djupsund K  Gao H  Hayden B  Shen K  Dan Y 《Science (New York, N.Y.)》2002,296(5575):1999-2003
The circuitry and function of mammalian visual cortex are shaped by patterns of visual stimuli, a plasticity likely mediated by synaptic modifications. In the adult cat, asynchronous visual stimuli in two adjacent retinal regions controlled the relative spike timing of two groups of cortical neurons with high precision. This asynchronous pairing induced rapid modifications of intracortical connections and shifts in receptive fields. These changes depended on the temporal order and interval between visual stimuli in a manner consistent with spike timing-dependent synaptic plasticity. Parallel to the cortical modifications found in the cat, such asynchronous visual stimuli also induced shifts in human spatial perception.  相似文献   

19.
In crowded visual scenes, attention is needed to select relevant stimuli. To study the underlying mechanisms, we recorded neurons in cortical area V4 while macaque monkeys attended to behaviorally relevant stimuli and ignored distracters. Neurons activated by the attended stimulus showed increased gamma-frequency (35 to 90 hertz) synchronization but reduced low-frequency (<17 hertz) synchronization compared with neurons at nearby V4 sites activated by distracters. Because postsynaptic integration times are short, these localized changes in synchronization may serve to amplify behaviorally relevant signals in the cortex.  相似文献   

20.
Long-term potentiation in the motor cortex   总被引:4,自引:0,他引:4  
Long-term potentiation (LTP) is a model for learning and memory processes. Tetanic stimulation of the sensory cortex produces LTP in motor cortical neurons, whereas tetanization of the ventrolateral nucleus of the thalamus, which also projects to the motor cortex, does not. However, after simultaneous high-frequency stimulation of both the sensory cortex and the ventrolateral nucleus of the thalamus, LTP of thalamic input to motor cortical neurons is induced. This associative LTP occurs only in neurons in the superficial layers of the motor cortex that receive monosynaptic input from both the sensory cortex and the ventrolateral nucleus of the thalamus. Associative LTP in the motor cortex may constitute a basis for the retention of motor skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号