首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
The survival in drain water of two strains of Ralstonia solanacearum and three strains of Ralstonia pseudosolanacearum, including two strains able to cause wilt in roses, was determined. Water draining from drip‐irrigated rock wool mats on which roses were grown was supplemented with the pathogen and survival was monitored at 4, 12, 20 and 28°C for up to 112 days. All strains were able to survive for at least 112 days in drain water at 12 and 20°C, but at 4°C maximum survival was 56 days. At 28°C, the survival period was strain dependent, but was at least 56 days. Populations declined gradually in non‐sterile drain water to a low level (maximum 100 cfu mL?1 after 112 days). In sterile drain water (autoclaved prior to addition of populations), no or only a limited decline in populations was found at 112 days, dependent on strain and temperature. Drain water that tested negative for Ralstonia in the dilution plating assay was tested for the presence of cells in a viable but non‐culturable state (VBNCs). Tomato plants were inoculated, but no symptoms developed, and plants sampled 22 days post‐inoculation were negative in a plating assay. Therefore, no indications were found that VBNCs were present.  相似文献   

2.
Chinese rose (Rosa chinensis) is one of the most popular and widely cultivated flowers worldwide and has extremely high economic and ornamental value. In 2020 wilt disease on R. chinensis was discovered in Pukou District, Nanjing, Jiangsu Province, China. Fungal isolates were obtained from the stems of the rose. According to morphological characteristics and multilocus phylogenetic analyses with the sequences of the rDNA internal transcribed spacer (ITS), translation elongation factor 1-α gene (TEF1-α), and part of the RNA polymerase II gene (RPB2), the isolates YJ1 to YJ4 were determined as a new species of Fusarium solani species complex, and named as Fusarium rosicola sp. nov., which is hereby described and illustrated. Pathogenicity of the isolate YJ1 was verified by Koch's postulates. The fungus was determined as the pathogen causing rose vascular wilt. The isolate YJ1 was labelled with green fluorescent protein (GFP), and roots of R. chinensis were inoculated. The result showed that the fungus infected the vascular tissue of the host plants and caused withering of the above-ground parts, resulting in the death of the whole plant. The GFP-labelled pathogen was reisolated from the stems and foliage, proving that this is a newly emerged systemic disease on R. chinensis in the world.  相似文献   

3.
Viral movement in the leaf tissues of a resistant host, Cucumis figarei, inoculated with the pepo strain of Cucumber mosaic virus (CMV) and incubated at 24°C or 36°C was investigated by fluorescence in situ hybridization (FISH), leaf-press blotting, tissue printing and immunogold-silver staining techniques. Observation by FISH revealed that at 24°C most infection sites with CMV at 0.01 mg/ml or 0.1 mg/ml were limited to a single cell during the incubation period, that the number of infection sites increased from 24hpi (hours post inoculation) to 80 hpi in the leaves inoculated with CMV at 0.5 mg/ml, and that the size as well as the number of infection sites rapidly increased with time in the leaves inoculated with CMV at 2.0 mg/ml. These results suggested that one factor for the resistance of C. figarei at 24°C might be an inhibition of viral movement in and out of the infection sites. Leaf-press blotting and tissue blotting indicated that CMV remained in the infection sites at 24°C, whereas it spread from the inoculated leaves to other parts of the plants through vascular systems at 36°C. Immunogold-silver staining demonstrated that at 24°C CMV infected bundle sheath (BS) cells in minor veins, whereas at 36°C it invaded not only BS cells, but also phloem parenchyma (PP)/ companion cell (CC) or PP/intermediary cell (IC) complexes in minor veins in the regions with chlorotic symptoms. These results indicated that at 24°C CMV had difficulty in passing through the interface between BS and PP/CC or PP/ IC complexes and that viral entry from mesophyll to the phloem pathway was inhibited in the inoculated leaves. Received 26 August 1999/ Accepted in revised form 14 December 1999  相似文献   

4.
Experiments are presented which show that Botrytis cinerea, the cause of grey mould disease, is often present in symptomless lettuce plants as a systemic, endophytic, infection which may arise from seed. The fungus was isolated on selective media from surface-sterilised sections of roots, stem pieces and leaf discs from symptomless plants grown in a conventional glasshouse and in a spore-free air-flow provided by an isolation propagator. The presence of B. cinerea was confirmed by immuno-labelling the tissues with the Botrytis-specific monoclonal antibody BC-12.CA4. As plants grew, infection spread from the roots to stems and leaves. Surface-sterilisation of seeds reduced the number of infected symptomless plants. Artificial infection of seedlings with dry conidia increased the rate of infection in some experiments. Selected isolates were genetically finger-printed using microsatellite loci. This confirmed systemic spread of the inoculating isolates but showed that other isolates were also present and that single plants hosted multiple isolates. This shows that B. cinerea commonly grows in lettuce plants as an endophyte, as has already been shown for Primula. If true for other hosts, the endophytic phase may be as important a component of the species population as the aggressive necrotrophic phase.  相似文献   

5.
The effect of cultivation temperatures on the resistance reaction to three Potato virus Y strains (PVYO, PVYN and PVYNTN) in potato cultivars carrying Rychc was examined. When potato plants carrying Rychc were cultivated at 22 °C, a few small necrotic spots developed on inoculated leaves by 5 days after mechanical inoculation (dpi), and systemic infection of a few symptomless plants was confirmed at 28 dpi by IC‐RT‐PCR. At 28 °C, distinct necrotic spots developed on inoculated leaves by 5 dpi, and systemic symptoms occasionally appeared at 28 dpi. Thus, high temperature weakens Rychc‐conferred resistance. However, the incidence of systemic infection and the titre of virus in resistant cultivars at 28 °C were lower than in a susceptible cultivar. In graft inoculation under high summer temperatures, some plants developed necrosis on the leaves and stem, but PVY was barely detected by RT‐PCR in leaves on potato carrying Rychc. When seedlings from progeny tubers of plants that were inoculated with PVY and grown in a greenhouse at >30 °C in the daytime were examined by ELISA and IC‐RT‐PCR, PVY was not detected in cultivars carrying Rychc. These results show that Rychc confers an extreme resistance to PVY strains occurring in Japan.  相似文献   

6.
Candidatus Liberibacter solanacearum’ was recently described as the causal agent of potato zebra chip disease. This pathogen occurs in North America, New Zealand, and Northern Europe on various crops, and may spread to other potato growing regions. Observation on ‘Ca. L. solanacearum’‐infected tomato and potato plants propagated in growth chambers over 5 years indicated that tomato plants (cvs Moneymaker and Roma) can be a latent carrier of ‘Ca. L. solanacearum’. Tomato plants graft‐inoculated with scions from latently infected tomato plants remained symptomless, but tested positive in a species specific PCR assay. ‘Ca. L. solanacearum’ was consistently detected in the top, middle and bottom portion of the symptomless tomato plants, including stem, petiole, midrib, vein, flowers and fruits. In tomato fruits, ‘Ca. L. solanacearum’ was evenly distributed in the tissues at the peduncle and style ends, as well as in the pericarp, and columella placenta tissues. This is the first report that ‘Ca. L. solanacearum’ is present in a plant reproductive organ. In contrast, potato plants (cvs. Jemseg, Atlantic, Shepody, Frontier Russet, Russet Burbank, Red Pontiac, and Russet Norkotah) grafted with scions from the same latently infected tomato plants resulted in typical symptoms of purple top, leaf scorch, and other disease symptoms in plants and brown discoloration in the vascular ring and medullary rays in tubers.  相似文献   

7.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   

8.
A strain of Cucumber mosaic virus (CMV-D8) systemically infects Japanese radish (Raphanus sativus), but the Y strain of CMV (CMV-Y) only infects the inoculated leaves. Both of these strains cause severe systemic mosaic on the plants after dual infection with Turnip mosaic virus (TuMV). Synergistic interactions on long-distance transport of CMV-Y and CMV-D8 with TuMV were analyzed using an immunobinding assay. Direct tissue blots probed with either anti-CMV-Y or anti-TuMV antiserum clearly showed that CMV-Y efficiently spread and accumulated in the tissues of noninoculated upper leaves and roots when co-inoculated with TuMV, and that long-distance movement of CMV-D8 was enhanced by the presence of TuMV. Received 16 September 1999/ Accepted in revised form 5 February 2000  相似文献   

9.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

10.
The sweet potato (Ipomoea batatas) is characterized by the production of tuberous roots rich in starch and is one of the most produced and consumed vegetables in Brazil. Botryosphaeriaceae, among other fungi, are known to cause root and stem rot of sweet potato. However, no representative and accurate study has been performed for the correct identification of these fungal species in sweet potato in Brazil. Therefore, this study aimed to identify the Botryosphaeriaceae species associated with root and stem rot of sweet potato and confirm their pathogenicity. Tuberous roots and stems of sweet potato with rot symptoms were collected in production fields and markets and used for fungal isolations. The identification of fungi was based on the morphology of reproductive structures and phylogenetic analyses of the gene regions ITS, tef1-α, and rpb2. The following species were identified: Lasiodiplodia theobromae, L. hormozganensis, Macrophomina phaseolina, M. euphorbiicola, M. pseudophaseolina, and Neoscytalidium dimidiatum. For the pathogenicity test, one representative isolate for each species was inoculated in healthy tuberous roots and in 30-day-old healthy seedlings. Black and necrotic lesions on tuberous roots and stems were observed in all replications and resulted in the death of some seedlings. This is the first report of L. hormozganensis, M. pseudophaseolina, and M. euphorbiicola, as causal agents of the stem and root rot of sweet potato and N. dimidiatum as a causal agent of stem rot worldwide.  相似文献   

11.
Pepino mosaic virus (PepMV) was shown to be efficiently transmitted between tomato plants grown in a closed recirculating hydroponic system. PepMV was detected in all plant parts after transmission via contaminated nutrient solution using ELISA, immunocapture RT‐PCR, RT‐PCR, electron microscopy, and by inoculation to indicator plants. Detection of PepMV in nutrient solution was only possible after concentration by ultracentrifugation followed by RT‐PCR. Roots tested positive for PepMV 1–3 weeks after inoculation, and subsequently a rapid spread from the roots into the young leaves and developing fruits was found within 1 week. PepMV was only occasionally detected in the older leaves. None of the infected plants showed any symptoms on fruits, leaves or other organs. Pre‐infection of roots of tomato cv. Hildares with Pythium aphanidermatum significantly delayed PepMV root infections. When mechanically inoculated with PepMV at the 2–4 leaf stage, yield loss was observed in all plants. However, only plants of cv. Castle Rock recorded significant yield losses when infected via contaminated nutrient solution. Yield losses induced by infection with PepMV and/or P. aphanidermatum ranged from 0·4 up to 40% depending on experimental conditions.  相似文献   

12.
Olive knot disease is characterised by the development of galls on Olea europaea stems as a result of infection by Pseudomonas savastanoi pv. savastanoi. Protein differential accumulation during the first week of infection was studied using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry to investigate the biochemical changes occurring in infected tissues and to understand the factors involved in bacteria pathogenesis and plant response to infection. Common infection symptoms were obtained in 1 year-old plants of two Portuguese cultivars, ‘Galega’ and ‘Cordovil de Serpa’ using the strain NCPPB 2327. The comparison of protein patterns of non-inoculated stem tissues, stem tissues inoculated with water or with the strain NCPPB 2327 led to the detection of differentially expressed infection-related proteins. Moreover a distinct protein pattern was obtained between cultivars in response to infection. The differential protein expression was characterised by qualitative and quantitative variation. Among the differentially expressed proteins were the bacterial P. savastanoi orthologues of outer membrane porin F, the tellurium resistance protein, aconitate hydratase 2 and a hypothetical protein with unknown function. From O. europaea, protein orthologues of enolase and calcium-dependent protein kinase were found to be differentially expressed. Results are discussed in the context of the molecular basis of plant–pathogen interactions in the search for markers for the presence of the bacterium in plant tissues.  相似文献   

13.
Root rot symptoms were observed in fields of alfalfa in Chifeng city, Inner Mongolia, China in 2016. Disease incidences of seven alfalfa varieties planted in 2014 ranged from 56% to 95%, while incidence of Gongnong No. 1 planted in 2016 was 8%, 31% and 76% in 2016, 2017 and 2018, respectively. Paraphoma isolates were consistently recovered from black necrotic root tissues of diseased plants with a frequency of 77.1%. Based on morphological characters and phylogenetic analysis of rDNA internal transcribed spacer (ITS), elongation factor 1-α (EF1-α) and β-tubulin (TUB), this fungus was identified as Paraphoma radicina. Glasshouse pathogenicity experiments showed that P. radicina significantly reduced above- and below-ground biomass of alfalfa plants 2 months after inoculation. Paraphoma radicina infected 70% of the plants inoculated with a root dip in conidia, and these symptoms were consistent with the symptoms in the field. Paraphoma radicina was successfully reisolated from disease roots of the inoculated alfalfa plants. This is the first report of P. radicina as the causal agent of alfalfa root rot in China.  相似文献   

14.
The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post‐flowering stress. Overseas reports of M. phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperature × soil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M. phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130 mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M. phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.  相似文献   

15.
Melon yellow spot virus (MYSV), a member of the genus Tospovirus, is a devastating thrips-transmitted virus of cucurbits in Japan. Recently, we reported that cucumber accessions originating from South Asia, in particular Southeast Asia, had moderate resistance to MYSV. Here, we investigated the effect of three temperatures (20°C, 25°C, and 30°C) on symptom expression and viral spread of MYSV in plants of resistant cucumber accessions. No systemic infection developed in resistant cucumber plants after inoculation with melon isolate MYSV-S at low temperature (20°C); viral spread of MYSV-S and cucumber isolate MYSV-FuCu05P in inoculated cotyledons was suppressed. In contrast, higher incubation temperatures (25°C and 30°C) facilitated viral spread in inoculated cotyledons and systemic infection of MYSV-S. These data suggest that the resistance to MYSV of resistant cucumber accessions is temperature dependent.  相似文献   

16.
Studies were conducted in the laboratory and greenhouse to determine the distribution of Erwinia rhapontici in plants arising from naturally infected seeds of pea or artificially inoculated seeds of bean and wheat, and whether the pathogen is transmitted to the subsequent generation of seeds. Infected seeds were planted in pots of Cornell mix in the greenhouse, and sampled at specified intervals throughout the plant growth cycle (seedling stage, elongation stage, flowering stage, seed formation stage, and maturity). Plating of surface sterilized lateral roots, tap roots, basal stems, mid-stems, apical stems, petioles, pods, and seeds of pea and bean, and of lateral roots, sub-crown internodes, basal stems, mid-stems, apical stems, peduncles, glumes, and seeds of wheat revealed that the bacterial pathogen spread from infected seeds to the lower parts of the plant tissues, but failed to spread further to the seeds produced on these plants. The study concludes that E. rhapontici did not establish systemic infection throughout the plants. Possible mechanisms of infection of seeds are discussed.  相似文献   

17.
The Ralstonia solanacearum species complex (RSSC) can cause bacterial wilt in a wide variety of plant species, including a number of ornamental glasshouse crops. Recently in Europe, ornamental rose plants for the production of cut flowers and propagation materials have been strongly affected by Ralstonia pseudosolanacearum, phylotype I, biovar 3. To test for the presence of the pathogen in the glasshouse, sampling of water from a drainage gutter or well may be an efficient strategy since it is known that RSSC can be released from infected root systems in the water. A protocol was developed to detect low densities of R. pseudosolanacearum in drain water collected from rose growers. Drain water was filtered through a bacterial filter, the filtrate was collected and target bacteria enriched for 48 h in Semi-selective Medium South Africa (SMSA) broth supplemented with sterilized tomato plant extracts. DNA extracted from the enrichment broth was analysed using a TaqMan test in a duplex format, based on specific egl sequences of RSSC and the use of an extraction and amplification control. The optimized protocol had a detection level of ≤1–10 colony forming units of R. pseudosolanacearum in drain water.  相似文献   

18.
This paper reviews the contribution of vector activity and plant age to virus spread in potato crops. Determining which aphid species are vectors is particularly important for timing haulm destruction to minimize tuber infection by potato virus Y (PVY). Alate aphids of more than 30 species transmit PVY, and aphids such asRhopalosiphum padi, that migrate in large numbers before flights of the more efficient vector,Myzus persicae, appear to be important vectors. Differences in methodology, aphid biotypes and virus strains prevent direct comparisons between estimates of vector efficiencies obtained for aphids in different countries in north western Europe. M. persicae is also the most efficient vector of potato leafroll virus (PLRV), but some clones ofMacrosiphum euphorbiae transmit PLRV efficiently toNicotiana clevelandii and potato test plants. The removal of infected plants early in the season prevents the spread of PLRV in cool regions with limited vector activity. The proportion of aphids acquiring PLRV from infected potato plants decreases with plant age, and healthy potato plants are more resistant to infection later in the season. Severe symptoms of secondary leafroll developed on progeny plants of cv. Maris Piper derived from mother plants inoculated with PLRV in June or July of the previous year. Progeny plants derived from mother plants inoculated in August showed only mild symptoms, but the concentration of PLRV in these plants was as high as that in the plants with severe symptoms.  相似文献   

19.
Nectria flute canker is a disease of Pinus radiata stems caused by the pathogen Neonectria fuckeliana occurring in the southern parts of New Zealand. In Northern Hemisphere countries where N. fuckeliana is endemic, it is commonly found in Picea and Abies spp. Open wounds, dead attached branches and branch stubs have been identified as the primary infection courts. Although in New Zealand the development of Nectria flute canker disease is associated with pruned branch stubs, recent studies suggest that this is not the only possible entry method as the fungus has been found in trees prior to pruning. Three field trials were established to examine the potential infection mechanisms for N. fuckeliana in P. radiata in New Zealand; including stem wounds and branch stubs. The difference between inoculations into the stem and into branch wood was clear. Inoculation of deep stem wounds resulted in the greatest fluting with 76% of trees inoculated developing cankers. Inoculation directly into stubs resulted in only small stem depressions that occurred in 17% of cases and the fungus was largely contained within the branch trace. Tree response to inoculation with either ascospores or conidia of the Acremonium anamorph gave similar results in terms of canker development and fungal spread within the stem. Tree response to inoculation was highly variable however: in one study 6% of trees did not respond to inoculation at all, while 26% produced severe cankers regardless of inoculation method. A more thorough understanding of the infection mechanisms of N. fuckeliana will contribute to the development of better disease management protocols to prevent infection and disease development in future plantation stock.  相似文献   

20.
This study aimed to elucidate the population dynamics of Rhizoctonia, Oculimacula, and Microdochium species, causing the stem base disease complex of sharp eyespot, eyespot, and brown foot rot in cereals. Pathogen DNA in soil, roots, and stem fractions, and disease expression were quantified in 102 English wheat fields in two seasons. Weather data for each site was collected to determine patterns that correlate with assessed diseases. Oculimacula spp. (66%) and R. solani AG 2-1 (63%) were most frequently detected in soil, followed by R. cerealis (54%) and Microdochium spp. (33%). Oculimacula spp. (89%) and R. cerealis (56%) predominated on roots and soil but were not associated with root rot symptoms, suggesting that these species used soil and roots for survival and as inoculum source. M. nivale was more frequently detected than M. majus on stems up to GS 21–30 and co-occurred on plant samples with O. acuformis. O. yallundae had higher DNA concentration than O. acuformis at the lower 5 cm basal region at GS 37–45. R. cerealis predominated in the upper 15 cm above the base beyond stem extension. Brown foot rot by Microdochium spp. was favoured by cool and wet autumns/winters and dominated in English wheat. Eyespot and sharp eyespot disease index by Oculimacula spp. and R. cerealis, respectively, correlated with wet/humid springs and summers. Results suggested that stem base pathogens generally coexisted; however, their abundance in time and space was influenced by favourable weather patterns and host development, with niche differentiation after stem extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号