首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was undertaken to evaluate the effects of different concentrations of phoxim on acetylcholinesterase (AChE) and esterase (EST) activities, and antioxidant system after topical application to Oxya chinensis. The results showed that phoxim inhibited AChE activity, and did not cause significant changes in the EST activity and the levels of malondialdehyde (MDA) and reduced glutathione (GSH). After phoxim administration, superoxide (SOD) and catalase (CAT) activities showed a biphasic response with an initial increase followed by a decline in their activities. Glutathione reductase (GR) and glutathione peroxidase (GPx) activities were inhibited in comparison with the control. Glutathione S-transferase (GST) activity showed irregular changes. Its activity increased significantly at the concentrations of 0.06 and 0.12 μg/μL and decreased at the concentrations of 0.09 and 0.24 μg/μL compared with the control. Changes in SOD, CAT, GST, GPx, and GR activities indicated that phoxim caused oxidative damage in O. chinensis. However, no significant changes in MDA content suggested that these enzymes played important roles in scavenging the oxidative free radicals induced by phoxim in O. chinensis. The formation of oxygen free radicals might be a factor in the toxicity of phoxim.  相似文献   

2.
Propoxur (PPr) is a widely used broad spectrum carbamate insecticide mainly used to control household pests. Because of the widespread use of pesticides for domestic and industrial applications, evaluation of their neurotoxic effects is of major concern to public health. The aim of the present study was to evaluate the possible protective effects of Nigella sativa oil (NSO), an antioxidant agent, against PPr-induced toxicity and oxidative stress in different brain regions of rats including cerebellum, cortex and hippocampus. In the present study, 32 male Sprague-Dawley rats were used and divided into four equal groups. Group 1 was allocated as the control group. Groups 2-4 were orally administered 1 ml/kg/bw/day NSO, 8.51 mg/kg/bw/day PPr or NSO plus PPr, respectively, for 30 days. Lipid peroxidation (LPO), protein carbonyl content (PCC) and acetylcholine esterase activity (AChE) were determined. Enzymatic antioxidant activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST)] and non-enzymatic antioxidants [reduced glutathione (GSH)] were determined. PPr treatment significantly increased the levels of LPO, PCC and oxidized glutathione (GSSG) in brain regions. On the contrary, levels of GSH and the activities of SOD, CAT, GSH-Px, GST and AChE were significantly decreased. NSO treatment to PPr intoxicated rats restored such biochemical parameters to within control levels except GST activity, emphasizing its antioxidant role. We conclude that NSO significantly reduces PPr-induced toxicity and oxidative stress in rat brain regions via a free radicals scavenging mechanism.  相似文献   

3.
Atrazine (ATR) and chlorpyrifos (CPF) are the most common pesticides found in freshwater ecosystems throughout the world. Herein, we investigated the oxidative stress responses and histopathological changes in the liver and gill of common carp after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery treatment. We found that exposure to ATR, CPF or their mixture for 40 d could induce decrease in antioxidant enzyme (SOD, CAT and GSH-Px) activities and increase in MDA content in a dose-dependent manner in the liver and gill of common carp. Especially with regard to the pathological changes, the tissue damage increased in severity in a dose-dependent manner. The liver tissue of common carp revealed different degree of hydropic degeneration, vacuolisation, pyknotic nuclei, and fatty infiltration. The gills of common carp displayed varied degrees of epithelial hypertrophy, telangiectasis, oedema with epithelial separation from basement membranes, general necrosis, and epithelial desquamation. After a 20-d recovery treatment, the antioxidant enzyme activities and MDA content were significantly lower (p < 0.05) than in the corresponding exposure groups in all of the highest doses, but not in the lower doses. To our knowledge, this is the first report of subchronic oxidative stress and histopathological effects caused by ATR, CPF and their mixture in the common carp. Thus, the information presented in this study is helpful to understand the mechanism of ATR-, CPF- and ATR/CPF-mixture-induced oxidative stress in fish.  相似文献   

4.
We investigated the endocrine disrupting effects of chlorpyrifos-ethyl which is suspected to be originated from oxidative stress. Initially, the 96 h LC50 values of chlorpyrifos in juvenile and adult of Oreochromis niloticus were determined to be 98.67 μg/L and 154.01 μg/L, respectively. Sub-lethal concentrations of chlorpyrifos-ethyl (5 ppb, 10 ppb, 15 ppb) were administrated to adult fish for 15 and 30 days. Fish were then left to depurate for 15 days in pesticide-free water. Gonadal somatic indices, serum sex steroids as indicators of reproductive function and cortisol level as indicator of stress condition were measured to observe the endocrine disruption effects of chlorpyrifos-ethyl. Gonadal glutathione S-transferase and antioxidant enzyme activities and lipid peroxidation as indicators of oxidative stress were also measured. Acetylcholinesterase activity was measured as a marker of chlorpyrifos toxicity. Results showed that serum estradiol, testosteron and cortisol levels in fish exposed to chlorpyrifos were lower than those of the control fish while gonad somatic indices did not change during the experiments. After 30 days, chlorpyrifos exposure decreased GST activity, and increased SOD enzyme activity by up to 215-446% compared with the control, suggesting there was a oxidative stress. No statistically significant differences between GPx and CAT specific activities, protein contents and lipid peroxidation were determined between control and treatment groups in all exposure concentrations and periods. Acetylcholinesterase activity decreased (45.83-77.28%) in gonad tissues. After recovery serum estradiol and testosteron levels were similar to those of the control levels. An increase in the GST and SOD enzyme activities were determined. Cortisol level and AChE activity in all exposure groups decreased after the depuration period, and fish were unable to overcome the stress of chlorpyrifos. Thus, this study revealed that after chlorpyrifos treatments there exists a protective function of antioxidant enzymes against lipid peroxidation in gonad tissue of O. niloticus. There also exist lower testosteron and estradiol levels in exposed fish than those of the control fish without any alterations in oxidative stress, which is attributed to the capability of chlorpyrifos to impair steroid hormone levels.  相似文献   

5.
Ethyl 2-methyl acetoacetate (EMA) is a novel allelochemical exhibiting inhibitory effects on the growth of marine unicellular alga Phaeodactylum tricornutum (P. tricornutum). Oxidative damage and antioxidant responses in P. tricornutum were investigated to elucidate the mechanism involved in EMA inhibition on algal growth. The increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents following exposure to EMA suggested that alga was suffered from oxidative stress and severely damaged. The decrease in cell activity and cellular inclusions suggested that cell growth was greatly inhibited. The activities of the antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxide (GSH-PX) and glutathione S-transferase (GST) increased with the exposure concentration and decreased with the prolongation of exposure time. Cellular ascorbic acid (AsA) and reduced glutathione (GSH) systems were also involved in resisting oxidative stress of EMA by altering the composition of AsA and GSH pools. EMA exposure increased the contents of AsA, GSH, dehydroascorbate (DAsA) and glutathione (GSSG). However, the regeneration rate of AsA/DAsA did not change obviously between treatments and the control, while that of GSH/GSSG decreased significantly under 14 mmol/L EMA exposure on the 3rd day. These results showed that EMA-induced oxidative damage might be responsible for EMA inhibition on P. tricornutum growth and cellular antioxidant enzymes and non-enzymatic antioxidants were improved to counteract the oxidative stress.  相似文献   

6.
Pesticides may induce oxidative stress leading to generate free radicals and alternate antioxidant or oxygen free radical scavenging enzyme system. This study was conducted to investigate the acute toxicity of chlorpyrifos toward male mice and the oxidative stress of the sub-lethal dose (1/10 LD50) on the lipid peroxidation level (LPO), reduced glutathione content (GSH) and antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD), and glutathione-S-transferase (GST) activities. Also, the protective effects of vitamin C (200 mg/kg body weight, bw) 30 min before or after administration of chlorpyrifos were investigated. The results demonstrated that the LD50 value of chlorpyrifos was 134.95 mg/kg bw. The oral administration of 13.495 mg/kg chlorpyrifos significantly caused elevation in LPO level and the activities of antioxidant enzymes including CAT, SOD and GST. However, GPx activity remained unchanged, while the level of GSH and G6PD activity were decreased. Vitamin C treatment to chlorpyrifos intoxicated mice decreased LPO level and GST activity, normalized CAT, SOD and G6PD activities, while GSH content was increased. We conclude that vitamin C significantly reduces chlorpyrifos-induced oxidative stress in mice liver and the protective effect of the pre-treatment with vitamin C is better than the post-treatment.  相似文献   

7.
Organophosphorus insecticides (OPIs) may induce oxidative stress leading to generation of free radicals and alteration in antioxidant system of animals. Many studies reported that enzymatic and non-enzymatic antioxidant may play protective role against OPIs induced toxicity in human and rats. The aim of present study was to investigate the possible protective role of vitamin E on ethion-induced hepatotoxicity in rats using qualitative, quantitative and biochemical approaches. Adult male albino rats of Wistar strain were randomly divided into four groups; each group consists of six animals. Animals were treated for a period of 28 days. Group I (control group received corn oil); Group II [ethion treated (2.7 mg/kg bw/day)]; Group III (vitamin E treated (50 mg/kg of bw/day)]; Group IV (ethion + vitamin E treated). Animals were sacrificed after 7, 14, 21 and 28 days by decapitation and liver tissue was used for the measurement of proteins, lipid peroxidation (LPO), reduced glutathione (GSH) content and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) glutathione reductase (GR) and glutathione-S-transferase (GST). Erythrocytes were analyzed for acetyl cholinesterase activity. The result of this study shows that in vivo administration of ethion caused a significant induction of oxidative damage in liver tissue as evidenced by increased level of LPO and decreased GSH content. Ethion toxicity also led to a significant increase in the activities of SOD, CAT, GPx and GST in liver tissue. In addition, decrease in GR activity was observed in ethion administered rats compared to control. Histopathological findings revealed that exposure to ethion caused damage in liver tissue. However, simultaneous supplementation with vitamin E restored these parameters partially. In conclusion, the results of the current study revealed that ethion-induced toxicity caused lipid peroxidation, alterations in the antioxidant enzymes and histopathological changes in liver. Supplementation of vitamin E exhibited protective effect by inhibiting ethion-induced toxicity in liver and erythrocytes.  相似文献   

8.
Pesticides induce oxidative stress leading to generate free radicals and alternate the antioxidant or oxygen free radical scavenging enzyme system. This study was conducted to investigate the oral toxicity of chlorpyrifos toward male rat and the oxidative stress of the sub-lethal dose (9 mg/kg; 1/25 LD50) on the lipid peroxidation level (LPO), reduced glutathione content (GSH) and antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities of testicular tissue. Also, the protective effects of propolis extract (50 mg/kg b.w.) alone or in combination with chlorpyrifos were investigated. The oral administration of chlorpyrifos significantly caused elevation in LPO level by 1.79-fold as compared to control. The activities of antioxidant enzymes including CAT, SOD, GPx and GST were decreased significantly (23.66%, 27.75%, 29.13% and 11.52%) as well as the level of GSH decreased by 21.97% in testicular tissue as compared to control animals. Co-administration of propolis extract with chlorpyrifos or alone in male rats decreased LPO level, normalized CAT, SOD GPx and GST activities, while GSH content was increased in testicular tissue. We conclude that propolis extract significantly reduces chlorpyrifos-induced oxidative stress in rat testis and the protective effect of the pre-treatment with propolis extract as attenuating agent could be due to its antioxidant properties.  相似文献   

9.
In this study, the effects of sublethal exposures to the anticholinesterase insecticides azinphos methyl (AzMe) and carbaryl on the detoxifying responses of juvenile rainbow trout Oncorhynchus mykiss were investigated. Juvenile specimen were exposed to sublethal concentrations of AzMe (2.5 and 5 μg/L) and carbaryl (1 and 3 mg/L) for 24, 48 and 96 h. Carboxylesterase (CbE), catalase (CAT) and glutathione S-transferase (GST) activities as well as reduced glutathione (GSH) and cytochrome P450-1A (CYP1A) levels were monitored in liver and/or kidney. In all exposed groups liver CbE was significantly inhibited. Liver and kidney GSH level was reduced after sublethal exposure to both compounds. Carbaryl induced CAT activity during the first 48 h of exposure, followed by a significant decrease, whereas AzMe continuously decreased CAT activity. GST activity and CYP1A were transiently induced at 24 h by carbaryl exposure (3 mg/L) but sublethal exposure to AzMe did not affect GST activity or CYP1A. Our results show that the O. mykiss detoxifying system are a target for carbaryl and AzMe action, probably affecting redox balance. Although the responses showed similar trends in both organs, they were more important in liver than in kidney. The early inhibitory effect in CAT activity and GSH content produced by AzMe may be associated with a high degree of oxidative stress. Early induction of CYP1A, GST and CAT by carbaryl followed by enzyme inhibition suggests a milder or delayed oxidative stress, revealing differences between both pesticides metabolization. CbE inhibition is a good biomarker for AzMe and carbaryl exposure.  相似文献   

10.
Chlorpyrifos (CPF), a chlorinated organophosphate insecticide that is widely used in agriculture and public health, has been implicated in male reproductive toxicity. Apart from acetylcholinesterase inhibition, CPF has been shown to induce changes characteristic of oxidative stress. Therefore, the aim of the present study was to evaluate the effects of vitamin C on oxidative changes in the testes and pituitary gland of rats chronically exposed to CPF. Twenty adult male Wistar rats were divided into four groups of five animals each: Group I (S/oil) received soya oil (2 ml/kg); Group II (VC) was administered with vitamin C (100 mg/kg); Group III (CPF) was given CPF (10.6 mg/kg; ∼1/8th LD50); Group IV (VC + CPF) was pretreated with vitamin C (100 mg/kg) and then given CPF (10.6 mg/kg), 30 min later. The regimens were administered orally by gavage once daily for 15 weeks. Thereafter, the rats were sacrificed and the testes and pituitary glands were evaluated for the concentration of malonaldehyde (MDA) and activities of superoxide dismutase (SOD) and catalase (CAT). The result shows that CPF increased MDA concentration and reduced activities of SOD and CAT, which were ameliorated by pretreatment with vitamin C.  相似文献   

11.
The present study in which 42 female rats, each weighing 200−250 g, were used covered a period of 21 days. The animals were divided into six groups. The first group served as the control group, whereas Group 2 was administered propolis at a dose of 200 mg/kg/bw in drinking water for 21 days. Group 3 was first provided with normal drinking water for a period of 14 days, and was subsequently administered propolis at a dose of 200 mg/kg/bw in drinking water for 7 days. Group 4 was first given normal drinking water for 14 days, and was secondly administered 100 ppm fluoride as a sodium fluoride in drinking water for 7 days. Group 5 was first administered propolis alone at a dose of 200 mg/kg/bw in drinking water for 14 days, and was secondly administered 100 ppm fluoride in association with 200 mg/kg/bw propolis for 7 days. Finally, Group 6 was first provided with normal drinking water for 14 days, and was secondly administered 100 ppm fluoride in association 200 mg/kg/bw propolis for a period of 7 days. At the end of the 21st day, blood samples were collected from the heart of each animal into both heparinised tubes and tubes without anticoagulants. Glucose, triglyceride, cholesterol, total protein, and uric acid levels, and aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities in the serum, as well as malondialdehyde (MDA) levels, glutathione peroxidase (GSH-Px) in the plasma, erythrocyte superoxide dismutase (SOD) and catalase (CAT) activities were measured. When compared to the control group, statistical differences were determined to exist with respect to oxidative stress parameters which involved increase in MDA levels in Groups 4−6, decrease in SOD activity in Groups 4 and 6, increase in CAT activity in Groups 5 and 6, and decrease in GSH-Px activity in Groups 4 and 6. Furthermore, in comparison to the control group, significant differences were observed with respect to certain serum biochemical parameters, including decrease in glucose levels in Groups 5 and 6, decrease in triglyceride levels in Groups 2 and 4, decrease in cholesterol levels in Groups 2 and 5, decrease in the total protein level of Groups 4−6, decrease in the ALT activity of Groups 5 and 6, increase in the AST activity of Group 4, decrease in the ALP activity of Groups 2−6 and increase in the uric acid level of Group 2. In the groups that were administered propolis in association with fluoride, improvement was observed in some oxidative stress parameters and certain other biochemical parameters. Changes determined in the oxidative stress parameters (especially MDA and SOD) were indicative of the anti-radical activity of propolis on the free radicals generated by sodium fluoride. However, the values not drawing completely close to those of the control group can be explained with propolis not being able to completely eliminate the free radicals and the other adverse effects generated by fluoride.  相似文献   

12.
In the present study, 40 male Wistar albino rats were used and divided into 4 groups. The first group served as the control group; the second group was administered Saw palmetto extract at the dose of 20 mg/kg/bw; the third group was administered flumethrin at the dose of 15 mg/kg/bw; and the fourth group was administered a combination of 20 mg/kg/bw Saw palmetto extract and 15 mg/kg/bw flumethrin, for 21 days, orally. After the trial period, blood and tissue (liver, kidney and brain) samples were taken from the rats. Saw palmetto extract did not cause significant alterations in plasma and tissue malondialdehyde (MDA) levels, serum and tissue nitric oxide (NO) levels, erythrocyte and tissue superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities when compared to the controls (p > 0.05). Flumethrin led to increased plasma and tissue MDA levels, serum and tissue NO levels, tissue GSH-Px activities and decreased erythrocyte and tissue SOD and CAT activities, and erythrocyte GSH-Px activity, compared to the controls (p < 0.05). The flumethrin and Saw palmetto extract combination increased erythrocyte SOD activity and decreased brain GSH-Px activity as compared to flumethrin (p < 0.05). In conclusion, it was determined that Saw palmetto extract did not cause any negative effect on the prooxidant-antioxidant balance. While flumethrin stimulated lipid peroxidation; Saw palmetto extract at the dose of 20 mg/kg/bw did not exhibit enough antioxidant effect in rats.  相似文献   

13.
螺虫乙酯对雌性斑马鱼的毒性及氧化应激效应   总被引:1,自引:1,他引:0  
为评价新型季酮酸衍生物类杀虫剂螺虫乙酯(spirotetramat)对水生生物的毒性,以雌性斑马鱼为受试对象,研究了螺虫乙酯对其的急性毒性及氧化应激效应。急性毒性试验测得螺虫乙酯对雌性斑马鱼的96 h-LC50值为7.21 mg/L,属中等毒性。经不同浓度螺虫乙酯(0、36、360和1 800μg/L)处理28 d后,通过检测铜/锌超氧化物歧化酶(Cu/Zn-SOD)、锰超氧化物歧化酶(Mn-SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)等抗氧化酶的活性,Cat、Gpx、Mn-Sod、Cu/Zn-Sod等基因的相对表达量,以及丙二醛(MDA)含量等指标的变化水平,研究了螺虫乙酯对斑马鱼肌肉组织的氧化应激效应。结果表明,螺虫乙酯可引起斑马鱼肌肉组织中CAT、GSH-Px活性和MDA含量,以及Cat、Mn-Sod、Gpx的相对表达量显著升高,但未发现螺虫乙酯对Cu/Zn-SOD活性及Cu/Zn-Sod的相对表达量有明显影响。研究表明,螺虫乙酯能够诱导雌性斑马鱼肌肉组织的氧化应激效应,并可能引起机体的氧化损伤。  相似文献   

14.
The antioxidant responses of Solanum nigrum L. cell suspension cultures to metalaxyl exposure were investigated. An increase in lipid peroxidation and hydrogen peroxide content, for both concentrations tested (20 mg L1; 40 mg L1) revealed the response of oxidative metabolism of cell suspensions to metalaxyl. Superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activities increased, particularly in the highest concentration of metalaxyl used. An analysis by non-denaturing polyacrylamide gel (PAGE) followed by staining for enzyme activity, revealed seven SOD isoenzymes, two CAT isoenzymes, and nine APX isoenzymes. Metalaxyl levels were quantified in the culture medium and results suggest that suspension cells were able to accumulate and/or degrade the fungicide five hours after exposure. SOD, CAT and APX isoenzymes were differently affected by the metalaxyl treatment. Results suggest that the higher concentration of metalaxyl induced oxidative stress to cell suspension cultures of S. nigrum.  相似文献   

15.
Present study aimed mainly to assess oxidative stress pesticides such as methyl parathion (MP) and diazinon, which are widely used insecticides and contaminate aquatic ecosystems, on certain biomarkers in various tissues of rainbowtrout (Oncorhynchcus mykiss). Biomarkers selected for stress monitoring were malondialdehyde (MDA) and antioxidant defense system (ADS) mainly reduced glutathione (GSH), glutathione reductase (GR), peroxidase (GSH-PX), transferase (GST) and superoxidedismutase (SOD) activities in the liver, gills and muscle of fishes exposed to 0.5 and 1 ppm dosages of MP and diazinon for 24, 48 and 72 h. According to these results, after the administrations of MP and diazinon promote MDA content in some of the tissues of fishes treated with both dosages of MP and diazinon. With regard to the ADS, GSH-Px, GST, SOD, GR activities and GSH levels fluctuated after 24, 48 and 72 h in all the treatment groups compared with controls. Collective results demonstrated that exposure of fish to pesticides induced an increase in MDA joined with fluctuated ADS. This may reflect the potential role of these parameters as useful biomarkers for assessment of water pollution.  相似文献   

16.
Four extracts of Arisaema erubescens tubers by acetic acetal (AAE), benzinum (BZE), n-butanol (NBE) and chloroform (CFE) were obtained to evaluate their molluscicidal activities against the snail Oncomlania hupensis. The responses of choline esterase (ChE), alkaline phosphatase (ALP), esterase (EST), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to the extracts (NBE) were also investigated. In the four extracts (AAE, BZE, NBE and CFE), NBE showed the highest toxicity on the snails after 48 h exposure. NBE also showed the time- and concentration-dependent effect, for example, the LC90 values of the NBE were decreased from 365.5 mg/L (24 h) to 36.4 mg/L (96 h). At the end of exposure to NBE (LC50 concentration), the activities of ChE and ALP in snail tissues (cephalopodium and liver) decreased significantly. Isozyme electrophoresis profiles indicated that responses of isozymes (EST, SOD and GSH-Px) to NBE were more intense in liver than in cephalopodium. After 72 h exposure to NBE, the EST activity in snail liver decreased and some enzyme bands (EST1 and EST4) disappeared. But the activities of SOD 1 and GSH 2 in liver increased after 48 h exposure. The results indicated that NBE was the highest toxic component in the four extracts. The decline of the detoxification ability and the oxidative damage in snail tissues might be the main reason for the molluscicidal activities.  相似文献   

17.
This study examined the effects of chlorpyrifos in the rat erythrocyte antioxidant system and evaluated the ameliorating effects of catechin and quercetin on the oxidative damage induced by chlorpyrifos. Sexually mature male Wistar rats were given chlorpyrifos (5.4 mg/kg, 1/25 of the oral LD50), catechin (20 mg/kg), quercetin (20 mg/kg), catechin plus chlorpyrifos, and quercetin plus chlorpyrifos daily via gavage for four weeks. No statistical differences were found in the catechin-only and quercetin-only groups compared with the control group. By the end of the fourth week, chlorpyrifos alone increased the levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities compared with the control group in rat erythrocytes. In the catechin-plus-chlorpyrifos and quercetin-plus-chlorpyrifos groups, there were statistically significantly decreased MDA levels and increased SOD, CAT, and GPx activities compared with the chlorpyrifos-only group. Thus, it appears that catechin and quercetin ameliorate chlorpyrifos-induced oxidative stress in rat erythrocytes in vivo.  相似文献   

18.
The effects of organophosphorus insecticide trichlorfon, surfactant sodium dodecyl sulphate (SDS), and the mixture of trichlorfon and SDS on the antioxidant defense system and acetylcholinesterase (AChE) in Tilapia nilotica were assessed in vitro. Various concentrations of trichlorfon (0, 0.0001, 0.001, 0.01, 0.1 and 1 g/L) and SDS (0, 0.0625, 0.125, 0.25, 0.5, 1 g/L) were incubated with homogenate of liver and muscle, respectively, at 25 °C for 0, 30, 60 and 90 min. Two concentrations of mixture of trichlorfon and SDS (0.0001 g/L trichlorfon + 0.5 g/L SDS, 0.1 g/L trichlorfon + 0.5 g/L SDS) and 0.0001 g/L trichlorfon, 0.1 g/L trichlorfon, 0.5 g/L SDS and control, were incubated simultaneously with homogenate of liver and muscle, respectively, at 25 °C for 60 min. After incubation, the content of reduced-glutathione (GSH) and the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in homogenate of liver were determined, and the activities of AChE in homogenate of muscle were also measured.Treatment with trichlorfon caused a significant concentration-dependent and time-related inhibition of AChE activity at all treatment concentrations and times since trichlorfon is a cholinesterase inhibitor. For the same trichlorfon treatment, an apparent decrease in GSH content was found in concentration of 0.01, 0.1, 1 g/L, whereas no significant alteration in antioxidant enzyme activity were found at all experiment concentrations and times, which might indicate that antioxidant enzymes have not involved in the metabolism of trichlorfon. The depletion of GSH might indicate that ROS could be involved in the toxic effects of trichlorfon. Exposure of SDS can inhibit activities of AChE, GST and CAT at concentrations of 0.5 and/or 1 g/L, which could be due to the denaturing process of SDS to the enzymes. For the mixture exposure of trichlorfon and SDS, the effect of the mixture of 0.0001 g/L trichlorfon and 0.5 g/L SDS on inhibition of AChE shows synergistic other than simple additive of trichlorfon and SDS. The combined effects of chemicals and detergents deserve to be particularly noted. It should be noted that the toxicity experiments were made in tissue homogenates instead of whole organisms. The responses against the toxic compounds will not be the same in both systems.  相似文献   

19.
This paper reports the effect of green tea administration following subacute toxicity caused by exposure to organophosphorus pesticide chlorpyriphos in liver of rats. Four groups containing five male Sprague-Dawley rats each were selected. Group I served as control. Group II rats were permitted free access to solubilised crude extract of green tea (1.5%w/v in water) as the sole drinking fluid. Group III rats were given a single daily oral dose of chlorpyriphos (30 mg/kg bodyweight in corn oil). Group IV rats received oral dose of pesticide and green tea extract simultaneously. All rats were sacrificed after 15 days. Significant damage to liver was observed via increased serum levels of transaminases and alkaline phosphatase. Lipid peroxidation showed a 5-fold increase in pesticide exposed rats compared to control. In contrast, levels of antioxidant GSH, glutathione-dependent enzymes like glutathione peroxidase (GPx), glutathione S-transferase (GST) and free radical scavengers like catalase (CAT) and superoxide dismutase (SOD) were significantly lower than those of the control group reinforcing oxidative damage. The use of green tea extract appeared to be beneficial to rats, although not to a great extent in significantly reducing and reversing the damage sustained by pesticide exposure and favors recovery.  相似文献   

20.
The significant antiradical activity of cashew skin extract was previously described. In this investigation, the extent of protection offered by cashew nut skin extract (CSE) against the damage induced in rat pancreas by sub chronic doses dimethoate (DM), an organophosphorous pesticide was studied. Rats were supplemented with CSE at 20 mg/kg b.w./d after a daily dose of DM at 40 mg/kg/d b.w. for 2 months. Weekly random blood glucose, oral glucose tolerance test (OGTT); pancreatic damage markers like amylase and lipase; oxidative damage markers such as reactive oxygen species generated, extent of lipid peroxidation, host antioxidant defenses like reduced glutathione (GSH); GSH-dependent enzyme activities viz., glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR); free radical scavenger enzymes viz., catalase and superoxide dismutase (SOD); xenobiotic metabolizing enzymes like DT-diaphorase and NADPH-diaphorase were measured in the four different groups namely (1) control, (2) DM treated, (3) CSE supplemented, (4) CSE supplements following DM treatment. Random blood glucose levels increased significantly on exposure to DM compared to that in control rats (119 ± 5 mg/dl vs. 92 ± 4 mg/dl), while the blood glucose levels in CSE supplemented rats were comparable to that of controls. DM treated rats exhibited impaired glucose tolerance at the end of two months as indicated by OGTT, while DM treated rats with CSE supplements showed normal glucose tolerance. Pancreatic specific marker enzymes like amylase and lipase in serum were restored to normalcy in rats supplemented with CSE following treatment with DM which otherwise was increased in the DM treated rats. Distinctly lower levels of GSH, increased levels of ROS, higher extent of lipid peroxidation, along with alterations in antioxidant enzymes and increase in xenobiotic metabolizing enzymes were evident in pancreas of DM treated rats. However, CSE supplement ameliorated the biochemical alterations in the pancreatic milieu in DM treated rats. Treatment with CSE significantly protected rat pancreas from injury, thus ameliorating and restoring tissue antioxidant status and also conferring normal glucose tolerance. The active components present in cashew skin extract can perhaps be effective in reducing the extent of pancreatic injury and in overcoming tissue damage caused by exposure to dimethoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号