首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil hydrogenases of chernozem and eolian sand were different with respect to their kinetic properties. Increase of soil moisture above optimum moisture content or prior incubation of the soils under very high H2-mixing ratios (i.e. 1%) resulted in a decrease of Vmax or in an increase of the Km of the H2 oxidation reaction. Under anaerobic conditions, the Km for H2 was higher and Vmax was lower than under aerobic conditions. The anaerobic H2-oxidation activity of both soils was stimulated by the addition of artificial electron acceptors with redox potentials of at least 80 mV. Ferricyanide as the most efficient stimulator did not function as a final electron acceptor for anaerobic H2-oxidation, but acted as a catalyst by bypassing a rate-limiting electron transport step. In eolian sand, the aerobic as well as the anaerobic activity for atmospheric H2 oxidation decreased upon exposure to very high H2-mixing ratios (i.e. 1%). A similar effect was observed after incubation with ferricyanide which enabled the inflow of excess electrons from soil reductants or added NADH into the electron transport system of the soil hydrogenase with anaerobic activity. The activity for atmospheric H2 oxidation was regenerated during incubation in H2-free atmospheres, especially in the presence of oxygen. Inhibition and regeneration were probably due to alterations in components of the soil hydrogenases caused by the extent of a maximal electron flow through the electron transport system of the soil hydrogenases. Two classes of hydrogenase activities were discerned in eolian sand: one predominantly active under aerobic and the other under anaerobic conditions.  相似文献   

2.
Two complementary experimental approaches were utilized to examine the extent to which free soil hydrogenases and H2-oxidizing bacteria contribute to the soil uptake of atmospheric H2. First, high affinity hydrogenase activity and H2-oxidizing bacteria were fractionated in non-axenic soil and axenic soil colonized with the high affinity H2-oxidizing bacterium Streptomyces sp. PCB7. Non-axenic soil was fractionated by buoyant density centrifugation. High affinity H2 oxidation activity measured in individual fractions was proportional to the copy number of hhyL gene, specifying the large subunit of putative high affinity [NiFe]-hydrogenases. 2.5% of the hydrogenase activity was recovered in bacteria-free soil extract. Similarly, sequential centrifugation and wet filtrations of strain PCB7-colonized soil dispersed in solubilization buffer caused a loss of the activity, at a ratio proportional to the number of living cells removed. No abiontic hydrogenase activity was detected in bacteria-free fractions. The second experimental approach was designed to verify whether or not the [NiFe]-hydrogenase of strain PCB7 retains high affinity H2 oxidation activity in soil, under the abiontic state. H2 oxidation rates of crude enzyme extract of strain PCB7 measured under aerobic and anaerobic conditions were indistinguishable, indicating that the high affinity hydrogenase of strain PCB7 is oxygen-tolerant. The hydrogenase activity of sterile soil spiked with as much as 0.14 mg(protein) g(soil-dw)−1 was equivalent to the H2-oxidation activity of only 106-107 CFU of strain PCB7 g(soil-dw)−1. Taken together, our results indicate that high affinity hydrogenase activity is proportional to the abundance of H2-oxidizing bacteria in soil and, that abiontic hydrogenases contribute only a few percent of the total high affinity H2 oxidation activity detected in soil.  相似文献   

3.
Summary The rate of H2 release from broad beans (Vicia faba) infected with Rhizobium leguminosarum Hup- was much faster than from beans infected with the Hup+ strain. Acetylene reduction and H2 release were abolished by cutting the plants down, by incubation in darkness, or after the addition of ammonium, indicating that the H2 was released by N2-fixing bacterial symbionts. In laboratory cultures using non-sterile soil, the bean plants released H2 until an equilibrium between H2 production and H2 oxidation was reached. The H2 equilibrium concentration was higher in Hup--infected bean cultures (about 3 ppm H2 in the gas phase) than in Hup+-infected cultures (0.3 ppm H2) because of the higher H2 production. The H2 release from Hup--infected bean cultures in sterile soil did not reach equilibrium. An equilibrium occurred, if Knallgas bacteria were added. However, the equilibrium value was higher (13 ppm H2) than in non-sterile soil, which seemed to be more efficient at H2 oxidation. The Knallgas bacteria exhibited a relatively high K m for H2 (> 1300 ppmv H2); this activity was observed in unplanted non-sterile soil, and in nonsterile soil planted with Hup+-infected beans or planted with Hup--infected beans which had been cut down before being assayed. All these soils also showed a second, low-K m (<50 ppm) level of H2 oxidation activity, which was presumably due to abiontic soil enzymes. In contrast, only one level of activity, which had an intermediate K m (about 200 ppm H2), was observed when the soil was planted with Hup--infected beans. The origin of this activity, which was only observed in the presence of intact, H2-producing beans, is still unknown.  相似文献   

4.
Summary Phosphomonoesterase (both acid and alkaline) and phosphodiesterase activity was either activated or inhibited in a soil treated with different crop residues. Phosphotriesterase activity remained unaffected. The kinetic parameters (V max and K m) of treated soil samples were modified in the same way: Increases or decreases in the V max values corresponded to increases or decreases in the K m values. The V max values, rather than the K m values, were found to have a predominant effect on phosphatase activity, thus indicating a fundamental role for the enzyme concentration. A positive and generally significant correlation was found between the activity of each phosphatase, which suggests an unspecific source of these enzymes. The values of the determination coefficients (R 2 × 100) show that a low percentage of the variability may be ascribed to interactions among phosphatase activities.  相似文献   

5.
The rate of hydrolysis of urea in soil over the wide range of concentrations, up to 10 moles N per dm3 soil solution, found in fertilizer practice, was examined in Begbroke sandy loam adjusted to different pH values. On rewetting air-dry soil, urease activity increased rapidly, reached a maximum within the first 24 h and then decreased slowly to level off after about 4 days. Pretreatment of the soil with urea or ammonium had no effect on the urease activity. Urease activity increased with substrate concentration, reached an optimum value and then decreased with rising urea concentration. The results could be explained by substrate inhibition at higher urea concentrations, and the data are well described by a modified Michaelis-Menten equation involving three parameters, Vmax, Km and Ki where Ki is an inhibition constant. Km decreased linearily with rise in pH whereas Ki increased slightly between pH 4.9 and 7.0 and steeply between 7.0 and 8.4. Vmax increased with rise in pH, reached a maximum value at pH 6.0 and then declined at higher pHs. There was a further reaction, reaching a maximum rate at a urea concentration of about 0.2 molar N in the soil solution, that followed Michaelis-Menten kinetics. Km for this high affinity reaction increased up to pH 7.2 and then decreased at higher pH values; Vmax increased up to pH 6.8 and then decreased. The contribution of the high affinity reaction was small except at low concentrations of urea.  相似文献   

6.
The decomposition of atmospheric hydrogen in different types of soil was measured. The decomposition of H2 was apparently a first-order reaction. H2 decomposition activity was proportional to the amount of soil with maximum activities at soil water contents of approx. 6–11% (w/w). The activity was lower under anaerobic conditions, but was constant between 1–20% O2. It was destroyed by autoclaving and was partially inactivated by fumigation with NH3, CHC13 or acetone, by u.v. irradiation and by treatment with NaCN or NaN3, indicating that biological processes in the soil were responsible for the observed H2 decomposition. Treatment of soil with toluene or CHCl3 caused only a partial inactivation. Incubation of soil in the presence of streptomycin or actidione reduced H2 decomposition by less than 50%, whereas CO consumption was abolished. The H2 decomposition rates showed H2 saturation curves with apparent Michaelis-Menten kinetics. Cooperative effects were not observed. Vmax was reached at approx. 200 μl1?1. The Km values for H2 were in the range of 30μl 1?1, but increased to higher values, when the soil had been pretreated with high H2 mixing ratios. Apparently, the observed H2 decomposition by soil is not only due to the activity of viable microorganisms, but soil enzymes as well.  相似文献   

7.
Determination of kinetic parameters of acid phosphatases in intact sugar beet roots of variable phosphorus nutrition Organically bound phosphorus has to be hydrolysed before its P can be taken up by plants. Both microbes and plant roots possess phosphatases, which could be of importance especially in soils with low concentrations of inorganic phosphorus in the soil solution. This could be the reason why nutrient uptake models underestimate the P-uptake by plants when P-mobilization by the phosphatases of roots is not taken into consideration. Therefore the activity of acid phosphatases (Pase) was determined to answer the following questions: 1) To which extent does the root bound acid phosphatase (Pase) follow Michaelis-Menten kinetics? 2) By which of the four linear transformations of the Michaelis-Menten equation (Lineweaver/Burk, Hanes, Eadie/Hofstee, Eisenthal/Cornish-Bowden) can plausible values of Vmax and Km be determined? 3) Which effect has the P nutrition of the plant on these kinetic parameters? Sugar beet plants were grown in full nutrient solution containing 1 and 100 μM P respectively. The Pase activity of the intact roots was measured at pH 5 using p-nitrophenylphosphate (25—15000 μM p-NPP). Vmax values were calculated per m root length. Acid phosphatase activity principally followed Michaelis-Menten kinetics. Transformations and calculations of Vmax and Km after Eadie/Hofstee and Eisenthal/Cornish-Bowden suggested the existence of at least two enzyme systems (Pase 1, Pase 2). The following kinetic parameters were found: Pase 1: P deficient plants: Vmax: 43—45 nmol m—1 min—1, Km: 31—37 μM NPP; P sufficient plants: Vmax: 7 nmol m—1 min—1, Km: 47—53 μM NPP. Pase 2: P deficient plants: Vmax: 230—293 nmol m—1 min—1, Km: 1579—3845 μM NPP; P sufficient plants: Vmax: 123—171 nmol m—1 min—1, Km: 3027—7000 μM NPP. Thus plants with sufficient P nutrition have a lower affinity to Porg and a lower hydrolysis of Porg. For P nutrition of crops Pase 1 might be the most important enzyme.  相似文献   

8.
Abstract

The effectiveness of Stay‐N 2000 or reformulated nitrapyrin [2‐chloro‐6‐(tricholoromethyl) pyridine] was investigated in two Iowa soils representative of Clarion and Okoboji soils that differed in organic carbon, pH, and texture. A nonlinear regression was used to estimate kinetic parameters. The maximum nitrification rate (K max) and the duration of lag period (t′) were derived from the equation to characterize the nitrification process in both soils. Stay‐N 2000 appeared to be a better inhibitor than nitrapyrin to extend t′ and as effective as nitrapyrin in reducing K max. Stay‐N 2000 reduced K max an appreciable amount in the Okoboji soil at the rate of 12 µg a.i. g?1 soil or three times the recommended rate. Nitrification rates were affected by the rates of nitrogen (N) applied to both soils; the higher the N rates, the higher Kmax, and the more the nitrate (NO3 ?)‐N accumulation.  相似文献   

9.
In the C2H2-C2H4 assay for measurement of heterotrophic N2 fixation in water-logged soils, the diffusion of C2H2 into the soil and the recovery of C2H4 from it are critical factors regulating the assay result. To establish an C2H2-C2H4 assay technique suitable for waterlogged soils, the C2H2-reducing activities (ARA), assayed by varying the method of assay gas filling, the pC2H2 of the assay gas, the duration of assay incubation and of soil vibration before the gas sampling, were compared.

A maximum ARA was measured when the following set of procedures were applied to the soil sample in assay flasks: 1) a 4-fold repetition of I-min evacuation under 0.01 atmospheric pressure and the subsequent I-min filling under 1 atmospheric pressure with assay gas at pC2H2 of 0.1 atm, 2) an assay incubation for 3 hr, and 3) a sampling of an aliquot of the headspace gas after strongly vibrating the flask for 1 min.

The ARA measured by this technique was several times larger than those measured by the techniques hitherto applied, and corresponded to an almost 80% of the V max of the sample. This technique was, therefore, proposed for the assay of heterotrophic N2 fixation in waterlogged soils.

A striking depression of ARA in the soil sample prepared with agitation indicated that a microbial ecosystem established in the soil should be kept as undisturbed as possible throughout the C2H2-C2H4 assay.  相似文献   

10.
The aim of this work was to compare the kinetic parameters of acid phosphatase (EC 3.1.3.2.) extracted from two forest soils under oak or pine. Soil was extracted with 4 mM CaCl2 and the extract was divided into two fractions by filtration: one >0.2 μm containing microbial cells and soil particulates, and the other <0.2 μm containing fine particles and dissolved organic compounds of soil. The >0.2 μm fraction had higher Km (0.26–0.82 vs. 0.12–0.39) and Vmax (0.07–0.79 vs. 0.06–0.16) values than the <0.2 μm fraction, indicating a higher enzyme-substrate affinity and smaller amount of enzyme in fine particles and dissolved organic matter.  相似文献   

11.
Low molecular weight (LMW) organic compounds in soil solution are easily biodegradable and could fuel respiration by soil microorganisms. Our main aim was to study the mineralization kinetics of monosaccharides using 14C-radiolabelled glucose. Based on these data and the soil solution concentrations of monosaccharides, we evaluated the contribution of monosaccharides to basal respiration for a variety of tropical forest soils. Further, the factors controlling the mineralization kinetics of monosaccharides were examined by comparing tropical and temperate forest soils. Monosaccharides comprised on average 5.2 to 47.7% of dissolved organic carbon in soil solution. Their kinetic parameters (V max and KM ), which were described by a single Michaelis-Menten equation, varied widely from 11 to 152?nmol?g?1?h?1 and 198 to 1294?µmol?L?1 for tropical soils, and from 182 to 400?nmol?g?1?h?1 and 1277 to 3150?µmol?L?1 for temperate soils, respectively. The values of V max increased with increasing microbial biomass-C in tropical and temperate soils, while the KM values had no correlations with soil biological or physicochemical properties. The positive correlation between V max values and microbial biomass-C indicates that microbial biomass-C is an essential factor to regulate the V max values in tropical and temperate forest soils. The biodegradation kinetics of monosaccharides indicate that the microbial capacity of monosaccharide mineralization far exceeds its rate at soil solution concentration. Monosaccharides in soil solution are rapidly mineralized, and their mean residence times in this study were very short (0.4–1.9?h) in tropical forests. The rates of monosaccharide mineralization at actual soil solution concentrations made up 22–118% of basal respiration. Probably because of the rapid and continuous production and consumption of monosaccharides, monosaccharide mineralization is shown to be a dominant fraction of basal respiration in tropical forest soils, as well as in temperate and boreal forest soils.  相似文献   

12.
Summary The effects of temperature, water potential and ammonium concentrations were studied in field and laboratory experiments on arable soil. The two field experiments used different sampling intervals, one at daily (short-term) and the other at monthly (long-term) intervals. In the short-term field experiment, the numbers and activities of nitrifiers were assessed before and after natural rain or irrigation. The nitrifiers were apparently outcompeted by heterotrophs during the first days after wetting the soil. Potential nitrification was affected only slightly by changes in water potential, whereas the numbers of ammonium and nitrite oxidizers appeared more sensitive to these changes. The numbers of ammonium and nitrite oxidizers correlated strongly during the daily samplings. The potential nitrite-oxidation rates correlated with water potentials whereas the potential ammonium oxidation rates did not. Extractable ammonium decreased in proportion to increasing nitrate concentrations in both the rain-fed and the irrigated plots. In the long-term field experiments, the numbers of ammonium oxidizers correlated with water potentials but not with in situ temperature or with ammonium concentrations. The potential ammonium-oxidation rates correlated with water potentials and with ammonium-oxidizer numbers. The potential nitrite-oxidation rates correlated strongly with the potential ammonium-oxidation rates. The field experiments implied that nitrite oxidizers obtained substrate from ammonium oxidizers but also from nitrate reduction. In laboratory experiments nitrate accumulated at a Q 10 of about 2 and the V max for nitrification was observed at a water potential of –0.11 MPa (65% of water-holding capacity). The K m for ammonium oxidation at pH 8.2 was 1.72 mg l–1 soil water.  相似文献   

13.
 Kinetic parameters (V max and K m) of dehydrogenase activity were determined in order to assess the metabolic response of a soil about 1 year after organic and mineral treatments. The soil was planted with maize (Zea mays) and treated with the following fertilisers: organic (vermicompost; VC), mineral (ammonium phosphate and urea), and an organo-mineral mixture. V max, which represents a measurement of the quantity of enzyme, markedly increased in organic and organo-mineral treatments, indicating that the addition of organic matter caused an increase in dehydrogenase in the active microbial biomass. K m, representing enzyme-substrate affinity and/or different sources of the enzymes, was similar in VC-treated soil and control soil, while it doubled in organo-mineral and mineral treatments. These results suggest that the use of VC did not alter the enzyme-substrate affinity, while mineral fertiliser reduced this affinity or changed the composition and activity of soil microbiota. A positive correlation was found between V max, the metabolic index (dehydrogenase/water-soluble carbon ratio), and the soil organic matter content. The kinetic constants of dehydrogenase activity and the metabolic index may be considered valid parameters to monitor the evolution of microbiological activity in soil. Received: 4 February 2000  相似文献   

14.
The increase of rhizosphere pH in the course of nitrate nutrition results from H+ consumption in the external medium during uptake of NO3? in a H+ co-transport and from internal OH? production during nitrate reduction. Synthesis of organic acids for NH4+ assimilation as well as strong partial depolarization of membrane potential with NH4+ uptake are the important reasons for rhizosphere acidification during ammonium nutrition. Despite differences in proton balance depending on N form, cytoplasmic pH changes are small due to physico-chemical buffering, biochemical pH regulation, H+ inclusion in vacuoles, and H+ release into the rhizosphere. Because of the large capacity for proton excretion the plasmalemma H+ ATPase of root cells plays an essential role during ammonium nutrition. An increase of the kinetic parameter Vmax after ammonium nutrition relative to nitrate nutrition suggests that the capacity of H+ release may be adjusted to the particular requirements of ammonium nutrition. Moreover, H+ ATPase is adjusted not only quantitatively but also qualitatively. The increase of the kinetic parameter km as well as the capability of the plasmalemma vesicles in vitro to establish a steeper pH gradient favours the supposition that H+ ATPase isoforms are formed which allow H+ release into the rhizosphere under conditions of low pH or poor H+ buffering of the soil. In this respect species differences exist, e.g. between maize (efficient adaptation) and faba bean (poor adaptation).  相似文献   

15.
Awareness of global warming has stimulated research on environmental controls of soil methane (CH4) consumption and the effects of increasing atmospheric carbon dioxide (CO2) on the terrestrial CH4 sink. In this study, factors impacting soil CH4 consumption were investigated using laboratory incubations of soils collected at the Free Air Carbon Transfer and Storage I site in the Duke Forest, NC, where plots have been exposed to ambient (370 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. Over 1 year, nearly 90% of the 360 incubations showed net CH4 consumption, confirming that CH4-oxidizing (methanotrophic) bacteria were active. Soil moisture was significantly (p < 0.01) higher in the 25–30 cm layer of elevated CO2 soils over the length of the study, but soil moisture was equal between CO2 treatments in shallower soils. The increased soil moisture corresponded to decreased net CH4 oxidation, as elevated CO2 soils also oxidized 70% less CH4 at the 25–30 cm depth compared to ambient CO2 soils, while CH4 consumption was equal between treatments in shallower soils. Soil moisture content predicted (p < 0.05) CH4 consumption in upper layers of ambient CO2 soils, but this relationship was not significant in elevated CO2 soils at any depth, suggesting that environmental factors in addition to moisture were influencing net CH4 oxidation under elevated CO2. More than 6% of the activity assays showed net CH4 production, and of these, 80% contained soils from elevated CO2 plots. In addition, more than 50% of the CH4-producing flasks from elevated CO2 sites contained deeper (25–30 cm) soils. These results indicate that subsurface (25 cm+) CH4 production contributes to decreased net CH4 consumption under elevated CO2 in otherwise aerobic soils.  相似文献   

16.
The kinetic (Km, Vmax) of alkaline phosphatase (AP) desorbed from different Ca-homoionic clay minerals (montmorillonite, illite, and kaolinite) by extraction with Tris-Malate-Citrate buffer solution (pH 9.6) was studied in model experiments. After extraction (shaking for 15 min.) the Km and Vmax were measured in the extract, the remaining sediment and in the whole set-up. With kaolinite and illite, Vmax of the desorbed AP was lower than that of the sediment. However, with montmorillonite, Vmax of AP in the extract and whole system increased if compared to the control, but decreased in the sediment. The Km of desorbed AP increased from 4.3 × 10?3 (control) to 5.0 × 10?3 M (illite), 5.4 × 10?3M (kaolinite), and 5.5 × 10?3M (montmorillonite). These values were lower than those obtained with the various sediments and whole experimental systems. An aberrant behaviour was recorded with the illite sorbed AP which showed an increase in affinity towards the substrate. Generally speaking, AP desorbed from clays may be reduced in its affinity towards the substrate p-nitrophenylphosphate by residual inhibitor and/or conformational change of the enzyme.  相似文献   

17.
喀斯特石漠化山区苔藓植物水分吸收特征   总被引:4,自引:1,他引:4  
[目的]探究贵阳市花溪区石漠化地区5种优势种黑扭口藓(Barbula nigrescens)、美灰藓(Eurohypnum leptothallum)、卷叶湿地藓(Hyophila involuta)、小牛舌藓全缘亚种(Anomondon minor subsp.integerrimus)、北方紫萼藓(Grimmia decipiens)的水分吸收特征,为喀斯特石漠化地区利用苔藓植物开展水土保持工作提供理论支撑。[方法]采集样品120份,运用经典形态分类法进行鉴定;测定其生物量、饱和吸水率、吸水量、最大吸水速率(Vmax)、吸水速率常数(Km)和叶片展开时间。[结果](1)5种苔藓植物间的生物量、吸水量和饱和吸水率差异较大,最大吸水速率差异小;生物量为10.36~114.51g/m2;饱和吸水率为675.43 6%~1 125.41%;吸水量为98.21~766.13g/m2;Vmax为35.59~51.28g/(g·min);Km为69.97~101.99g;叶片展开时间为35.9~86.1s。(2)生物量和吸水量呈正极显著相关;吸水量和盖度、Vmax和Km呈正相关;Km和叶片展开时间呈负相关。[结论]在喀斯特石漠化地区干旱缺水的环境条件下,苔藓以独特的水分吸收和利用方式适应这种恶劣的环境。石生苔藓为适应该地区的先锋植物。  相似文献   

18.
Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.  相似文献   

19.
The response of soil CO2 fluxes (Rsoil) to interactions between carbon (C) and nitrogen (N) availability or C and temperature conditions is not well understood, but may increasingly affect future C storage under the combined anthropogenic impacts of N deposition and climate change. Here we addressed this uncertainty through a series of laboratory incubation experiments using soils from three contrasting ecosystems to investigate how changes in C, N, and temperature regulate Rsoil through changes to Michaelis–Menten parameters (i.e. Vmax and Km). Results of this study demonstrate that Rsoil response to N enrichment and changes in temperature are dependent on the C availability of soil substrates. N addition influenced Rsoil through both the maximum rate (Vmax) and the half saturation constant (Km). The increase in Km corresponded to a decrease in Rsoil when C was limited. Alternatively, when C was abundant, N enrichment increased Rsoil, which corresponded to an increase in Vmax. Regulation of temperature sensitivity through Vmax and Km was also dependent on C availability. Both Vmax and Km demonstrated positive temperature responses, supporting the hypothesis of a canceling effect at low C concentrations. While temperature sensitivity was influenced by both C quantity and C complexity, our results suggested that C quantity is a stronger predictor. Despite strong differences in climate, vegetation, and management of our soils, C–N and C-temperature interactions were markedly similar between sites, highlighting the importance of C availability in the regulation of Rsoil and justifying the use of Michaelis–Menten kinetics in biogeochemical modeling.  相似文献   

20.
The effectiveness of lime-ammonium-nitrate (LAN) as a nitrogen (N) fertilizer in weathered soils depends on the respective selectivity for ammonium (NH4) and calcium (Ca) by the soils. The study assessed Ca2+/NH4+ exchange selectivity of two benchmark soils from Botswana and examined the soil fertility management implications. Surface horizons (0–20 cm) of Pellustert and Haplustalf were equilibrated with 50 ml stock solution containing variable concentrations of Ca2+ and NH4+. The Ca2+/NH4+ exchange data were fitted into the Vanselow (KV), Gaines and Thomas (KGT), Davies (KD), and the regular solution (KRS) equations. The selectivity coefficients for the Ca2+/NH4+ exchange reactions varied widely with the soil exchanger composition except for the relatively stable KRS. The selectivity coefficients indicated strong preference for NH4+ to Ca2+. The thermodynamic exchange constant, Kex, was 5.75 ± 1.24 in the Pellustert, indicating preferential adsorption of NH4+, but not in the Haplustalf with Kex = 0.92 ± 0.27. The free energy for Ca2+/NH4+ exchange (ΔG°ex) was negative (?4.26 ± 0.59 kJ mol?1) in the Pellustert but slightly positive in the Haplustalf (0.34 ± 0.87 kJ mol?1). In conclusion, the soil-NH4 complex was more stable than soil-Ca complex in the Pellustert, indicating LAN as a N fertilizer would have greater potential effectiveness in the Pellustert than in the Haplustalf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号