共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos. 相似文献
2.
为了优化利用体细胞核移植生产转基因牛早期胚胎的体系,以携带绿色荧光蛋白-新霉抗性双标记基因的pMSCV质粒转染的胎牛耳成纤维细胞为供体,以体外成熟的牛卵母细胞为受体构建克隆胚,研究供体细胞的传代次数对转基因胚的影响和重构胚在不同电场条件下(电场强度、直流电脉冲次数)融合效率及其在不同体外培养系统中的发育效果。结果表明:传代5次的细胞做核供体较有利于转基因胚的发育;在电场条件为电场强度1.6 kV/cm、直流脉冲1次的融合率最高;负压单层细胞共培养体系中的转基因囊胚发育率较好,与未转基因体细胞核移植胚的发育相比无显著差异(P〉0.05)。 相似文献
3.
4.
5.
In-Sun Hwang Hyo-Kyung Bae Hee-Tae Cheong 《Journal of veterinary science (Suw?n-si, Korea)》2013,14(3):235-240
The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and ˙OH radical levels, mitochondrial morphology and membrane potential (ΔΨ), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 ± 1.1 pixels/embryo) and ˙OH radical levels (44.6 ± 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 ± 1.5 and 23.8 ± 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The ΔΨ of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 ± 0.04 vs. 1.21 ± 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 ± 26.4 µm vs. 425.6 ± 25.0 µm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels. 相似文献
6.
采用胞质内注射法进行猪体细胞核移植,对去核、激活和培养等关键技术过程进行研究。结果表明:(1)点压法、挤压法对卵母细胞的去核率明显高于盲吸法(三者分别为62.5%、64.6%、50.7%,P〈0.05)。对早成熟的卵母细胞(36-44h)进行去核可明显提高去核效率(P〈0.05),在36-38h、39-41h、42-44h去核率分别为60.9%、67.8%、64.3%,而45-48h为48.4%。(2)体细胞预激活有助于提高核移胚卵裂率(28.0%、20.1%,P〈0.05)。钙离子载体A23187单独或与6-二甲基氨基嘌呤(6-DMAP)联合作用能使猪体细胞核移胚激活继续发育。(3)核移胚以胚胎培养液NCSU23及卵丘单层共培养体系进行分别培养,核移胚卵裂率无明显差异(30.06%、31.5%,P〉0.05)。但NCSU23培养4细胞后发育能力更高(13.5%、3.9%,P〈0.05)。 相似文献
7.
Dae-Jin Kwon Yu-Mi Lee In-Sun Hwang Choon-Keun Park Boo-Keun Yang Hee-Tae Cheong 《Journal of veterinary science (Suw?n-si, Korea)》2010,11(2):93-101
This study was conducted to evaluate the microtubule distribution following control of nuclear remodeling by treatment of bovine somatic cell nuclear transfer (SCNT) embryos with caffeine or roscovitine. Bovine somatic cells were fused to enucleated oocytes treated with either 5 mM caffeine or 150 µM roscovitine to control the type of nuclear remodeling. The proportion of embryos that underwent premature chromosome condensation (PCC) was increased by caffeine treatment but was reduced by roscovitine treatment (p < 0.05). The microtubule organization was examined by immunostaining β- and γ-tubulins at 15 min, 3 h, and 20 h of fusion using laser scanning confocal microscopy. The γ-tubulin foci inherited from the donor centrosome were observed in most of the SCNT embryos at 15 min of fusion (91.3%) and most of them did not disappear until 3 h after fusion, regardless of treatment (82.9-87.2%). A significantly high proportion of embryos showing an abnormal chromosome or microtubule distribution was observed in the roscovitine-treated group (40.0%, p < 0.05) compared to the caffeine-treated group (22.1%). In conclusion, PCC is a favorable condition for the normal organization of microtubules, and inhibition of PCC can cause abnormal mitotic division of bovine SCNT embryos by causing microtubule dysfunction. 相似文献
8.
Yu-Ting Zhang Wang Yao Meng-Jia Chai Wen-Jing Liu Yan Liu Zhong-Hua Liu Xiao-Gang Weng 《Journal of veterinary science (Suw?n-si, Korea)》2022,23(2)
BackgroundSomatic cell nuclear transfer (SCNT) is used widely in cloning, stem cell research, and regenerative medicine. The type of donor cells is a key factor affecting the SCNT efficiency.ObjectivesThis study examined whether urine-derived somatic cells could be used as donors for SCNT in pigs.MethodsThe viability of cells isolated from urine was assessed using trypan blue and propidium iodide staining. The H3K9me3/H3K27me3 level of the cells was analyzed by immunofluorescence. The in vitro developmental ability of SCNT embryos was evaluated by the blastocyst rate and the expression levels of the core pluripotency factor. Blastocyst cell apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The in vivo developmental ability of SCNT embryos was evaluated after embryo transfer.ResultsMost sow urine-derived cells were viable and could be cultured and propagated easily. On the other hand, most of the somatic cells isolated from the boar urine exhibited poor cellular activity. The in vitro development efficiency between the embryos produced by SCNT using porcine embryonic fibroblasts (PEFs) and urine-derived cells were similar. Moreover, The H3K9me3 in SCNT embryos produced from sow urine-derived cells and PEFs at the four-cell stage showed similar intensity. The levels of Oct4, Nanog, and Sox2 expression in blastocysts were similar in the two groups. Furthermore, there is a similar apoptotic level of cloned embryos produced by the two types of cells. Finally, the full-term development ability of the cloned embryos was evaluated, and the cloned fetuses from the urine-derived cells showed absorption.ConclusionsSow urine-derived cells could be used to produce SCNT embryos. 相似文献
9.
Dong-Hoon Kim Jin-Gu No Mi-Kyung Choi Dong-Hyeon Yeom Dong-Kyo Kim Byoung-Chul Yang Jae Gyu Yoo Min Kyu Kim Hong-Tea Kim 《Journal of veterinary science (Suw?n-si, Korea)》2015,16(2):233-235
The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%) or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos. 相似文献
10.
Production of transgenic and non-transgenic clones in miniature pigs by somatic cell nuclear transfer 总被引:1,自引:0,他引:1
Kurome M Ishikawa T Tomii R Ueno S Shimada A Yazawa H Nagashima H 《The Journal of reproduction and development》2008,54(3):156-163
Miniature pigs have been recognized as valuable experimental animals in various fields such as medical and pharmaceutical research. However, the amount of information on somatic cell cloning in miniature pigs, as well as genetically modified miniature pigs, is much less than that available for common domestic pigs. The objective of the present study was to establish an efficient technique of cloning miniature pigs by somatic cell nuclear transfer. A high pregnancy rate was achieved following transfer of parthenogenetic (3/3) and cloned (5/6) embryos using female miniature pigs in the early pregnancy period as recipients after estrus synchronization with prostaglandin F2 alpha analog and gonadotrophins. The production efficiency of the cloned miniature pigs using male and female fetal fibroblasts as nucleus donors was 0.9% (2/215 and 3/331, respectively). Cloned miniature pigs were also produced efficiently (7.8%, 5/64) by transferring reconstructed embryos into the uteri of common domestic pigs. When donor cells transfected with the green fluorescent protein (GFP) gene were used in nuclear transfer, the production efficiency of the reconstructed embryos and rate of blastocyst development were comparable to those obtained by non-transfected cells. When transfected cell-derived reconstructed embryos were transferred to three common domestic pig recipients, all became pregnant, and a total of ten transgenic cloned miniature pigs were obtained (piglet production efficiency: 2.7%, 10/365). Hence, we were able to establish a practical system for producing cloned and transgenic-cloned miniature pigs with a syngeneic background. 相似文献
11.
12.
13.
以水牛耳皮成纤维细胞为供体细胞,采用电融合方法,探讨细胞松弛素B(CB)对水牛体细胞核移植效果的影响.体外成熟培养22~24 h的水牛卵母细胞去核后.将经0.1 mg/L Aphidicolin(APD)+0.5%FBS培养2~9 d的水牛耳皮成纤维细胞注射到卵周隙中再经电融合(100 V/mm,15μs,电脉冲3次)构建核移植重构胚.重构胚经化学激活后(5 μmol/L)离子霉素5 min,2 mmol/L 6-DMAP 3 h)培养,7~9 d评定其胚胎发育能力.结果显示,在含CB(3 mg/L)的融合液中进行电融合后,核移植的融合率、重组胚的存活率、卵裂率和囊胚率与对照组(不含CB)相比均无显著差异(P>0.05);核移植重组胚激活前用含CB(6 mg/L)的培养液培养1 h,其激活后的存活率(97.52%)和体外囊胚发育率(22.09%)均显著地高于未经CB处理的重组胚的存活率(93.87%)和囊胚率(13.25%,P<0.05);重组胚经离子霉素激活5 min后,在6-DMAP+CB中培养3 h的分裂率明显低于放在6-DMAP中培养3 h的分裂率(65.37% vs 78.92%,P<0.05),但囊胚发育率无显著差异(11.19% vs 10.96%,P>0.05).这表明水牛体细胞核移植电融合时,融合液中不添加CB,而核移植重组胚激活前经CB培养处理后,有利于胚胎的进一步发育,但激活后用CB培养处理会降低胚胎的发育率. 相似文献
14.
Kim HS Lee JY Jeong EJ Yang CJ Hyun SH Shin T Hwang WS 《The Journal of reproduction and development》2012,58(1):132-139
To artificially activate embryos in somatic cell nuclear transfer (SCNT), chemical treatment with ionomycin has been used to induce transient levels of Ca(2+) and initiate reprogramming of embryos. Ca(2+) oscillation occurs naturally several times after fertilization (several times with 15- to 30-min intervals). This indicates how essential additional Ca(2+) influx is for successful reprogramming of embryos. Hence, in this report, the experimental design was aimed at improving the developmental efficiency of cloned embryos by repetitive Ca(2+) transients rather than the commonly used ionomycin treatment (4 min). To determine optimal Ca(2+) inflow conditions, we performed three different repetitive ionomycin (10 μM) treatments in reconstructed embryos: Group 1 (4-min ionomycin treatment, once), Group 2 (30-sec treatment, 4 times, 15-min intervals) and Group 3 (1-min treatment, 4 times, 15-min intervals). Pronuclear formation rates were checked to assess the effects of repetitive ionomycin treatment on reprogramming of cloned embryos. Cleavage rates were investigated on day 2, and the formation rates of blastocysts (BLs) were examined on day 7 to demonstrate the positive effect of repeated ionomycin treatment. In Group 3, a significant increase in BL formation was observed [47/200 (23.50%), 44/197 (22.33%) and 69/195 (35.38%) in Groups 1, 2 and 3, respectively]. Culturing embryos with different ionomycin treatments caused no significant difference among the groups in terms of the total cell number of BLs (164.3, 158.5 and 145.1, respectively). Additionally, expression of the anti-apoptotic Bcl-2 gene and MnSOD increased significantly in Group 3, whereas the expression of the pro-apoptotic Bax decreased statistically. In conclusion, the present study demonstrated that repeated ionomycin treatment is an improved activation method that can increase the developmental competence of SCNT embryos by decreasing the incidence of apoptosis. 相似文献
15.
Effects of cycloheximide treatment on in-vitro development of porcine parthenotes and somatic cell nuclear transfer embryos 总被引:2,自引:0,他引:2
Martinez Diaz MA Suzuki M Kagawa M Ikeda K Takahashi Y 《The Japanese journal of veterinary research》2003,50(4):147-155
This study aimed to verify the beneficial effect of cycloheximide (CHX) treatment on the development of porcine somatic cell nuclear transfer (NT) embryos, which were constructed with enucleated oocytes and cumulus cells by using a single direct current (DC) pulse. In the first experiment, a single DC pulse applied to the induction of fusion and activation of NT embryos gave a high fusion rate. However, cleavage and subsequent development of fused couplets (NT embryos) to the blastocyst stage were poor. Experiment 2 was conducted to determine whether CHX treatment could enhance metaphase II (M II) oocyte activation and improve the subsequent parthenogenetic development. After giving the DC pulse and incubation with or without CHX, M II oocytes incubated with CHX showed higher cleavage and development to blastocysts compared with those incubated without CHX (P < 0. 05). Experiment 3 was carried out to verify the beneficial effect of CHX on the development of NT embryos. The NT embryos treated with the DC pulse and CHX treatment showed higher cleavage and subsequent development compared with those treated with the DC pulse alone (P < 0.05) . The present study demonstrates that CHX treatment enhances the electrical stimulus-induced activation of oocytes and NT embryos, and improves the subsequent development of parthenotes and NT embryos. The results indicate that protein synthesis inhibition treatment required for the induction of oocyte activation promotes the development of NT embryos. 相似文献
16.
17.
Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development 下载免费PDF全文
W‐J Lee J‐H Lee R‐H Jeon S‐J Jang S‐C Lee J‐S Park S‐L Lee W‐A King G‐J Rho 《Reproduction in domestic animals》2017,52(3):437-445
Somatic cell nuclear transfer (SCNT) is considered as the technique in which a somatic cell is introduced into an enucleated oocyte to make a cloned animal. However, it is unavoidable to lose a small amount of the ooplasm during enucleation step during SCNT procedure. The present study was aimed to uncover whether the supplement of autologous ooplasm could ameliorate the oocyte competence so as to improve low efficiency of embryo development in porcine SCNT. Autologous ooplasm‐transferred (AOT) embryos were generated by the supplementation with autologous ooplasm into SCNT embryos. They were comparatively evaluated with respect to embryo developmental potential, the number of apoptotic body formation and gene expression including embryonic lineage differentiation, apoptosis, epigenetics and mitochondrial activity in comparison with parthenogenetic, in vitro‐fertilized (IVF) and SCNT embryos. Although AOT embryos showed perfect fusion of autologous donor ooplasm with recipient SCNT embryos, the supplement of autologous ooplasm could not ameliorate embryo developmental potential in regard to the rate of blastocyst formation, total cell number and the number of apoptotic body. Furthermore, overall gene expression of AOT embryos was presented with no significant alterations in comparison with that of SCNT embryos. Taken together, the results of AOT demonstrated inability to make relevant values improved from the level of SCNT embryos to their IVF counterparts. 相似文献
18.
Takehiro HIMAKI Taka‐aki YOKOMINE Masahiro SATO Sonshin TAKAO Kazuchika MIYOSHI Mitsutoshi YOSHIDA 《Animal Science Journal》2010,81(5):558-563
The present study was carried out to examine the effects of post‐activation treatment of trichostatin A (TSA), a histone deacetylase inhibitor, on in vitro development and transgene function of somatic cell nuclear transfer (SCNT) embryos derived from Clawn miniature pig embryonic fibroblast (PEF) transfected with a bacterial endo‐β‐galactosidase C gene (removal of the α‐galactosyl (Gal) epitope). SCNT embryos were incubated with or without TSA (50 or 100 nmol/L) after activation, cultured in vitro and assessed for cleavage, blastocyst formation and transgene function. The rate of blastocyst formation was significantly higher in SCNT embryos treated with 50 nmol/L TSA than that in control (P < 0.05), whereas the rate of cleavage and cell number of blastocyst did not differ. Following labelling with fluorescein isothiocyanate‐labelled BS‐I‐B4 isolectin, the intensity of fluorescence observed on cell‐surface was dramatically reduced in transgenic SCNT blastocyst in comparison with non‐transgenic SCNT blastocyst. However, the reduction of α‐Gal epitope expression in transgenic SCNT blastocyst was not affected by TSA treatment. The results of this study showed that post‐activation treatment with 50 nmol/L TSA is effective to improve in vitro developmental capacity of transgenic SCNT miniature pig embryos without the modification of transgene function. 相似文献
19.
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full‐term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT. 相似文献
20.
Yuji Goto Muneyuki Hirayama Kazuya Takeda Nobuyuki Tukamoto Osamu Sakata Hiroshi Kaeriyama Masaya Geshi 《Animal Science Journal》2013,84(8):592-599
In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0‐phase (G0‐SCNT group) or early G1‐phase (eG1‐SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0‐phase and eG1‐phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake‐off method). The fusion rate in the G0‐SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1‐SCNT groups (39.2 ± 1.9%) (P < 0.05), but the developmental rates to the blastocyst stage of SCNT embryos per fused oocytes were similar for all groups. The overall production efficiency of the clone offspring in eG1‐SCNT groups (12.7%) per recipient cow was higher than that in G0‐SCNT groups (3%) (P < 0.05). The mean birth weight of cloned calves and the average calving score in the G0‐SCNT groups (48.1 ± 3.4 kg and 3.3 ± 0.3, respectively) was significantly higher (P < 0.05) than those of eG1‐SCNT groups (37.2 ± 2.1 kg and 2.3 ± 0.2, respectively). Results of this study indicate that synchronization of donor cells in eG1‐phase using the shake‐off method improved the overall production efficiency of the clone offspring per transferred embryo. 相似文献