首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
OBJECTIVE: To evaluate in vitro holding power and associated microstructural and thermal damage from placement of positive-profile transfixation pins in the diaphysis and metaphysis of the equine third metacarpal bone. SAMPLE POPULATION: Third metacarpal bones from 30 pairs of adult equine cadavers. PROCEDURE: Centrally threaded positive-profile transfixation pins were placed in the diaphysis of 1 metacarpal bone and the metaphysis of the opposite metacarpal bone of 15 pairs of bones. Tensile force at failure for axial extraction was measured with a materials testing system. An additional 15 pairs of metacarpal bones were tested similarly following cyclic loading. Microstructural damage was evaluated via scanning electron microscopy in another 6 pairs of metacarpal bones, 2 pairs in each of the following 3 groups: metacarpal bones with tapped holes and without transfixation pin placement, metacarpal bones following transfixation pin placement, and metacarpal bones following transfixation pin placement and cyclic loading. Temperature of the hardware was measured with a surface thermocouple in 12 additional metacarpal bones warmed to 38 C. RESULTS: The diaphysis provided significantly greater resistance to axial extraction than the metaphysis. There were no significant temperature differences between diaphyseal and metaphyseal placement. Microstructural damage was limited to occasional microfractures seen only in cortical bone of diaphyseal and metaphyseal locations. Microfractures originated during drilling and tapping but did not worsen following transfixation pin placement or cyclic loading. CONCLUSIONS AND CLINICAL RELEVANCE: Centrally threaded, positive-profile transfixation pins have greater resistance to axial extraction in the diaphysis than in the metaphysis of equine third metacarpal bone in vitro. This information may be used to create more stable external skeletal fixation in horses with fractures.  相似文献   

2.
OBJECTIVE: To determine the effect of 2 hydroxyapatite pin coatings on heat generated at the bone-pin interface and torque required for insertion of transfixation pins into cadaveric equine third metacarpal bone. SAMPLE POPULATION: Third metacarpal bone pairs from 27 cadavers of adult horses. PROCEDURES: Peak temperature of the bone at the cis-cortex and the hardware and pin at the trans-cortex was measured during insertion of a plasma-sprayed hydroxyapatite (PSHA)-coated, biomimetic hydroxyapatite (BMHA)-coated, or uncoated large animal transfixation pin. End-insertional torque was measured for each pin. The bone-pin interface was examined grossly and histologically for damage to the bone and coating. RESULTS: The BMHA-coated transfixation pins had similar insertion characteristics to uncoated pins. The PSHA-coated pins had greater mean peak bone temperature at the cis-cortex and greater peak temperature at the trans-cortex (70.9 +/- 6.4(o)C) than the uncoated pins (38.7 +/- 8.4(o)C). The PSHA-coated pins required more insertional torque (10,380 +/- 5,387.8 Nmm) than the BMHA-coated pins (5,123.3 +/- 2,296.9 Nmm). Four of the PSHA-coated pins became immovable after full insertion, and 1 gross fracture occurred during insertion of this type of pin. CONCLUSIONS AND CLINICAL RELEVANCE: The PSHA coating was not feasible for use without modification of presently available pin hardware. The BMHA-coated pins performed similarly to uncoated pins. Further testing is required in an in vivo model to determine the extent of osteointegration associated with the BMHA-coated pins in equine bone.  相似文献   

3.
OBJECTIVE: To compare the microstructural damage created in bone by pins with lathe-cut and rolled-on threads, and to determine the peak tip temperature and damage created by positive-profile external fixator pins with either hollow ground (HG) or trocar (T) tips during insertion. STUDY DESIGN: An acute, in vitro biomechanical evaluation. SAMPLE POPULATION: Twenty-seven canine tibiae. METHODS: Lathe-cut thread design with T point (LT-T), rolled-on thread design with T point (RT-T), and rolled-on thread design with HG point (RT-HG) pins were evaluated. Twenty pins of each type were inserted under constant drilling pressure into 12 canine tibiae (12 diaphyseal and 8 metaphyseal sites per pin type). Peak pin tip temperature, drilling energy, end-insertional pin torque, and pullout force were measured for each pin. For the histologic study, five pins of each type were inserted into cortical and cancellous sites in 15 additional tibiae. Entry and exit damage, and thread quality were assessed from 100 micron histologic sections by using computer-interfaced videomicroscopy. RESULTS: T-tipped pins reached higher tip temperature in both diaphyseal and metaphyseal bone compared with HG-tipped pins. RT-T pins had higher pullout strength (diaphyseal) and end-insertional torque compared with other combinations. No differences in drilling energy or insertional bone damage was found between the three pin types (P < .05). CONCLUSIONS: T-tipped pins mechanically outperformed HG-tipped pins. Pin tip and thread design did not significantly influence the degree of insertional bone damage. CLINICAL RELEVANCE: T-tipped pins may provide the best compromise between thermal damage and interface friction for maximizing performance of threaded external fixator pins.  相似文献   

4.
Objective —To measure pullout strength of four pin types in avian humeri and tibiotarsi bones and to compare slow-speed power and hand insertion methods.
Study Design —Axial pin extraction was measured in vitro in avian bones.
Animal Population —Four cadaver red-tailed hawks and 12 live red-tailed hawks.
Methods —The pullout strength of four fixator pin designs was measured: smooth, negative profile threaded pins engaging one or two cortices and positive profile threaded pins. Part 1: Pins were placed in humeri and tibiotarsi after soft tissue removal. Part 2: Pins were placed in tibiotarsi in anesthetized hawks using slow-speed power or hand insertion.
Results —All threaded pins, regardless of pin design, had greater pullout strength than smooth pins in all parts of the study ( P < .0001). The cortices of tibiotarsi were thicker than the cortices of humeri ( P < .0001). There were few differences in pin pullout strengths between threaded pin types within or between bone groups. There were no differences between the pullout strength of pins placed by slow-speed power or by hand.
Conclusions —There is little advantage of one threaded pin type over another in avian humeri and tibiotarsi using currently available pin designs. There were few differences in pin pullout strengths between humeri and tibiotarsi bones. It is possible that the ease of hand insertion in thin cortices minimizes the potential for wobbling and therefore minimizes the difference between slow-speed drill and hand insertion methods.
Clinical Relevance —Threaded pins have superior bone holding strength in avian cortices and may be beneficial for use with external fixation devices in birds.  相似文献   

5.
OBJECTIVE: To evaluate clinical findings, complications, and outcome of horses and foals with third metacarpal, third metatarsal, or phalangeal fractures that were treated with transfixation casting. DESIGN: Retrospective case series. Animals-29 adult horses and 8 foals with fractures of the third metacarpal or metatarsal bone or the proximal or middle phalanx. PROCEDURES: Medical records were reviewed, and follow-up information was obtained. Data were analyzed by use of logistic regression models for survival, fracture healing, return to intended use, pin loosening, pin hole lysis, and complications associated with pins. RESULTS: In 27 of 35 (77%) horses, the fracture healed and the horse survived, including 10 of 15 third metacarpal or metatarsal bone fractures, 11 of 12 proximal phalanx fractures, and 6 of 8 middle phalanx fractures. Four adult horses sustained a fracture through a pin hole. One horse sustained a pathologic unicortical fracture secondary to a pin hole infec-tion. Increasing body weight, fracture involving 2 joints, nondiaphyseal fracture location, and increasing duration until radiographic union were associated with horses not returning to their intended use. After adjusting for body weight, pin loosening was associated with di-aphyseal pin location, pin hole lysis was associated with number of days with a transfixation cast, and pin complications were associated with hand insertion of pins. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that transfixation casting can be successful in managing fractures distal to the carpus or tarsus in horses. This technique is most suitable for comminuted fractures of the proximal phalanx but can be used for third metacarpal, third metatarsal, or middle phalanx fractures, with or without internal fixation.  相似文献   

6.
Smooth and partially threaded 3.12 mm (1/8 inch) trochar-tipped Steinmann pins were inserted transversely through both diaphyseal cortices of eight mature canine tibias using five methods. Angular velocity (revolutions per minute) during insertion and temperature elevation due to friction during penetration of the second cortex were recorded. The force required for extraction of the pins from the bone and the histologic appearance of the bone-pin interface were determined for one-half of the pins 2 days after insertion and for one-half of the pins 56 days after insertion. The increase in temperature was similar for all methods of insertion except high speed power, which was significantly greater (p < 0.05). The force required for axial pin extraction was similar for pins inserted by hand chuck, predrilled, and low speed power methods after both 2 and 56 days. Pins inserted by high speed power and hand drill required force similar to the others for extraction after 2 days but significantly less force (p < 0.05) for extraction after 56 days. The partially threaded pins required significantly greater force (p < 0.01) extraction after both 2 and 56 days. Histologic examination revealed increased mechanical bone damage surrounding hand chuck inserted pins, increased bone necrosis surrounding high speed power inserted pins, and increased inflammatory changes surrounding hand drill inserted pins.  相似文献   

7.
External skeletal fixation is generally considered the best stabilization technique for immobilizing avian long bone fractures, but one of its major complications is the failure of bone-fixation pin interface or the loss of holding power. Consequently, this study is aimed at elucidating which pin design offers more pull-out strength in certain bones of the common buzzard (Buteo buteo). To achieve this objective, three pin designs (a smooth design and two negative profile threaded designs, with different thread pitch) were placed in five positions along the femur and ulna of the common buzzard. The pin pull-out strength was measured with the purpose of comparing medullary and pneumatic bones, insertion sites, and pin designs. Threaded pins with negative profile showed greater holding power than smooth pins (P < 0.05). When comparing holding power between the ulna and femur, no differences were found for smooth pins, whereas threaded pins showed more pull-out strength in the ulna than in the femur (P < 0.05). There were no differences observed related to pin location along the same bone when considering the same pin type. These results suggest that negative profile threaded pins have more holding power than smooth pins and that pneumatic bones provide less pull-out strength to negative profile threaded pins than medullary bones.  相似文献   

8.
The strength and holding power of four pin designs for use with half pin (type I) external skeletal fixation were evaluated. Pins that were tested were fully threaded, nonthreaded, two cortices partially threaded, and one cortex partially threaded. The study involved three parts: (1) resistance of the pins to axial extraction immediately after insertion; (2) resistance of the pins to axial extraction 8 weeks after being inserted into the tibiae of live dogs; and (3) resistance of the pins to bending load. Pins with threads engaging two cortices were more resistant to axial extraction than nonthreaded pins in both the acute (p less than 0.0001) and chronic (p less than 0.0001) studies. Nonthreaded pins were more resistant to bending than fully threaded and two cortices partially threaded pins (p less than 0.0005). One cortex partially threaded pins possessed similar bending strength to nonthreaded pins (p = 0.21) and had 5.3 times more resistance to axial extraction in the acute study (p less than 0.0001) and 6.9 times more in the chronic study (p less than 0.0001). Though one cortex partially threaded pins were not as resistant to axial extraction as pins with threads engaging two cortices (p less than 0.0001), they were more resistant to bending loads (p less than 0.0005). Loss of holding power and pin failure are two of the most serious problems associated with fracture stabilization using external skeletal fixation. The results of this study suggest that one cortex partially threaded pins are better at maintaining holding power and resisting bending and breaking than nonthreaded pins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The biomechanical characteristics of a 4-ring circular multiplanar fixator applied to equine third metacarpal bones with a 5 mm mid-diaphyseal osteotomy gap were studied. Smooth Steinmann pins, either 1/8 inch, 3/16 inch, or 1/4 inch, were driven through pilot holes in the bone in a crossed configuration and full pin fashion and fastened to the fixator rings using cannulated fixation bolts. The third metacarpal bone fixator constructs were tested in three different modes (cranial-caudal four-point bending, axial compression, and torsion). Loads of 2,000 N were applied in bending and axial compression tests and a load of 50 N ± m was applied during testing in torsion. Fixator stiffness was determined by the slope of the load displacement curves. Three constructs for each pin size were tested in each mode. Comparisons between axial stiffness, bending stiffness, and torsional stiffness for each of the three different pin sizes were made using one-way analysis of variance. There was no visually apparent deformation or permanent damage to the fixator frame, and no third metacarpal bone failure in any of the tests. Plastic deformation occurred in the 1/8 inch pins during bending, compression, and torsion testing. The 3/16 inch and 1/4 inch pins elastically deformed in all testing modes. Mean (±SE) axial compressive stiffness for the 1/8 inch, 3/16 inch, and 1/4 inch pin fixator constructs was: 182 ± 16 N/mm, 397 ± 21 N/mm, and 566 ± 8.7 N/mm; bending stiffness was 106 ± 3.3 N/mm, 410 ± 21 N/mm, and 548 ± 12 N/mm; and torsional stiffness was 6.15 ± 0.82 N.m/degree, 7.14 ± 0.0 N±m/degree, and 11.9 ± 1.0 N.m/degree respectively. For statically applied loads our results would indicate that a 4-ring fixator using two 1/4 inch pins per ring may not be stiff enough for repair of an unstable third metacarpal bone fracture in a 450 kg horse.  相似文献   

10.
OBJECTIVE: To compare transfixation and standard full-limb casts for prevention of in vitro displacement of a mid-diaphyseal third metacarpal osteotomy site in horses. SAMPLE POPULATION: 6 forelimbs from 6 horses euthanatized for reasons not related to the musculoskeletal system. PROCEDURE: A 30 degrees osteotomy was performed in the mid-diaphysis of the third metacarpal bone. Two 4.5-mm cortical bone screws were placed across the osteotomy site to maintain alignment during casting. Two 6.35-mm Steinmann pins were placed from a lateral-to-medial direction in the distal aspect of the radius. A full-limb cast that incorporated the pins was applied. An extensometer was positioned in the osteotomy site through a window placed in the dorsal aspect of the cast, and after removal of the screws, displacement was recorded while the limb was axially loaded to 5,340 N (1,200 lb). Pins were removed, and the standard full-limb cast was tested in a similar fashion. RESULTS: The transfixation cast significantly reduced displacement across the osteotomy site at 445 N (100 lb), 1,112 N (250 lb), 2,224 N (500 lb), and 4,448 N (1,000 lb), compared with the standard cast. CONCLUSION AND CLINICAL RELEVANCE: A full-limb transfixation cast provides significantly greater resistance than a standard full-limb cast against axial collapse of a mid-diaphyseal third metacarpal osteotomy site when the bone is placed under axial compression. Placement of full-limb transfixation casts should be considered for the management of unstable fractures of the third metacarpal bone in horses.  相似文献   

11.
Objectives— To describe the clinical outcome of a 4 pin lumbosacral fixation technique for lumbosacral fracture–luxations, and to refine placement technique for iliac pins based on canine cadaver studies.
Study Design— Retrospective and anatomic study.
Sample Population— Dogs (n=5) with lumbosacral fracture-luxations and 8 cadaveric canine pelvi.
Methods— Lumbosacral fracture–luxations were stabilized with a 4 pin (positive-profile threaded) and bone cement fixation. Caudal pins were inserted in the iliac body and cranial pins were inserted into the L7 or L6 pedicle and body. Follow-up examinations and radiographs were performed to assess patient outcome. Intramedullary pins were inserted into the iliac bodies of 8 cadaver pelvi. Radiographs were taken to measure pin insertion angles and define ideal insertion angles that would maximize pin purchase in the ilium.
Results— Follow-up neurologic examination was normal in 4 dogs. Radiographic healing of the fracture was evident in 5 dogs. One implant failure occurred but did not require re-operation. For cadaver iliac pins, mean craniocaudal insertion angle was 29° and mean lateromedial insertion angle was 20°.
Conclusions— Four pin and bone cement fixation effectively stabilizes lumbosacral fracture luxations. The iliac body provides ample bone stock, which can be maximized using an average craniocaudal pin trajectory of 29° and an average lateromedial pin trajectory of 20°.
Clinical Relevance— Lumbosacral fracture–luxations can be stabilized with 4 pin and bone cement fixation in the lumbar vertebrae and iliac body, using 29 and 20° as guidelines for the craniocaudal and lateromedial pin insertion angles in the ilium.  相似文献   

12.
We compared the pin-bone interfaces at the near and far cortical penetration sites of positive-profile end-threaded external fixation pins in cadaveric canine tibiae. The holding power of the pins in each cortical surface was independently measured in 21 pin-bone sections. Scanning electron microscopy (SEM) was used to compare subjectively the microstructural appearance of the pin-bone interfaces at the near and far cortical penetration sites in eight pin-bone sections. The far cortical penetration site provided greater holding power than did the near cortical site. SEM evaluation suggested more bony microfractures and debris with less pin-bone interlock in the near cortical penetration sites than in the corresponding far cortical penetration sites. This study showed that after low-speed power insertion of positive-profile end-threaded pins in canine cadaveric tibiae, the near cortical penetration site contributes approximately 25% less to the overall holding power of the pin than does the far cortical penetration site.  相似文献   

13.
Three different pin types (Ellis, enhanced threaded, and nonthreaded) were used in type 1 external skeletal fixation after transverse osteotomy of the radius and ulna in 12 skeletally mature dogs. Dogs were placed into three groups of four dogs based on the pin type used. Axial extraction forces were determined for each of the pin types after 8 weeks of weight bearing (chronic study). Nine contralateral radii were used to determine axial extraction forces for nine of each pin type not subjected to weight bearing forces (acute study). The force required for extraction of the enhanced threaded and Ellis pins in the chronic and acute studies was not significantly different. The force required to extract the nonthreaded pins was significantly less than that required for the other two pin types. Ground reaction forces had returned to levels measured before surgery by 2 weeks after surgery in the enhanced threaded and Ellis pin groups, however, dogs in the nonthreaded pin group required 4 weeks until normal ground reaction forces were measured. Radiographic evaluations 1,2,4, 6, and 8 weeks after surgery showed no difference among groups in the number of pin tract radio-lucencies, however, the enhanced threaded pins had caused more trans-cortical chip fractures than the other two pin types. None of the pins broke during the eight-week chronic study.  相似文献   

14.
The pin holding strengths of partially threaded and nonthreaded intramedullary pins were compared in an in vitro study. The mean percent holding strength of partially threaded pins to nonthreaded pins was 102%. No relationships could be determined when the holding strength of the pins was evaluated as a function of the dog's weight, bone length, and length of pin within the bone. It was concluded that no statistical difference in in vitro pin holding strength exists between the two types of pins.  相似文献   

15.
The transfixation pin cast (TPC) is an external skeletal fixation technique used to treat horses with distal limb fractures, but its use is often associated with pin-loosening and an increased risk of treatment failure. To address implant loosening, the pin sleeve cast system (PSC) was recently designed and consists of a pin-sleeve unit inserted into the bone. Each pin runs through a sleeve placed in the bone, making contact at two fixed points only within the sleeve. Each pin is attached to a ring embedded in a resin cast. In this report, the mechanical performance of a traditional TPC pin arrangement was compared with that of the PSC using validated finite element models of bone substitutes previously tested in vitro. The PSC resulted in a marked reduction in peak strain magnitude around the pins and a more even distribution of strain across the bone cortex. The two systems resulted in comparable proximal fragment displacement and had a similar stress concentration around bone defects during implant removal. The findings suggest that the PSC load transfer mechanism is effective even in geometrically complex structures like equine bones.  相似文献   

16.
Objective—To determine and compare the in vitro pullout strength of 5.5-mm cortical versus 6.5-mm cancellous bone screws inserted in the diaphysis and metaphysis of adult equine third metacarpal (MCIII) bones, in threaded 4.5-mm cortical bone screw insertion holes that were then overdrilled with a 4.5-mm drill bit to provide information relevant to the selection of a replacement screw if a 4.5-mm cortical screw is stripped. Study Design—In vitro pullout tests of 5.5-mm cortical and 6.5-mm cancellous screws in equine MCIII bones. Sample Population—Two independent cadaver studies each consisting of 14 adult equine MCIII bones. Methods—Two 4.5-mm cortical screws were placed either in the middiaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5-mm drill bit and had either a 5.5-mm cortical or a 6.5-mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/second until screw or bone failure occurred. Results—In diaphyseal bone, the screws failed in all tests. Tensile breaking strength for 5.5-mm cortical screws (997.5 ± 49.3 kg) and 6.5-mm cancellous screws (931.6 ± 19.5 kg) was not significantly different. In metaphyseal bone, the bone failed in all tests. The holding power for 6.5-mm cancellous screws (39.1 ± 4.9 kg/mm) was significantly greater than 5.5-mm cortical screws (23.5 ± 3.5 kg/mm) in the metaphysis. There was no difference in the tensile breaking strength of screws in the diaphysis between proximal and distal screw holes; however, the holding power was significantly greater in the distal, compared with the proximal, metaphyseal holes. Conclusions—Although tensile breaking strength was not different between 5.5-mm cortical and 6.5-mm cancellous screws in middiaphyseal cortical bone, holding power of 6.5-mm cancellous screws was greater than 5.5-mm cortical screws in metaphyseal bone of adult horses. Clinical Relevance—If a 4.5-mm cortical bone screw strips in MCIII diaphyseal bone of adult horses, either a 5.5-mm cortical or 6.5-mm cancellous screw, however, would have equivalent pullout strengths. A 6.5-mm cancellous screw, however, would provide greater holding power than a 5.5-mm cortical screw in metaphyseal bone.  相似文献   

17.
This study was conducted to evaluate the effect of pilot hole (PH) diameter (0, 1.5, 2.0, 2.7, 3.1, 3.3, 3.5, and 3.7 mm) on the biomechanical and microstructural performance of positive-profile threaded external skeletal fixation pins (3.18 mm inner diameter, 3.97 mm outer diameter) using cadaveric canine tibiae. Eight pins per pilot hole diameter (four pins per bone) were used to assess differences in end-insertional torque and pin pull-out strength. Histological evaluation of eight bicortical pin tracts per pilot hole diameter was accomplished using computer-interfaced videomicroscopy on specimens processed using a bulk-staining technique. Compared with no predrill, use of 2.7 mm PH increased end-insertional torque and pull-out strength by 25% and 13.5%, respectively. No significant differences were observed in biomechanical variables for the PH diameter range of 2.0 to 3.1 mm. Compared with no predrill, use of a 3.1 mm PH increased thread area by 18%. Microfracturing around the threads decreased as PH diameter increased. Damage to the interface at the entry and exit sites of both near and far cortices also decreased as PH diameter increased. It was concluded that predrilling a PH whose diameter approximates, but does not exceed the inner diameter of the positive profile pin will not only improve initial pin stability compared with no predrilling, but it will also reduce microstructural damage that may lead to excessive bone resorption and premature pin loosening.  相似文献   

18.
OBJECTIVE: To compare screw insertion characteristics and pullout mechanical properties between self-tapping (ST) and non-self-tapping (NST) AO 4.5-mm cortical bone screws in adult equine third metacarpal bone (MC3). STUDY DESIGN: In vitro biomechanical experiment. ANIMALS OR SAMPLE POPULATION: Seven pairs of adult equine MC3. METHODS: Bicortical holes were drilled transversely in proximal metaphyseal, diaphyseal, and distal metaphyseal locations of paired MC3. NST screws were inserted in pre-tapped holes in 3 sites of one bone pair, and ST screws were inserted in non-tapped holes of contralateral MC3. Tapping and screw insertion times and maximum torques were measured. Screw pullout mechanical properties were determined. RESULTS: Screw insertion time was longer for ST screws. Total time for tapping and insertion (total insertion time) was over twice as long for NST screws. Statistically significant differences were not observed between screws for any pullout mechanical property. From pullout tests, diaphyseal locations had significantly stiffer and stronger structure than metaphyseal locations. Pullout failure more commonly occurred because of screw breakage than bone failure. Bone failure and bone comminution were more commonly associated with ST screws. Bone failure sites had pullout failure loads that were 90% of screw failure sites. CONCLUSIONS: NST and ST 4.5-mm-diameter cortical bone screws have similar pullout mechanical properties from adult equine MC3. ST screws require less than half the total insertion time of NST screws. CLINICAL RELEVANCE: Use of ST 4.5-mm-diameter cortical bone screws should be considered for repair of adult equine MC3 fractures; however, bone failures at screw sites should be monitored.  相似文献   

19.
Objective— (1) To evaluate resistance to axial extraction of 3 pin designs in avian humerus and tibiotarsus; (2) to assess the effect of pin location within the bone on holding power; and (3) to assess the influence of thread pitch on holding power. Study Design— Resistance of pins to axial extraction was measured immediately after insertion. Animals— Adult common buzzards (Buteo buteo; n=9). Methods— Different pin designs (1 smooth; 2 threaded pins, differing in pitch) were inserted into the proximal and distal metaphysis and the proximal, middle, and distal diaphysis of the humerus and tibiotarsus. Maximum force required for axial extraction of pins was recorded. Results— Smooth pins had the lowest extraction force (P<.05). Pins inserted into the diaphysis (proximal, middle and distal) of the humerus and the distal metaphysis of the tibiotarsus had a greater pullout strength than pins in other locations. Pins with a smaller pitch inserted into the proximal diaphysis and distal metaphysis of the humerus, and the proximal metaphysis of the tibiotarsus had significantly greater holding power than pins with a larger pitch (P<.05). Conclusions— Pins inserted into the diaphysis of humerus and the distal metaphysis of the tibiotarsus are better at resisting extraction. Pins with a smaller pitch possess greater holding power than pins with a larger pitch in avian humerus and tibiotarsus. Clinical Relevance— Consideration should be given to pin location and thread pitch, when choosing external skeletal fixation to repair an avian humeral or tibiotarsal fracture.  相似文献   

20.
Objective— To report development, configuration, application, and results of a tapered‐sleeve transcortical pin external skeletal fixation device (TSP ESFD) for use on fractures of the distal aspect of the equine limb. Study Design— Optimization analysis of a TSP ESFD was carried out with mechanical testing and review of clinical case outcomes. Animals— Cadaveric adult third metacarpal bones (MC3) for mechanical testing; horses (n=7) with severely comminuted proximal (6; P1) or second (1) phalanx fractures. Methods— Mechanical testing of methods for attachment of TSP to the sidebars were tested as well as optimization of pin diameters. Outcome of clinical cases managed with the TSP ESFD were compared with outcomes of horses treated with previous ESFD. Results— A TSP ESFD using 7.94 mm diameter pins was used. Survival rate was 71%. One horse with an infected P1 fracture and contralateral laminitis subsequently fractured MC3 through the distal pin hole while wearing the TSP ESFD. One mare with contralateral laminitis was euthanatized. Three horses had open fractures. Conclusions— Design improvements incorporated into the TSP ESFD should increase treatment success. Clinical Relevance— External skeletal fixation continues to be a viable treatment alternative for severe injuries of the distal aspect of the equine limb. TSP ESFD should improve on the success of treatment by decreasing complications of bone fracture at the pin interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号