首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha−1, while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha−1, was approximately twice that of the LG site. Soil respiration measurements showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q10 value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m−2 y−1 to the atmosphere, which was about one third more than the 1530 g CO2 m−2 y−1 released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem.  相似文献   

2.
Partitioning the soil surface CO2 flux (RS) flux is an important step in understanding ecosystem-level carbon cycling, given that RS is poorly constrained and its source components may have different sensitivities to climate change. Trenched plots are an inexpensive but labor-intensive method of separating the RS flux into its root (autotrophic) and soil (heterotrophic) components. This study tested if various methods of plant suppression in trenched plots affected RS fluxes, quantified the RS response to soil temperature and moisture changes, and estimated the heterotrophic contribution to RS. It was performed in a boreal black spruce (Picea mariana) plantation, using a randomized complete block design, during the 2007 and 2008 growing seasons. Trenched plots had significantly lower RS than control plots, with differences appearing ∼100 days after trenching; spatial variability doubled immediately after trenching but then declined throughout the experiment. Most trenching treatments had significantly lower (by ∼0.5 μmol CO2 m−2 s−1) RS than the controls, and there was no significant difference in RS among the various trenching treatments. Soil temperature at 2 cm explained more RS variability than did 10-cm temperature or soil moisture. Temperature sensitivity (Q10) declined in the control plots from ∼2.6 (at 5 °C) to ∼1.6 (at 15 °C); trenched plots values were higher, from 3.1 at 5 °C to 1.9 at 15 °C. We estimated RS for the study period to be 241 ± 40 g C m−2, with live roots contributing 64% of RS after accounting for fine root decay, and 293 g C m−2 for the entire year. These findings suggest that laborious hand weeding of trenched plot vegetation may be replaced by other methods, facilitating future studies of this large and poorly-understood carbon flux.  相似文献   

3.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

4.
We assessed the successional development of above- and belowground ecosystem biomass and carbon (C) pools in an age-sequence of four White pine (Pinus strobus L.) plantation stands (2-, 15-, 30-, and 65-years-old) in Southern Ontario, Canada. Biomass and C stocks of above- and belowground live and dead tree biomass, understorey and forest ground vegetation, forest floor C (LFH-layer), and woody debris were determined from plot-level inventories and destructive tree sampling. Small root biomass (<5 mm) and mineral soil C stocks were estimated from soil cores. Aboveground tree biomass became the major ecosystem C pool with increasing age, reaching 0.5, 66, 92, and 176 t ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively. Tree root biomass increased from 0.1 to 10, 18, 38 t ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, contributing considerably to the total ecosystem C in the three older stands. Forest floor C was 0.8, 7.5, 5.4, and 12.1 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, indicating an increase during the first two decades, but no further age-effect during the later growth phase. Mineral soil C was age-independent with 37.2, 33.9, 39.1, and 36.7 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively. Aboveground ecosystem C increased with age from 3 to 40, 52, and 100 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, due to an increase in aboveground tree biomass. Belowground ecosystem C remained similiar in the early decades after establishment with 37, 39, and 39 t C ha−1 in the 2-, 15-, and 30-year-old stands, but increased to 56 t C ha−1 in the 65-year-old stand due to an increase in root biomass. The difference in total ecosystem C between the 2- and 65-year-old stand was 116 t C ha−1. Our results highlight the importance of considering the successional development of forest ecosystem C pools, when estimating C sink potentials over their complete life cycle.  相似文献   

5.
Quantifying the net carbon (C) storage of forest plantations is required to assess their potential to offset fossil fuel emissions. In this study, a biometric approach was used to estimate net ecosystem productivity (NEP) for two monoculture plantations in South China: Acacia crassicarpa and Eucalyptus urophylla. This approach was based on stand-level net primary productivity (NPP, based on direct biometric inventory) and heterotrophic respiration (Rh). In comparisons of Rh determination based on trenching vs. tree girdling, both trenching and tree girdling changed soil temperature and soil moisture relative to undisturbed control plots, and we assess the effects of corrections for disturbances of soil moisture and soil moisture on the estimation of soil CO2 efflux partitioning. Soil microbial biomass and dissolved organic carbon were significantly lower in trenched plots than in tree girdled plots for both plantations. Annual soil CO2 flux in trenched plots (Rh-t) was significantly lower than in tree-girdled plots (Rh-g) in both plantations. The estimates of Rh-t and Rh-g, expressed as a percentage of total soil respiration, were 58 ± 4% and 74 ± 6%, respectively, for A. crassicarpa, and 64 ± 3% and 78 ± 5%, respectively, for E. urophylla. By the end of experiment, the difference in soil CO2 efflux between the trenched plots and tree-girdled plots had become small for both plantations. Annual Rh (mean of the annual Rh-t and Rh-g) and net primary production (NPP) were 470 ± 25 and 800 ± 118 g C m−2 yr−1, respectively, for A. crassicarpa, and 420 ± 35 and 2380 ± 187 g C m−2 yr−2, respectively, for E. urophylla. The two plantations in the developmental stage were large carbon sinks: NEP was 330 ± 76 C m−2 yr−1 for A. crassicarpa and 1960 ± 178 g C m−2 yr−1 for E. urophylla.  相似文献   

6.
Our aim was to establish the long-term effects of repeated applications after 20 y of organic amendments (farmyard manure at 10 t ha−1 y−1, and urban sewage sludge at two different rates, 10 t ha−1 y−1 and 100 t ha−1 every 2 y) on the quality of a sandy and poorly buffered soil (Fluvisol, pH 6). Chemical characteristics and biodegradability of the labile organic matter, which is mainly derived from microbial biomass and biodegradation products of organic residues, were chosen as indicators for soil quality. The organic C content had reached a maximal value (30.6 g C kg−1 in the 100 t sludge-treated soil), i.e. about 2.5 times that in the control. Six years after the last application, the organic C content and the microbial biomass content remained higher in sludge-treated soils than in the control. In contrast, the proportion of labile organic matter was significantly lower in sludge-treated soils than in manure-treated and control soils. The labile organic matter of sludge extracts appeared less humified than that of manure-treated and control soils.  相似文献   

7.
Changes in residue management and incorporation of organic manures may help in carbon sequestration, restoring soil organic carbon (SOC) and sustaining the productivity of land under a cropping system. An experiment of multi-ratooning sugarcane (Saccharum officinarum L.) was initiated in 2003 in Inceptisols of Indian subtropics, to assess the effect of different organic manures and chemical fertilizer, on the crop productivity and soil quality. The annual sugarcane shoot biomass production in organic manure treatments was at par with the chemically fertilized treatment. Gross input of carbon (GIC) by the sugarcane crop was estimated to be 11.7–12.4 t ha−1 y−1 in different organic manure treatments compared to 8.4 and 5.0 t ha−1 y−1 in NPK and control treatments, respectively. The respiratory loss of C (RLC) increased linearly with increasing input of C in soil and it ranged from 3.3 to 4.1 t ha−1 y−1 in different treatments with maximum in FYM and minimum in control treatment. The sugarcane biomass added in the soil humified at a rate constant of 0.38 in sub-tropical conditions and an addition of 3.9 t C ha−1 y−1 is required to maintain SOC in equilibrium. After 5 years of sugarcane cropping (one plant + four ratoons) an increase of 2.3–17.1 t ha−1 in SOC over initial content was recorded with different treatments. Results in coming years from this long-term experiment shall add to the present calculated relationships between carbon addition and storage in sugarcane multi-ratooning crop production system under sub-tropical condition of India.  相似文献   

8.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

9.
The harvester termite, Anacanthotermes ubachi Navas (Hodotermitidea) occurs throughout the desert regions of Israel. This species nests in subsurface galleries where dead plant material, the termite's main food source, and feces are stored. We measured potential net nitrogen (N) mineralization and nitrification and soil respiration in 7-day laboratory incubations of plant litter at different stages of termite processing, termite feces and termite gallery soil (carton) following wetting. Our objectives were (1) to characterize the amount of potential N release from termite-affected plant and soil materials, (2) to evaluate the potential for leaching of N from the galleries and (3) to make a preliminary evaluation of the importance of termites to the carbon (C) and N cycles of the Negev desert. Two distinct phases were seen in the dynamics of inorganic N during the 7 day incubations: (1) release of N following wetting and (2) immobilization of N from day 1 to day 7 of the incubation. The percent of inorganic N produced in 1 day that disappeared by day 7 was significantly higher in the surface and gallery litter in comparison to the feces and the carton. High levels of nitrate (NO3: 87.5 g N kg−1) compared to ammonium (NH4+: 4.5 g N kg−1) release from the surface and gallery litter samples suggest that there is a potential for leaching of NO3 from the galleries to surrounding environments. Gallery litter, i.e. litter that had been processed by termites, released significantly less inorganic N and had a higher C:N ratio than surface litter that had not been affected by termite activity. These results suggest that termites actively remove N for their own nutrition, leaving behind litter of lower quality than was produced by plants. Comparison of the C:N ratios of litter and feces suggest that approximately 80% of the C and 65% of the N in the surface and the gallery litter was decomposed and released in the transformation to feces. Given mean annual biomass production in the study site (740 kg ha−1 with 296 kg C ha−1 and 6.6 kg N ha−1), this decomposition represents a release of 237 kg C ha−1 and 4.3 kg N ha−1, supporting the idea that termites function as keystone species in desert ecosystems.  相似文献   

10.
We studied the effects of soil management and changes of land use on soils of three adjacent plots of cropland, pasture and oak (Quercus robur) forest. The pasture and the forest were established in part of the cropland, respectively, 20 and 40 yr before the study began. Soil organic matter (SOM) dynamics, water-filled pore space (WFPS), soil temperature, inorganic N and microbial C, as well as fluxes of CO2, CH4 and N2O were measured in the plots over 25 months. The transformation of the cropland to mowed pasture slightly increased the soil organic and microbial C contents, whereas afforestation significantly increased these variables. The cropland and pasture soils showed low CH4 uptake rates (<1 kg C ha−1 yr−1) and, coinciding with WFPS values >70%, episodes of CH4 emission, which could be favoured by soil compaction. In the forest site, possibly because of the changes in soil structure and microbial activity, the soil always acted as a sink for CH4 (4.7 kg C ha−1 yr−1). The N2O releases at the cropland and pasture sites (2.7 and 4.8 kg N2O-N ha−1 yr−1) were, respectively, 3 and 6 times higher than at the forest site (0.8 kg N2O-N ha−1 yr−1). The highest N2O emissions in the cultivated soils were related to fertilisation and slurry application, and always occurred when the WFPS >60%. These results show that the changes in soil properties as a consequence of the transformation of cropfield to intensive grassland do not imply substantial changes in SOM or in the dynamics of CH4 and N2O. On the contrary, afforestation resulted in increases in SOM content and CH4 uptake, as well as decreases in N2O emissions.  相似文献   

11.
The interplay between the carbon and other nutrient cycles is the key to understand the responses of soil ecosystems to climatic change. Using the free-air CO2 enrichment (FACE) techniques, we carried out a multifactorial experiment in a Chinese rice-wheat rotation system, to investigate the response of soil nematodes to elevated CO2 under different application rates of N fertilizer (225.0 kg N ha−1 (HN) and 112.5 kg N ha−1(LN), respectively) and residue incorporation (0 kg C ha−1 (ZR), 1000 kg C ha−1 (MR) and 2000 kg C ha−1 (HR), respectively). This study was conducted during the wheat growing season of 2007 after expose to the elevated CO2 for three years. The results in our study indicated that seasonality is an important factor in determining changes in the nematode abundance and diversity. The residue addition effects were more obvious than the elevated CO2, which significantly influenced the abundance of total nematodes and plant-parasites, and some ecological indices. The interactions between residue addition and CO2 significantly influenced nematode dominance and structure indices. High level of N fertilization was found to decrease the nematode diversity, generic richness and maturity indices at wheat jointing stage. There are significant interactions between N fertilization and elevated CO2 for abundance of total nematodes and different trophic groups.  相似文献   

12.
A wheat seedling rhizobox approach was used to differentiate between the rhizosphere and non-rhizosphere (bulk) soil amended with low and high rates of biochar (20 and 60 t ha−1 vs. control). Nitrate (NO3) was added as the main nitrogen (N) source because emerging biochar research points to reduced NO3 loss through leaching and gaseous loss as nitrous oxide. The rhizosphere under the different treatments were distinct (P = 0.021), with greater soil-NO3 and biochar-NO3 contents in the high biochar treatment. Biochar addition increased wheat root length ratio (P = 0.053) and lowered root N uptake (P = 0.017), yet plant biomass and N content were similar between treatments. The results indicate localisation of NO3 within the rhizosphere of biochar-amended soils which has implications for NO3 loss and improved nitrogen use efficiency.  相似文献   

13.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

14.
Soil respiration (Rs) is the second-largest source of CO2 to the atmosphere in terrestrial systems. In tropical savannas seasonal moisture availability and frequent fires drive ecosystem dynamics and may have a considerable impact on soil carbon (C) cycling, including Rs. In order to test the effect of fire on soil C cycling we measured Rs in annually burnt and unburnt plots in wet and dry seasons at a long-term fire experiment established in savanna woodlands of northern Australia. There was a significant interaction between season and fire, with highest rates of daily Rs (722 mmol CO2 m−2 d−1) observed in the wet season on unburnt, leaf litter patches. The three fold higher Rs rate on unburnt plots in the wet season was due to greater root-derived respiration (Rroot: 356 mmol CO2 m−2 d−1), while smaller changes to soil-derived respiration (Rsoil: 51 mmol CO2 m−2 d−1) were simply the result of C moving through decomposition rather than combustion pathways. Relationships between instantaneous Rs and soil temperature showed hysteresis with variable direction, suggesting that season and fire treatment also influence the soil depth at which CO2 is produced. We suggest that (1) changes to fire regimes, through active management or climate change, in tropical savannas could have an impact on Rs, and (2) the direct effect of fire on soil C cycling is limited to the removal of aboveground litter inputs.  相似文献   

15.
The main energy sources of soil microorganisms are litter fall, root litter and exudation. The amount on these carbon inputs vary according to basal area of the forest stand. We hypothesized that soil microbes utilizing these soil carbon sources relate to the basal area of trees. We measured the amount of soil microbial biomass, soil respiration and microbial community structure as determined by phospholipid fatty acid (PLFA) profiles in the humus layer (FH) of an even-aged stand of Scots pine (Pinus sylvestris L.) with four different basal area levels ranging from 19.9 m2 ha−1 in the study plot Kasper 1 to 35.7 m2 ha−1 in Kasper 4. Increasing trend in basal respiration, total PLFAs and fungal-to-bacterial ratio was observed from Kasper 1 to Kasper 3 (basal area 29.2 m2 ha−1). The soil microbial community structure in Kasper 3 differed from that of the other study plots.  相似文献   

16.
17.
Soil CO2 efflux is a large component of total respiration in many ecosystems. It is important to understand the environmental controls on soil CO2 efflux, in order to evaluate potential responses of ecosystems to climate change. This study investigated the relationship between total soil CO2 efflux and soil temperature, soil moisture and solar radiation on an interannual basis for a plot of temperate deciduous ancient semi-natural woodland at Wytham Woods in central southern England. We also aimed to quantify the contribution of soil organic matter decomposition (SOM), root-and-rhizosphere respiration, and mycorrhizal respiration components to total soil CO2 efflux, and determine their environmental correlates. Total soil CO2 efflux was measured regularly from April 2006 to December 2008 and found to average 4.1 Mg C ha−1 yr−1 in both 2007 and 2008. In addition, we applied a recently developed approach to partition the efflux into SOM, root-and-rhizosphere, and mycorrhizal components in situ using mesh bags. SOM decomposition, root-and-rhizosphere, and mycorrhizal respiration were estimated to contribute 70 ± 6%, 22 ± 6% and 8 ± 3% of total soil CO2 efflux respectively, equating to 3.0 ± 0.3, 0.9 ± 0.2 and 0.3 ± 0.1 Mg C ha−1 yr−1. In order to avoid the effect of temporal correlation between variables caused by seasonality, we investigated interannual variability by examining the relationship between CO2 flux anomalies and anomalies in environmental variables. Variation in soil temperature explained 50% of the interannual variance in soil CO2 efflux, and soil moisture a further 18% of the residual variance. Solar radiation, as a proxy for plant photosynthesis, had no significant effect on total soil CO2 efflux, but was positively correlated with root-and-rhizosphere respiration, and mycorrhizal respiration. The relationship between anomalies in soil CO2 efflux and soil temperature was highly significant, with a sensitivity of 0.164 ± 0.023 μmol CO2 m−2 s−1 °C−1. For mean peak summer efflux rates (2.03 μmol CO2 m2 s−1), this is equivalent to 8% per °C, or a Q10 temperature sensitivity of 2.2 ± 0.2. We demonstrate the utility of an anomaly analysis approach and conclude that soil temperature is the key driver of total soil CO2 efflux primarily through its positive relationship with SOM-decomposition rate.  相似文献   

18.
Little work has been done to quantify annual soil CO2 effluxes in the High Arctic region because of the difficulty in taking winter measurements. Since the effects of climate change are expected to be higher in Arctic than in temperate ecosystems, it is important that summer measurements are extended to cover the entire year. This study evaluates the quantity and quality of soil organic C (SOC) and seasonal controls of soil CO2 effluxes in three soils under three dominating types of vegetation (Dryas, Cassiope, and Salix) at Svalbard. Measurements included soil CO2 effluxes in the field and the laboratory, temperature, water content, and snow thickness. About 90% of the variation in soil respiration throughout 1 year was due to near-surface soil temperatures which ranged from −12 to +12 °C. Total annual soil CO2 effluxes varied from 103 g C m−2 at soils under Cassiope, 152 g C m−2 under Dryas sites, and 176 g C m−2 under Salix, with 20%, 14%, and 30%, respectively, being released during a 6-month winter period. The sensitivity of soil respiration with respect to soil temperature was the same year round and differences in winter CO2 effluxes at the three vegetation types were mainly related to subsurface soil temperatures controlled by snow depth. The quantity and quality of soil organic matter varied under the different vegetation types. Soils under Salix had the largest and most labile pool of SOC and were characterized by a long period of snow cover. In contrast, soils under Cassiope were more nutrient-poor, more acidic and held the smallest amount of total and labile SOC, whereas soils under Dryas remained snow-free most of the winter and therefore had the coldest winter conditions. Thus, winter soil respiration rates under Dryas and Cassiope were significantly lower than those under Salix; under Dryas this was mainly due to snow depth, under Cassiope this was a combination of snow depth and poor litter quality. It is concluded that winter respiration is highly variable across Arctic landscapes and depends on the spatial distribution of snow, which acts as a direct control on soil temperatures and indirect on vegetation types and thereby, the amount and quality of soil organic matter, which serve as additional important drivers of soil respiration.  相似文献   

19.
To understand the implications of atmospheric nitrogen deposition on carbon turnover in peatlands, we conducted a 13C pulse labeling experiment on Calluna vulgaris and Eriophorum vaginatum already receiving long-term (5 years) amendments of 56 kg N ha−1 y−1 as ammonium or nitrate. We examined shoot tissue retention, net ecosystem respiration returns of the 13C pulse, and soil porewater DOC content under the two species. 13C fixation in Eriophorum leaves was enhanced with nitrogen addition and doubled with nitrate supply. This newly fixed C appeared to be relocated below-ground faster with nitrogen fertilization as respiration returns were unaffected by N inputs. By contrast, increases in 13C fixation were not observed in Calluna. Instead, net ecosystem respiration rates over Calluna increased with N fertilization. There was no significant label incorporation into DOC, suggesting a conservative strategy of peatland vegetation regarding allocation of C through root exudation. Greater concentrations of total DOC were identified with nitrate addition in Calluna. Given the long-term nature of the experiment and the high N inputs, the overall impacts of nitrogen amendments on the fate of recently synthesized C in Eriophorum and Calluna in this ombrotrophic peatland were surprisingly more moderate than originally hypothesized. This may be due to N being effectively retained within the bryophyte layer, thus limiting, and delaying the onset of, below-ground effects.  相似文献   

20.
Approximately 30% of global soil organic carbon (SOC) is stored in subtropical and tropical ecosystems but it is being rapidly lost due to continuous deforestation. Tree plantations are advocated as a C sink, however, little is known about rates of C turnover and sequestration into soil organic matter under subtropical and tropical tree plantations. We studied changes in SOC in a chronosequence of hoop pine (Araucaria cunninghamii) plantations established on former rainforest sites in seasonally dry subtropical Australia. SOC, δ13C, and light fraction organic C (LF C<1.6 g cm−3) were determined in plantations, secondary rainforest and pasture. We calculated loss of rainforest SOC after clearing for pasture using an isotope mixing model, and used the decay rate of rainforest-derived C to predict input of hoop pine-derived C into the soil. Total SOC stocks to 100 cm depth were significantly (P<0.01) higher under rainforest (241 t ha−1) and pasture (254 t ha−1) compared to hoop pine (176-211 t ha−1). We calculated that SOC derived from hoop pine inputs ranged from 32% (25 year plantation) to 61% (63 year plantation) of total SOC in the 0-30 cm soil layer, but below 30 cm all C originated from rainforest. These results were compared to simulations made by the Century soil organic matter model. The Century model simulations showed that lower C stocks under hoop pine plantations were due to reduced C inputs to the slow turnover C pool, such that this pool only recovers to within 45% of the original rainforest C pool after 63 years. This may indicate differences in soil C stabilization mechanisms under hoop pine plantations compared with rainforest and pasture. These results demonstrate that subtropical hoop pine plantations do not rapidly sequester SOC into long-term storage pools, and that alternative plantation systems may need to be investigated to achieve greater soil C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号