首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   

2.
Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium > beetle-affected Tamarix > natural Tamarix. Altered nutrient dynamics with beetle introduction as well as the rapid decomposition rates exhibited by L. latifolium are consistent with vulnerability to secondary invasion. In this desert ecosystem, decomposition and nutrient release were strongly affected by litter type and much less so by UVB exposure.  相似文献   

3.
Climate change is likely to alter decomposition rates through direct effects on soil biotic activity and indirect effects on litter quality with possible impacts on the global carbon budget and nutrient cycling. Currently, there is a need to study the combined effects of climatic drivers and agricultural practises on decomposition.In an in situ litter bag experiment, we studied the effects of rainfall variability (including drought combined with heavy rain pulses as well as regular irrigation) interacting with winter warming and increased winter precipitation and with changes in cutting frequency, on decomposition in a temperate grassland. Litter bags contained mixed and species-specific litter of all different climate and land-use manipulations and were placed within the plots of litter origin. Moreover, we aimed to disentangle the causes of changes in decomposition by investigating two further approaches: Firstly, we studied the effects of changes in leaf chemicals as a result of the manipulations by removing litter from the experiment that has been pre-exposed to the manipulations before placing it on an untreated standard plot outside the experiment. Secondly, we assessed the effects of changes in soil faunal activity by investigating the decomposition of standard material under differing rainfall variability.As a result, decomposition was reduced when litter bags were exposed to drought for six weeks within an 11 months period. Neither additional winter rain nor winter warming had an effect on decomposition, likely because winter warming reduced snow cover and increased variability of surface temperatures. Climate manipulations did not change litter quality. Furthermore, decomposition on the untreated standard plot was not affected by the climate manipulations that the litter was previously exposed to. Thus, reduced decomposition under extreme rainfall variability and drought may mainly be caused by a decrease in soil biotic activity, as indicated by reduced decomposition of standard material during drought.More frequent cutting strongly stimulated decomposition, however, this stimulating effect was absent under extreme rainfall variability including drought. The stimulation of decomposition under more frequent cutting was attributed to changes in litter quality, namely a decrease in C/N ratio. Accordingly, litter from more frequently cut communities decomposed faster on the untreated control plot outside the experiment.Projected increases in drought frequency and increased rainfall variability under climate change may inhibit decomposition and alter nutrient and carbon cycling along with soil quality. Especially decomposition in frequently cut grassland appears vulnerable towards drought.  相似文献   

4.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   

5.
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.  相似文献   

6.
The impact of exotic plant invasions on soil communities and nutrient cycling processes has received an increasing attention in recent years. To test whether the exotic plant invasions affect nematode communities through altering litter quality, we compared mass loss and nematode colonization during the stem litter decomposition of invasive Spartina alterniflora and native Phragmites australis in salt marshes of the Yangtze River estuary, China. Plastic drinking straws were synchronously used as controls. The addition of plant residues was found stimulating the growth of nematodes, particularly bacterial feeders on day 16 after burial. A top-down control of bacterivous nematodes by carnivores existed in nematode succession during the litter decomposition. With higher nitrogen content and lower C:N ratio, stem litter of the invasive S. alterniflora decayed faster and supported more abundant nematodes than the native P. australis. The greater nematode abundance in S. alterniflora was mainly due to two dominant genera of bacterial nematodes, namely Diplolaimelloides and Diplolaimella. Lower values of maturity index and structure index in S. alterniflora than in P. australis litter indicate that a more degraded food web condition resulted from the faster litter decay. A considerable difference in nematode community structures between two litter types only occurred in a certain period of the decomposition (from 8 to 32 days after burial), suggesting that the changes in faunal community structure are time dependent. In summary, this study confirmed the hypothesis that the invasion of S. alterniflora stimulates the growth of bacterial nematodes by producing higher quality of litter than the native P. australis. The results obtained here suggest that the invasion of exotic plant is likely to alter ecosystem functions indirectly through exerting its effect on soil decomposer communities such as nematodes.  相似文献   

7.
Due to the production of lignocellulose-degrading enzymes, saprotrophic basidiomycetes can significantly contribute to the turnover of soil organic matter. The production of lignin- and polysaccharide-degrading enzymes and changes of the chemical composition of litter were studied with three isolates from a Quercus petraea forest. These isolates were capable of fresh litter degradation and were identified as Gymnopus sp., Hypholoma fasciculare and Rhodocollybia butyracea. Within 12 weeks of incubation, H. fasciculare decomposed 23%, R. butyracea 32% and Gymnopus sp. 38% of the substrate dry mass. All fungi produced laccase and Mn-peroxidase (MnP) and none of them produced lignin peroxidase or other Mn-independent peroxidases. There was a clear distinction in the enzyme production pattern between R. butyracea or H. fasciculare compared to Gymnopus sp. The two former species caused the fastest mass loss during the initial phase of litter degradation, accompanied by the temporary production of laccase (and MnP in H. fasciculare) and also high production of hydrolytic enzymes that later decreased. In contrast, Gymnopus sp. showed a stable rate of litter mass loss over the whole incubation period with a later onset of ligninolytic enzyme production and a longer lasting production of both lignin and cellulose-degrading enzymes. The activity of endo-cleaving polysaccharide hydrolases in this fungus was relatively low but it produced the most cellobiose hydrolase. All fungi decreased the C/N ratio of the litter from 24 to 15-19 and Gymnopus sp. also caused a substantial decrease in the lignin content. Analytical pyrolysis mass spectrometry of litter decomposed by this fungus showed changes in the litter composition similar to those caused by white-rot fungi during wood decay. These changes were less pronounced in the case of H. fasciculare and R. butyracea. All fungi also changed the mean masses of humic acid and fulvic acid fractions isolated from degraded litter. The humic acid fraction after degradation by all three fungi contained more lignin and less carbohydrates. Compared to the decomposition by saprotrophic basidiomycetes, litter degradation in situ on the site of fungal isolation resulted in the relative enrichment of lignin and differences in lignin composition revealed by analytical pyrolysis. It can most probably be explained by the participation of non-basidiomycetous fungi and bacteria during natural litter decomposition.  相似文献   

8.
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the C balance. We studied the decomposition of Scots pine (Pinus sylvestris L.) needle and root litter in boreal peatland sites representing gradients in drainage succession (succession following water level drawdown caused by forest drainage) and soil nutrient level during several years of varying weather conditions. Neither gradient had an unambiguous effect on litter mass loss. Mass loss over 2 years was faster in undrained versus drained sites for both needle litter, incubated in the moss layer, and fine root litter, incubated in 0-10 cm peat layer, suggesting moisture stress in the surface layers of the drained sites limited decomposition. Differences among the drained sites were not consistent. Among years, mass loss correlated positively with precipitation variables, and mostly negatively or not at all with temperature sum. We concluded that a long-term water level drawdown in peatlands does not necessarily enhance decay of fresh organic matter. Instead, the drained site may turn into a ‘large hummock-system’ where several factors, including litter quality, relative moisture deficiency, higher acidity, lower substrate temperature, and in deeper layers also oxygen deficiency, may interact to constrain organic matter decomposition. Further, the decomposition rates may not vary systematically among sites of different soil nutrient levels following water level drawdown. Our results emphasize the importance of annual weather variations on decomposition rates, and demonstrate that single-period incubation studies incorporate an indeterminable amount of temporal variation.  相似文献   

9.
Initial decomposition rates, changes in organic chemical components (acid-insoluble fraction, holocellulose, polyphenols, soluble carbohydrates) and nutrient dynamics (K, Mg, Ca, P, N) were examined for fine roots and leaves of Japanese cypress (Chamaecyparis obtusa). Litterbag experiments designed to evaluate the relative effects of litter type and position of litter supply in the soil were carried out, considering that root and leaf litter typically occupy different locations and have different substrate qualities. Litterbags of roots and leaves were placed at two positions (on the soil surface and in the humus layer), and collected every 3 months over one year. The mass loss rate and N release were slower during root decomposition in the humus layer than during leaf decomposition on the soil surface. These differences between root and leaf decomposition were mainly caused by the litter type, and the effect of the position on decomposition was relatively small. Root litter was less influenced by position related effects, such as differences in humidity, than leaf litter, and this recalcitrant trait to environmental effects may be responsible for the slower mass loss rate and N release in root decomposition. The results of the present study suggest that fine roots are persistent in the soil and serve an important role in N retention in forest ecosystems because of their litter substrate quality.  相似文献   

10.
Soil respiration is the largest terrestrial source of CO2 to the atmosphere. In forests, roughly half of the soil respiration is autotrophic (mainly root respiration) while the remainder is heterotrophic, originating from decomposition of soil organic matter. Decomposition is an important process for cycling of nutrients in forest ecosystems. Hence, tree species induced changes may have a great impact on atmospheric CO2 concentrations. Since studies on the combined effects of beech-spruce mixtures are very rare, we firstly measured CO2 emission rates in three adjacent stands of pure spruce (Picea abies), mixed spruce-beech and pure beech (Fagus sylvatica) on three base-rich sites (Flysch) and three base-poor sites (Molasse; yielding a total of 18 stands) during two summer periods using the closed chamber method. CO2 emissions were higher on the well-aerated sandy soils on Molasse than on the clayey soils on Flysch, characterized by frequent water logging. Mean CO2 effluxes increased from spruce (41) over the mixed (55) to the beech (59) stands on Molasse, while tree species effects were lower on Flysch (30-35, mixed > beech = spruce; all data in mg CO2-C m−2 h−1). Secondly, we studied decomposition after fourfold litter manipulations at the 6 mixed species stands: the Oi - and Oe horizons were removed and replaced by additions of beech -, spruce - and mixed litter of the adjacent pure stands of known chemical quality and one zero addition (blank) in open rings (20 cm inner diameter), which were covered with meshes to exclude fresh litter fall. Mass loss within two years amounted to 61-68% on Flysch and 36-44% on Molasse, indicating non-additive mixed species effects (mixed litter showed highest mass loss). However, base cation release showed a linear response, increasing from the spruce - over the mixed - to the beech litter. The differences in N release (immobilization) resulted in a characteristic converging trend in C/N ratios for all litter compositions on both bedrocks during decomposition. In the summers 2006 and 2007 we measured CO2 efflux from these manipulated areas (a closed chamber fits exactly over such a ring) as field indicator of the microbial activity. Net fluxes (subtracting the so-called blank values) are considered an indicator of litter induced changes only and increased on both bedrocks from the spruce - over the mixed - to the beech litter. According to these measurements, decomposing litter contributed between 22-32% (Flysch) and 11-28% (Molasse) to total soil respiration, strengthening its role within the global carbon cycle.  相似文献   

11.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

12.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

13.
Little work has been done to quantify annual soil CO2 effluxes in the High Arctic region because of the difficulty in taking winter measurements. Since the effects of climate change are expected to be higher in Arctic than in temperate ecosystems, it is important that summer measurements are extended to cover the entire year. This study evaluates the quantity and quality of soil organic C (SOC) and seasonal controls of soil CO2 effluxes in three soils under three dominating types of vegetation (Dryas, Cassiope, and Salix) at Svalbard. Measurements included soil CO2 effluxes in the field and the laboratory, temperature, water content, and snow thickness. About 90% of the variation in soil respiration throughout 1 year was due to near-surface soil temperatures which ranged from −12 to +12 °C. Total annual soil CO2 effluxes varied from 103 g C m−2 at soils under Cassiope, 152 g C m−2 under Dryas sites, and 176 g C m−2 under Salix, with 20%, 14%, and 30%, respectively, being released during a 6-month winter period. The sensitivity of soil respiration with respect to soil temperature was the same year round and differences in winter CO2 effluxes at the three vegetation types were mainly related to subsurface soil temperatures controlled by snow depth. The quantity and quality of soil organic matter varied under the different vegetation types. Soils under Salix had the largest and most labile pool of SOC and were characterized by a long period of snow cover. In contrast, soils under Cassiope were more nutrient-poor, more acidic and held the smallest amount of total and labile SOC, whereas soils under Dryas remained snow-free most of the winter and therefore had the coldest winter conditions. Thus, winter soil respiration rates under Dryas and Cassiope were significantly lower than those under Salix; under Dryas this was mainly due to snow depth, under Cassiope this was a combination of snow depth and poor litter quality. It is concluded that winter respiration is highly variable across Arctic landscapes and depends on the spatial distribution of snow, which acts as a direct control on soil temperatures and indirect on vegetation types and thereby, the amount and quality of soil organic matter, which serve as additional important drivers of soil respiration.  相似文献   

14.
The objectives of this study were to evaluate the contribution of arbuscular mycorrhizal (AM) fungal hyphae to 15N uptake from vineyard cover crop litter (Medicago polymorpha), and to examine the soil microbial community under the influence of mycorrhizal roots and extraradical hyphae. Mycorrhizal grapevines (Vitis vinifera) were grown in specially designed containers, within which a polyvinyl chloride (PVC) mesh core was inserted. Different sizes of mesh allowed mycorrhizal roots (mycorrhizosphere treatment) or extraradical hyphae (hyphosphere treatment) to access dual labeled 15N and 13C cover crop litter that was placed inside the cores after 4 months of grapevine growth. Mesh cores in the bulk soil treatment, which served as a negative control, had the same mesh size as the hyphosphere treatment, but frequent rotation prevented extraradical hyphae from accessing the litter. Grapevines and soils were harvested 0, 7, 14, and 28 days after addition of the cover crop litter and examined for the presence of 15N. Soil microbial biomass and the soil microbial community inside the mesh cores were examined using phospholipid fatty acid analysis. 15N concentrations in grapevines in the hyphosphere treatment were twice that of grapevines in the bulk soil treatment, suggesting that extraradical hyphae extending from mycorrhizal grapevine roots may have a role in nutrient utilization from decomposing vineyard cover crops in the field. Nonetheless, grapevines in the mycorrhizosphere treatment had the highest 15N concentrations, thus highlighting the importance of a healthy grapevine root system in nutrient uptake. We detected similar peaks in soil microbial biomass in the mycorrhizosphere and hyphosphere treatments after addition of the litter, despite significantly lower microbial biomass in the hyphosphere treatment initially. Our results suggest that although grapevine roots play a dominant role in the uptake of nutrients from a decomposing cover crop, AM hyphae may have a more important role in maintaining soil microbial communities associated with nutrient cycling.  相似文献   

15.
Fungal decomposition of and phosphorus transformation from spruce litter needles (Picea abies) were simulated in systems containing litter needles inoculated with individual saprotrophic fungal strains and their mixtures. Fungal strains of Setulipes androsaceus (L.) Antonín, Chalara longipes (Preus) Cooke, Ceuthospora pinastri (Fr.) Höhn., Mollisia minutella (Sacc.) Rehm, Scleroconidioma sphagnicola Tsuneda, Currah & Thormann and an unknown strain NK11 were used as representatives of autochthonous mycoflora. Systems were incubated for 5.5 months in laboratory conditions. Fungal colonization in systems and competition among strains were assessed using the reisolation of fungi from individual needles. After incubation, needles were extracted with NaOH and extracts were analysed using 31P nuclear magnetic resonance spectroscopy (NMR). Needle decomposition was determined based on the decrease in C:N ratio. Systems inoculated with the basidiomycete S. androsaceus revealed substantial decrease in C:N ratio (from 25.8 to 11.3) while the effect of ascomycetes on the C:N ratio was negligible. We suppose that tested strains of saprotrophic ascomycetes did not participate substantially in litter decomposition, but were directly involved in phosphorus transformation and together with S. androsaceus could transform orthophosphate monoesters and diesters from spruce litter needles into diphosphates, polyphosphates and phosphonates. These transformations seem to be typical for saprotrophic fungi involved in litter needle decomposition, although the proportion of individual phosphorus forms differed among studied fungal strains. Phosphonate presence in needles after fungal inoculation is of special interest because no previous investigation recorded phosphonate synthesis and accumulation by fungi. Our results confirmed that the 31P NMR spectroscopy is an excellent instrumental method for studying transformations of soil organic phosphorus during plant litter decomposition. We suggest that polyphosphate production by S. androsaceus may contribute to the phosphorus cycle in forest ecosystems because this fungus is a frequent litter colonizer that substantially participates in decomposition.  相似文献   

16.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

17.
Lipases are glycerol ester hydrolases (EC 3.1.1.3) produced by a wide range of microorganisms. They catalyse the hydrolysis of different esters depending on the water content of the reaction medium. Here, we developed a simple methodology to quantify lipase hydrolysis activities using two different litters: a litter of Quercus pubescens (QP) and a litter of both Q. pubescens and Q. ilex. Different p-nitrophenyl esters were used to test hydrolysis in a reaction medium with an organic solvent (heptane). We showed that these activities depended on the amount of litter, the incubation time and the substrate concentration and that they increased with temperature. Furthermore, the lipases from the studied litters were still active after 2 h at 70 °C. These activities showed common properties of lipases: the highest activities were obtained with a medium-acyl chain substrate, p-nitrophenyl laurate. Moreover abiotic hydrolysis with short-chain acyl substrates was observable. The following parameters are recommended to quantify hydrolysis activities of lipases in litters: 10 mM of p-nitrophenyl laurate in 2 ml of heptane, 1 g of litter, 2 ml of water incubated at 30 °C for 2 h.  相似文献   

18.
The present study was designated to evaluate the relative effects of litter depth and decomposition stage of needles on fungal colonization of needle litter in field experiments. The experiment was carried out in coniferous temperate forests in central Japan. Needle litter of Chamaecyparis obtusa and Pinus pentaphylla var. himekomatsu at two decomposition stages (recently dead and partly decomposed) were placed into the organic layer at two depths (on the surface of and beneath the litter layer). Fungal colonization of needles after 1 year was examined in terms of hyphal abundance and frequency of fungal species. Total and live hyphal length on needles were affected by the litter depth and (or) the decomposition stage of needles. Length of darkly pigmented hyphae on needles was 1.7-2.6 times greater beneath the litter layer than on the litter surface regardless of the decomposition stage of needles. Length of clamp-bearing hyphae in Pinus pentaphylla was 5.0-5.2 times greater in partly decomposed needles than in recently dead needles regardless of the litter depth. Frequencies of Pestalotiopsis spp. and Cladosporium cladosporioides were higher on recently dead needles than on partly decomposed needles and (or) were higher on the litter surface than beneath the litter layer. Frequencies of Trichoderma, Penicillium, and Umbelopsis species generally were higher on partly decomposed needles than on recently dead needles and were higher beneath the litter layer than on the surface.  相似文献   

19.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

20.
Condensed tannins (CT) can strongly affect litter decomposition, but their fate during the decomposition process, in particular as influenced by detritivore consumption, is not well understood. We tested the hypothesis that litter CT are reduced by the gut passage of two functionally distinct detritivores of Mediterranean forests, the millipede Glomeris marginata, and the land snail Pomatias elegans, as a fixed proportion of initial litter CT, but more so in Pomatias since snails are known to have a more efficient enzymatic capacity. Contrary to our hypothesis, both detritivore species reduced litter CT to near zero in their faecal pellets irrespective of the wide range in initial leaf litter CT concentrations of 9-188 mg g−1 d m among three Mediterranean tree species (Pistacia terebinthus, Quercus ilex, Alnus glutinosa) and different decomposition stages of their litter. The almost complete disappearance of CT even from some litter types highly concentrated in CT, due to either degradation by gut microorganism or complexation of CT into insoluble high molecular weight structures, suggests a high “de-tanning” efficiency across functionally distinct detritivore species. The transformation of CT-rich litter into virtually CT-free faecal pellets by detritivores might be highly relevant for the subsequent decomposition process in ecosystems with a high macrofauna abundance and CT-rich plant species such as Mediterranean forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号