首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total and active soil fungal communities in a native eucalypt forest and first rotation Pinus elliotti plantation were investigated by direct extraction of DNA and RNA from soil. Terminal restriction fragment length polymorphism (T-RFLP) analysis of internal transcribed spacer (ITS) and 18S rRNA profiles indicated that total and active fungal communities differed significantly in both forest types. This was supported by DGGE profile analysis on an individual plot basis for both forest types and when groups in the canonical analysis were redefined to allow comparison between forest types. Analyses of both ITS and 18S T-RFLP profiles indicated that conversion from native eucalypt forest to P. elliottii plantation may significantly alter total and active soil fungal communities. ITS DGGE (DNA) and 18S (RNA) profiles also suggested differences in fungal communities in the two forest types. No significant separation of the fungal communities in the two forest types was observed, however, when ITS DGGE (RNA) profiles were compared. Overall, the data suggest that conversion from native eucalypt forest to P. elliottii plantation at the Beerburrum State Forest in subtropical Australia has significantly altered soil fungal communities.  相似文献   

2.

Purpose  

Commercial monoculture plantations of the native Australian Araucaria cunninghamii are common in subtropical and tropical Queensland and are generally established following clearing of native mixed forest. The consequences of such forest conversion for soil fungal communities, however, have not been assessed in detail.  相似文献   

3.
Current theory expects that fungi, on the one hand, are spatially ubiquitous but, on the other, are more susceptible than bacteria to disturbance such as land use change due to dispersal limitations. This study examined the relative importance of location and land use effects in determining soil fungal community composition in south-eastern Australia. We use terminal restriction fragment length polymorphism (T-RFLP; primer pair ITS1-F–ITS4) and multivariate statistical methods (NMDS ordinations, ANOSIM tests) to compare relative similarities of soil fungal communities from nine sites encompassing three locations (ca 50–200 km apart) and four land uses (native eucalypt forest, Pinus radiata plantation, Eucalyptus globulus plantation, and unimproved pasture). Location effects were generally weak (e.g. ANOSIM test statistic R  0.49) and were, in part, attributed to minor differences in soil texture. By contrast, we found clear and consistent evidence of land use effects on soil fungal community composition (R  0.95). That is, soils from sites of the same land use grouped together in NMDS ordinations of fungal composition despite geographic separations of up to ca 175 km (native eucalypt forests) and 215 km (P. radiata plantations). In addition, different land uses from the same location were clearly separate in NMDS ordinations, despite, in one case, being just 180 m apart and having similar land use histories (i.e. P. radiata versus E. globulus plantation both established on pasture in the previous decade). Given negligible management of all sites beyond the early establishment phase, we attribute much of the land use effects to changes in dominant plant species based on consistent evidence elsewhere of strong specificity in pine and eucalypt mycorrhizal associations. In addition, weak to moderate correlations between soil fungal community composition and soil chemical variables (e.g. Spearman rank correlation coefficients for individual variables of 0.08–0.32), indicated a minor contributing role of vegetation-mediated changes in litter and soil chemistry. Our data provide evidence of considerable plasticity in soil fungal community composition over time spans as short as 6–11 years. This suggests that – at least within geographic zones characterised by more-or-less contiguous forest cover – soil fungal community composition depends most on availability of suitable habitat because dispersal propagules are readily available for colonisation after land use change.  相似文献   

4.
Approximately 30% of global soil organic carbon (SOC) is stored in subtropical and tropical ecosystems but it is being rapidly lost due to continuous deforestation. Tree plantations are advocated as a C sink, however, little is known about rates of C turnover and sequestration into soil organic matter under subtropical and tropical tree plantations. We studied changes in SOC in a chronosequence of hoop pine (Araucaria cunninghamii) plantations established on former rainforest sites in seasonally dry subtropical Australia. SOC, δ13C, and light fraction organic C (LF C<1.6 g cm−3) were determined in plantations, secondary rainforest and pasture. We calculated loss of rainforest SOC after clearing for pasture using an isotope mixing model, and used the decay rate of rainforest-derived C to predict input of hoop pine-derived C into the soil. Total SOC stocks to 100 cm depth were significantly (P<0.01) higher under rainforest (241 t ha−1) and pasture (254 t ha−1) compared to hoop pine (176-211 t ha−1). We calculated that SOC derived from hoop pine inputs ranged from 32% (25 year plantation) to 61% (63 year plantation) of total SOC in the 0-30 cm soil layer, but below 30 cm all C originated from rainforest. These results were compared to simulations made by the Century soil organic matter model. The Century model simulations showed that lower C stocks under hoop pine plantations were due to reduced C inputs to the slow turnover C pool, such that this pool only recovers to within 45% of the original rainforest C pool after 63 years. This may indicate differences in soil C stabilization mechanisms under hoop pine plantations compared with rainforest and pasture. These results demonstrate that subtropical hoop pine plantations do not rapidly sequester SOC into long-term storage pools, and that alternative plantation systems may need to be investigated to achieve greater soil C sequestration.  相似文献   

5.
The main objective of this study was to assess the impact of the application of an antagonistic strain of Trichoderma atroviride on the native microbial soil communities. The structures of the fungal and bacterial communities were assessed by T-RFLP (terminal restriction fragment length polymorphism) method, based on T-RFLP analysis of 18S and 16S rRNA genes, respectively. Results showed that the introduction of the strain I-1237 into two soils slightly modified the microbial diversity, only for a short period of time. Nine months post-inoculation resilience took place, resulting in similar structures of the fungal and bacterial communities in the inoculated and control soils.  相似文献   

6.
Although understory vegetation is known to play an important role in driving the processes and functions of forest ecosystems, little is known about how understory vegetation affects the composition and function of soil microbial communities in forest ecosystems, especially in subtropical and tropical forests. This study used the experimental removal of understory fern (Dicranopteris dichotoma) to investigate the effect of the fern on substrate utilization patterns of culturable soil bacterial communities in two subtropical Eucalyptus plantations. One year after treatment, the removal of understory fern significantly increased soil temperature by 2–3 °C and retarded litter decomposition by 5.6–23.1%. However, understory fern removal did not affect the substrate utilization pattern of soil bacterial communities. Our study provides evidence that, although understory fern removal significantly alters soil temperature and litter decomposition rate, the disturbance caused by understory removal one year after treatment is too weak to cause detectable changes in substrate utilization pattern of culturable soil bacterial communities in subtropical Eucalyptus plantations.  相似文献   

7.
《Pedobiologia》2014,57(4-6):257-262
Many studies have shown the effects of aboveground plant species on soil organisms due to differences in litter quality. However, the calcium concentration in soil has received less attention as a controlling factor of soil invertebrate communities, even though it is an essential element for many animals, especially crustaceans. Litter of Japanese cedar (Cryptomeria japonica) plantations, which account for 19% of the forested area in Japan, has a higher calcium concentration compared to other taxa such as broad-leaved trees. We predicted that C. japonica plantations affect soil invertebrates by altering calcium availability. We compared soil properties including exchangeable calcium concentration and soil invertebrate communities between C. japonica plantations and natural broad-leaved forests. Exchangeable calcium was significantly higher in soil from cedar plantations than in that from broad-leaved forests. The invertebrate community composition differed between the two forest types and was best explained by the exchangeable calcium concentration. In particular, two major taxa of soil crustaceans (Talitridae and Ligidium japonicum) were found only in cedar plantations. Our results suggest that calcium concentrations in soil are altered in C. japonica plantations and that this affects soil invertebrate communities.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) are important functional components of ecosystems. Although there is accumulating knowledge about AMF diversity in different ecosystems, the effect of forest management on diversity and functional characteristics of AMF communities has not been addressed. Here, we used soil inoculum representing three different AM fungal communities (from a young forest stand, an old forest stand and an arable field) in a greenhouse experiment to investigate their effect on the growth of three plant species with contrasting local distributions - Geum rivale, Trifolium pratense and Hypericum maculatum. AM fungal communities in plant roots were analysed using the terminal restriction fragment length polymorphism (T-RFLP) method. The effect of natural AMF communities from the old and young forest on the growth of studied plant species was similar. However, the AMF community from the contrasting arable ecosystems increased H. maculatum root and shoot biomass compared with forest inocula and T. pratense root biomass compared to sterile control. According to ordination analysis AMF inocula from old and young forest resulted in similar root AMF communities whilst plants grown with AM fungi from arable field hosted a different AMF community from those grown with old forest inocula. AMF richness in plant roots was not related to the origin of AMF inoculum. G. rivale hosted a significantly different AM fungal community to that of T. pratense and H. maculatum. We conclude that although the composition of AM fungal communities in intensively managed stands differed from that of old stands, the ecosystem can still offer the ‘symbiotic service’ necessary for the restoration of a characteristic old growth understorey plant community.  相似文献   

9.
Abstract

There is limited knowledge about the differences in carbon availability and metabolic quotients in temperate volcanic and tropical forest soils, and associated key influencing factors. Forest soils at various depths were sampled under a tropical rainforest and adjacent tea garden after clear-cutting, and under three temperate forests developed on a volcanic soil (e.g. Betula ermanii and Picea jezoensis, and Pinus koraiensis mainly mixed with Tilia amurensis, Fraxinus mandshurica and Quercus mongolica), to study soil microbial biomass carbon (MBC) concentration and metabolic quotients (qCO2, CO2-C/biomass-C). Soil MBC concentration and CO2 evolution were measured over 7-day and 21-day incubation periods, respectively, along with the main properties of the soils. On the basis of soil total C, both CO2 evolution and MBC concentrations appeared to decrease with increasing soil depth. There was a maximal qCO2 in the 0–2.5 cm soil under each forest stand. Neither incubation period affected the CO2 evolution rates, but incubation period did induce a significant difference in MBC concentration and qCO2 in tea soil and Picea jezoensis forest soil. The conversion of a tropical rainforest to a tea garden reduced the CO2 evolution and increased the qCO2 in soil. Comparing temperate and tropical forests, the results show that both Pinus koraiensis mixed with hardwoods and rainforest soil at less than 20 cm depth had a larger MBC concentration relative to soil total C and a lower qCO2 during both incubation periods, suggesting that microbial communities in both soils were more efficient in carbon use than communities in the other soils. Factor and regression analysis indicated that the 85% variation of the qCO2 in forest soils could be explained by soil properties such as the C:N ratio and the concentration of water soluble organic C and exchangeable Al (P < 0.001). The qCO2 values in forest soils, particularly in temperate volcanic forest soils, decreased with an increasing Al/C ratio in water-soluble organic matter. Soil properties, such as exchangeable Ca, Mg and Al and water-soluble organic C:N ratio, were associated with the variation of MBC. Thus, MBC concentrations and qCO2 of the soils are useful soil parameters for studying soil C availability and microbial utilization efficiency under temperate and tropical forests.  相似文献   

10.
Remnant forest strips are frequently proposed as valuable conservation tools in fragmented tropical landscapes, yet we currently lack evidence to evaluate their potential conservation value for native biota. We examined the potential value for understorey forest birds of 30-year-old riparian and terra firme (unflooded) primary forest strips within a large silvicultural landscape in the north-east Brazilian Amazon, where the matrix is dominated by Eucalyptus plantations. We conducted mist-netting in eight forest strips connected to continuous forest (four of each forest type), with a total of 24 replicate sampling sites located near to (<1 km), far from (2.5-9 km), and within undisturbed forest controls (i.e. 16 samples within the strips, and 8 in controls). Bird communities in both strip types changed with increasing distance along forest remnants into the plantation matrix. Matrix-embedded samples were characterised by a higher representation of birds typical of secondary growth forest but not those typical of the Eucalyptus-dominated matrix. While the long-term viability of the bird populations in these remnants remains unclear, our data demonstrate that forest strips can provide important habitat for many bird species that are otherwise rarely found outside primary forest. Forest strips therefore provide an important tool to enhance biodiversity conservation in plantation landscapes. The relative practical ease with which these areas can be selected and maintained means that the protection of forest strips as part of a wider conservation strategy is likely to have particular appeal to policy makers and landscape managers working in the human-dominated tropics.  相似文献   

11.
《Geoderma》2007,137(3-4):401-413
Land-use history – the number, type, and duration of previous land uses – is relevant to many questions regarding land-use effects on soil carbon, but is infrequently reported. We examine the importance of land-use history variables, as well as topographic and edaphic variables, on soil C in a range of forest types – native forest, pine plantations, secondary forest and rehabilitated forest – at three contrasting locations in south eastern Australia. Our comparisons include a novel forest conversion of exotic pine plantations to native, broadleaf forest.Using nested ANOVAs, we detected few differences in soil C concentration indices (total C, microbial biomass C, K2SO4–C) and C content among eucalypt-dominated vegetation and pine plantations within each location (0–10 cm depth). However, planned contrasts indicated a 30% decrease in soil C content with conversion of native forest to pine plantation of age 37 years. The reverse land-use change – pine plantation to native, broadleaf forest – was associated with a decrease in soil C concentration and content at one location (40%; age 12–13 years) and no detectable changes at another (to age 7 years). Variable effect between locations of this novel land-use change on soil C could be due to differences in potential productivity, conifer species, and plantation age.We used correlation coefficients and general linear models to identify widely applicable variables for predicting soil C concentration and content at local scales (≤ 20 km2). Within-location relationships with topographic variables were weak and infrequent relative to those with edaphic and land-use history variables. Soil texture was strongly correlated with soil C at each location, although the relative significance of different particle size fractions differed among locations. Electrical conductivity appeared more widely applicable since it was included in C models at two locations. Combining land-use history and edaphic variables produced strong predictive models for soil C concentrations and content at two locations (total r2 0.83 to 0.95). Positive relationships were indicated between soil C and ‘age of current vegetation’ at one location, and negative relationships were indicated with ‘number of land uses’ at another. These data highlight a potential predictive role for land-use history variables in local-scale assessments of soil C in forested landscapes.  相似文献   

12.
A vulnerability analysis of the temperate forests of south central Chile   总被引:1,自引:0,他引:1  
Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200 000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate, spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that approximately 27 000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network.  相似文献   

13.
The expansion of agricultural plantations at the expense of forest drives dramatic losses of biodiversity and carbon. Consumers are now demanding sustainability in tropical agriculture and producers are responding with questionable certification standards. Many certification schemes—including those for oil palm, soy, sugar cane and cacao—rely upon the High Conservation Value (HCV) concept to prevent unacceptable losses of biodiversity to agricultural conversion. This concept protects very rare species or habitats, exceptional concentrations of wildlife, or large landscape-level areas of forest. Yet much biodiversity persists below these thresholds yielding the spectre of unsustainable conversion of forest to certified plantation crops under a green label. To meet more rigorous standards of sustainability, tropical plantations would have to retain large patches of native forests in the matrix. We highlight six critical areas in need of consideration by conservation scientists, practitioners and certification processes. In particular, the application of HCV to sustainable agricultural development at the national-level, the use of Imperata grasslands and abandoned agriculture, the creation of Biobanks, and increased price premiums for certified crops could redound to the long-term protection of tropical biodiversity.  相似文献   

14.
The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from the surrounding non-mat soils. In this study, we examined the fungal and bacterial communities associated with Piloderma mat and non-mat soils. Each mat and non-mat area was repeatedly sampled at four times throughout the year. Characterization of the mat activity and community was achieved using a combination of N-acetylglucosaminidase (NAGase) enzyme assays, and molecular analysis of fungal and bacterial communities using T-RFLP profiles, clone libraries, and quantitative PCR. Piloderma mats had consistently greater NAGase activity across all dates, although the magnitude of the difference varied by season. Furthermore, we found distinct fungal and bacterial communities associated with the Piloderma mats, yet the size of the microbial populations differed little between the mat and non-mat soils. Significant temporal variation was seen in the NAGase activity and in the sizes of the fungal and bacterial populations, but the community composition remained stable through time. Our results demonstrate the presence of two distinct microbial communities occupying the forest floor of Douglas-fir stands, whose populations and activities fluctuate seasonally but with little change in composition, which appears to be related to the physiochemical nature of mat and non-mat habitats.  相似文献   

15.
Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves that are located on the coast of Sao Paulo State (Brazil): (1) an oil-spill-affected mangrove and (2) a nearby unaffected mangrove. Samples were collected from each mangrove forest at three distinct locations (transect from sea to land), and the samples were analyzed by quantitative PCR and internal transcribed spacer (ITS)-based PCR-DGGE analysis. The abundance of fungi was found to be higher in the oil-affected mangrove. Visual observation and correspondence analysis (CA) of the ITS-based PCR-DGGE profiles revealed differences in the fungal communities between the sampled areas. Remarkably, the oil-spilled area was quite distinct from the unaffected sampling areas. On the basis of the ITS sequences, fungi that are associated with the Basidiomycota and Ascomycota taxa were most common and belonged primarily to the genera Epicoccum, Nigrospora, and Cladosporium. Moreover, the Nigrospora fungal species were shown to be sensitive to oil, whereas a group that was described as ??uncultured Basidiomycota?? was found more frequently in oil-contaminated areas. Our results showed an increase in fungal abundance in the oil-polluted mangrove regions, and these data indicated potential fungal candidates for remediation of the oil-affected mangroves.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) community composition and species richness are affected by several factors including soil attributes and plant host. In this paper we tested the hypothesis that conversion of tropical Amazon forest to pasture changes taxonomic composition of AMF community but not community species abundance and richness. Soil samples were obtained in 300 m × 300 m plots from forest (n = 11) and pasture (n = 13) and fungal spores extracted, counted and identified. A total of 36 species were recovered from both systems, with 83% of them pertaining to Acaulosporaceae and Glomeraceae. Only 12 species were shared between systems and spore abundance of the majority of fungal species did not differ between pasture and forest. Spore abundance was significantly higher in pasture compared to forest but both systems did not differ on mean species richness, Shannon diversity and Pielou equitability. Species abundance distribution depicted by species rank log abundance plots was not statistically different between both systems. We concluded that conversion of pristine tropical forest to pasture influences the taxonomic composition of AMF communities while not affecting species richness and abundance distribution.  相似文献   

17.
Fungal breakdown of plant material rich in lignin and cellulose (i.e. lignocellulose) is of central importance to terrestrial carbon (C) cycling due to the abundance of lignocellulose above and below-ground. Fungal growth on lignocellulose is particularly influential in tropical forests, as woody debris and plant litter contain between 50% and 75% lignocellulose by weight, and can account for 20% of the C stored in these ecosystems. In this study, we evaluated factors affecting fungal growth on a common wood substrate along a wet tropical elevation gradient in the Peruvian Andes. We had three objectives: 1) to determine the temperature sensitivity of fungal growth - i.e. Q10, the factor by which fungal biomass increases given a 10 °C temperature increase; 2) to assess the potential for above-ground fungal colonization and growth on lignocellulose in a wet tropical forest; and 3) to characterize the community composition of fungal wood decomposers across the elevation gradient. We found that fungal growth had a Q10 of 3.93 (95% CI of 2.76-5.61), indicating that fungal biomass accumulation on the wood substrate nearly quadrupled with a 10 °C increase in temperature. The Q10 for fungal growth on wood at our site is higher than Q10 values reported for litter decomposition in other tropical forests. Moreover, we found that above-ground fungal growth on the wood substrate ranged between 37% and 50% of that measured in the soil, suggesting above-ground breakdown of lignocellulose represents an unexplored component of the C cycle in wet tropical forests. Fungal community composition also changed significantly along the elevation gradient, and Ascomycota were the dominant wood decomposers at all elevations. Fungal richness did not change significantly with elevation, directly contrasting with diversity patterns observed for plant and animal taxa across this gradient. Significant variation in fungal community composition across the gradient suggests that the characteristics of fungal decomposer communities are, directly or indirectly, influenced by temperature.  相似文献   

18.
《Pedobiologia》2014,57(4-6):293-301
Statistical approaches, especially multivariate techniques such as hierarchical partitioning analysis (HP) and redundancy analysis (RDA), can be used to select appropriate variables for soil quality assessment. HP is usually applied to ecological data from plants and animals, but has not been applied to chemical and microbial properties such as those used as indicators of soil quality. Our aim was to show how these methods can be employed to find soil quality indicators, using soil microbiological, chemical and physical data to compare two forest types (native and reforested Brazilian Araucaria forests) in two locations in Southeast Brazil. We used RDA to investigate relationships among variables. Additionally, we quantified the independent effects of predictor variables: location, forest type, two specific seasons and some soil properties and used HP to examine how these environmental variables interact to influence soil microbial and chemical attributes. RDA showed that acid phosphatase and dehydrogenase activity, NO2 oxidizer numbers, basal respiration, metabolic quotient, pH, P and sand content were positive and significantly correlated with the native Araucaria forest, whereas arylsulphatase activity, denitrifier numbers, microbial biomass carbon, microbial quotient, TOC, S and clay levels were positively correlated with the reforested Araucaria. These preliminary results suggest that these variables are the best indicators of soil quality for Araucaria forests. However, HP, used as a complementary tool, showed that only dehydrogenase activity, pH and S variations were due more to forest type than to physical and chemical soil properties, and were resistant to the variation in the two seasons. Overall, our results indicated that dehydrogenase activity, pH and S are potential indicators that can be used to assess or monitor soil health in Araucaria forests. In conclusion, we demonstrated the usefulness of HP to find soil quality indicators. Similarly, other statistical methods, as RDA, could complement HP and increase the reliability of studies that consider simultaneous variables in soil science.  相似文献   

19.
This work investigates mangrove tree zonation dynamics in a deltaic fan in the southwestern coast of Mexico. A hypothetical evolution that led to the formation and consolidation of the Arroyo Seco deltaic fan based on the environmental components from the hydrographic basin is proposed. Also, the relief morphogenetic types, along with their sedimentary composition, are derived from geomorphologic and edaphic diagnose methods. Finally, mangrove tree zonation, basal area and height along transects traced parallel to the relief are related to morphogenetic types and to the water table depth during the dry period. There was a clear sedimentological evidence of the accretion process in the deltaic fan. The accretion horizons conditioned the water table, which increased in depth from the margin of the lagoon to the hinterland, thus changing among geoforms. It was much greater at the middle part of the transects, where continental or lagoon water did not infiltrate due to high resistance of clayey soils. The geomorphic zonation of mangrove communities in the Arroyo Seco deltaic fan is: (1) a low fluvial distributary accumulative plain, with coconut palm plantations; (2) a bank fluvial accumulative plain between distributary channels, with coconut palm plantations and patches of low tropical forest; (3) a relatively high swamp accumulative plain, flooded during high water levels, with Avicennia germinans; (4) a low swamp, temporarily flooded accumulative plain, with Rhizophora mangle, Laguncularia racemosa and A. germinans; (5) a very low swamp, permanently flooded accumulative plain, with distributary channels, lateral microbars and tide microdepressions, where Rhizophora and Laguncularia codominate; and (6), a Rhizophora fringe and colonization area along the fan's frontal edge on the same plain. Along this gradient composed of six mangrove communities, basal area and height tended to increase as the water table reached soil level.  相似文献   

20.
Acacia dealbata Link is an Australian woody legume that has become a serious environmental problem in Northwest Spain where it forms dense monospecific patches modifying the structure of different native ecosystems and threatening native aboveground biodiversity. In spite of the dramatic changes observed in the vegetation of invaded sites little is known about the consequences of invasion for soil microorganisms. To investigate the effect of A. dealbata invasion on the structure of soil fungi and bacteria communities, samples were taken from invaded and non-invaded areas from three different ecosystems in Northwest Spain: pine forest, shrubland and grassland. In each ecosystem type, soil samples were taken in areas of native vegetation, areas invaded by A. dealbata and in the transition zone between native and invaded vegetation. Soil microorganisms were analyzed in the different samples by PCR-DGGE using general primers for eubacteria and fungi. Soil analyses were also performed to evaluate the effect of A. dealbata invasion on soil fertility.The invasion by A. dealbata consistently increased soil N, C, organic matter and exchangeable P content in the three studied ecosystems. A clear effect of the invasion on the overall structure of microorganism communities was only observed in the shrubland where soil fungal communities in the invaded and transition areas clustered together and apart from the native soil. Significant differences in soil microorganisms richness and diversity between invaded and not invaded soils were only found in the grassland. Grassland invasion by A. dealbata lead to a significant increase of bacterial richness and to a significant reduction in fungal richness and diversity. Our results show that although the changes on soil chemistry due to A. dealbata invasion are consistent among the studied ecosystems, the effect on soil microorganisms depends on the ecosystem type affected by the invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号