首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The study was conducted to investigate the effects of taurine (Tau) alone or in combination with fish protein hydrolysate (FPH) on growth performance, the expression of Tau transporter (TauT) and metabolic profile in juvenile turbot. FM, FPH0, FPH0+T, FPH10 and FPH10+T diets, respectively, contained 300, 150, 150, 80, and 80 g/kg fishmeal. FPH10 and FPH10+T diets contained 62 g/kg FPH. FPH0+T and FPH10+T diets were, respectively, prepared by supplementing the FPH0 and FPH10 diet formulations with 8 g/kg Tau. Specific growth rate was the highest in FM group and the lowest in FPH10 group. TauT mRNA levels in fish fed Tau supplemented diets were significantly lower than that in Tau unsupplemented diets. NMR‐based metabolomics analysis showed that Tau contents in liver of FPH0+T and FPH10+T were significantly higher than that of FM, FPH0 and FPH10. In muscle, Tau contents were significantly decreased in the FPH10+T versus FPH0 and the FPH10+T versus FPH10 comparisons. In conclusion, 62 g/kg FPH to replace fishmeal may not affect Tau synthesis, transport and metabolism. However, Tau supplemented alone or in combination with a certain level of FPH could reduce the requirement for Tau synthesis and transport and increased Tau levels in muscle and liver.  相似文献   

2.
The effect of replacing fishmeal with simple or complex mixtures of plant proteins in tilapia diets was examined. Diet formulations were arranged in a 2 × 4 factorial design with two types of plant protein mixtures used to replace fishmeal (simple: soybean meal and maize gluten meal or complex: soybean meal, maize gluten meal, dehulled flax, pea protein concentrate and canola protein concentrate) and four levels of protein originating from fishmeal (1000 g kg?1, 670 g kg?1, 330 g kg?1 and 0 g kg?1). Diets contained equal digestible protein (380 g kg?1) and digestible energy (17.6 MJ kg?1). The average daily gains, specific growth rates and feed efficiencies of fish fed diets with 0 g kg?1 fishmeal were significantly lower than fish fed diets with the 330 g kg?1, 670 g kg?1 or 1000 g kg?1 fishmeal levels. Fish fed the complex diets had significantly higher average daily gains, specific growth rates, feed : gain ratios and protein efficiency ratios than those fed the simple diets. Intestinal villus length decreased with decreasing levels of fishmeal and increased with increased diet complexity but the effects were not significant. Replacement of fishmeal with a complex mixture of plant ingredients may allow a greater replacement of fishmeal in diets fed to Nile tilapia.  相似文献   

3.
The study was conducted to investigate the effects of fish protein hydrolysate (FPH) in diets for turbot on growth performance, muscle fibre morphometry, and the expression of muscle growth‐related genes. A control diet (FPH0) contained 0 g/kg FPH, and four experimental diets were formulated replacing fishmeal with FPH at levels of 45 (FPH4.5), 120 (FPH12), 180 (FPH18) and 300 (FPH30) g/kg. Fish fed the FPH12 and FPH18 diets had higher specific growth rate (SGR) than fish fed the FPH0 diet (p < .05), and a quadratic regression was found between SGR and dietary FPH level (p = .001, R2 = .677). Cross‐section area (CSA) and the length of sarcomere in the FPH12 group increased compared with the control group (p < .05), and a quadratic regression was observed between CSA and dietary FPH level (p = .006, R2 = .574) and between sarcomere length and dietary FPH level (p = .018, R2 = .788). An appropriate level of FPH down‐regulated myostatin 2 gene expression and up‐regulated proliferating cell nuclear antigen gene expression, while the expression of myogenic regulatory factors was not affected by dietary treatments (p > .05). To conclude, an appropriate level of FPH may improve muscle growth by regulating the expression of muscle growth‐related genes, and muscle microstructure and ultrastructure.  相似文献   

4.
This study aimed to evaluate the effect of the gradual replacement of fishmeal with fish protein hydrolysate (FPH) and biofloc flour (BF) in the diets of white shrimp Litopenaeus vannamei postlarvae (2 mg). Five diets (420 g kg?1 of crude protein) were formulated, and these replaced 0 (control), 10, 20, 30 and 40% (T0, T10, T20, T30 and T40, respectively) of the fishmeal. A commercial diet was used as an external control. The alternative ingredients FPH and BF were added at a ratio of 1 : 1. After 42 days, the shrimp survival was higher than 99% in all the treatment groups. A regression test indicated that the ideal fishmeal substitution level to obtain optimal zootechnical parameters (final weight, weight gain and protein efficiency) is between 15.16 and 16.5%. In this study, we demonstrated that BF and FPH are potential ingredients that can be used to replace fishmeal in L. vannamei postlarvae diets.  相似文献   

5.
The effects of fish protein hydrolysate (FPH) on growth, peptide and amino acid (AA) transporters, postprandial free AA and related gene expression of IGF‐1/AKT pathway were evaluated in turbot (Scophthalmus maximus). Three diets were formulated to contain the same low level of fishmeal; meanwhile 0, 45 and 180 g/kg FPH were, respectively, supplemented to the FF (FPH‐free), FL (FPH‐Low) and FH (FPH‐High) diets. Fish fed the FH diet improved the growth compared with the other groups. For peptide and AA transporters, PepT1, B0AT1, CAT1 and PAT1 mRNA levels in proximal or distal intestine decreased in fish fed the FH diet. The concentration of free total essential AAs in serum was higher in the FH treatment than that in the FF treatment at 2 and 6 hr after feeding. For IGF‐1/AKT pathway in muscle, IGF‐1, 4E‐BP1 and FoxO1 mRNA levels were the highest in the FH group, whereas IGF‐1R mRNA levels were the highest expression level in the FF group. In conclusion, down‐regulated AAs transport, alleviated the delayed postprandial peak of serum‐free AAs and increased muscle protein synthesis were observed to improve the growth when turbot was fed high FPH level diets containing a high plant protein.  相似文献   

6.
Isonitrogenous and isocaloric diets (32% protein, 4.3 Kcal/g) were formulated to replace fishmeal by single cell protein (SCP) from two yeasts, Saccharomyces cerevisiae and Candida utilis, grown on date (Phoenix dactylifera) processing waste in diets for two size groups (avg 15.39 g and 25.14 g) of juvenile Nile tilapia (Oreochromis niloticus). A control diet (T1) with fishmeal and six experimental diets (S1, S2, and S3 with S. cerevisiae, and C1, C2, and C3 with C. utilis) each containing 11.6%, 23.2%, and 34.2% yeast as SCP were prepared to replace 25%, 50%, and 75% of fishmeal, respectively. Tilapia fed on the control and experimental diets (S1, S2, C1, C2) with 25% and 50% replacement of fishmeal showed better growth and feed utilization. Fish fed on diets S3 and C3 (75% fishmeal replacement) had significantly (p < 0.05) poorer growth suggesting that yeast SCP can replace up to 50% of fishmeal in juvenile tilapia diets.  相似文献   

7.
为了探讨鱼蛋白水解物对黄颡鱼生产性能的影响,以日本鳀粉为对照,以实用型黄颡鱼饲料配方模式为基础开展实验:1以30.5%鱼粉为对照(FM),在相同配方模式下,以6%鱼蛋白水解物(MPH6)替代20%的鱼粉;2以30.5%鱼粉为对照(FM),在无鱼粉日粮中分别添加3%(FPH3)、6%(FPH6)、12%(FPH12)鱼蛋白水解物;共设计5组等氮等能实验日粮,在池塘网箱中养殖黄颡鱼[初始体质量(30.08±0.35)g]60 d。结果显示:与FM相比,FPH12在SGR、FCR、PRR和FRR方面均无显著差异,而MPH6、FPH3、FPH6组SGR降低了15.45%~24.39%,FCR升高了32.14%~42.86%,MPH6、FPH6差异显著,在PRR和FRR方面,MPH6、FPH3、FPH6组PRR降低了21.11%~27.78%,MPH6组FRR降低了41.51%;全鱼水分、粗蛋白、粗脂肪和灰分各组间差异不显著,FPH3、FPH6、FPH12肌肉多种游离氨基酸水平显著高于FM,其中Thr、Val、His与其在日粮中的水平显著相关;FPH6组HSI显著低于FM,鱼蛋白水解物对CP、VSI、肠体比的影响不显著;血清AST、ALT、HDL、LDL、TP、CHOL、TG无显著差异,FPH3组ALB显著低于FM。研究表明:黄颡鱼日粮中,12%鱼蛋白水解物(干物质)与30.5%鱼粉在生长速度、饲料效率、血清生理指标等方面具有一定的等效性;过高的植物蛋白日粮影响了黄颡鱼的生产性能;饲喂鱼蛋白水解物日粮使黄颡鱼肌肉游离氨基酸的含量升高,特别是呈味氨基酸的含量增加。  相似文献   

8.
The present work was designed to study whether changes in dietary protein quality by means of partial inclusion of fish protein hydrolysate (FPH) would alter fish growth, feed utilization, protein retention and metabolism and fish health in general. FPH was produced after hydrolysing whole minced herring using the industrial enzyme Alcalase®. The dietary protein source, low‐temperature‐dried (LT) fishmeal nitrogen was exchanged with FPH nitrogen at six levels of inclusion ranging from 0 to 300 g kg?1. The experimental diets were fed to post‐smolt (1+) Atlantic salmon (Salmo salar), with mean initial weight of 174 g for a period of 68 days. All diets were iso‐nitrogenous, iso‐energetic and contained the same amount of amino acids. Fish fed medium inclusion of FPH (180–240 g kg?1) showed a tendency to have higher feed intake than fish fed lower and higher levels of FPH inclusions. Significant higher individual specific growth rates were present in fish fed diets with 180 and 240 g kg?1 FPH when compared with those fed 300 g kg?1. Feed conversion ratio increased significantly (R2 = 0.61) and protein efficiency ratio decreased significantly (R2 = 0.59) in fish fed increased levels of FPH. Further, apparent digestibility of crude protein and the amino acids arginine, lysine, methionine and phenylalanine increased significantly with increased dietary inclusion of FPH. Plasma free amino acids, ammonium and urea indicated that FPH amino acids was absorbed earlier and nonsynchronously, and may thus be more prone to be catabolized than in those fish fed the less solubilized protein. FPH inclusion did not have an impact on fish health, as evaluated by haematology and clinical parameters.  相似文献   

9.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

10.
In this study, we evaluated different dietary fishmeal and protein levels on growth performance, intestinal structure and intestinal microbial community of juvenile channel catfish, Ictalurus punctatus. A total of 1800 fish distributed into 36 tanks were fed with nine different diets containing three protein levels (300, 330 and 360 g/kg) with three fishmeal (FM) levels (0, 30 and 60 g/kg) for 90 days. The results showed that significant interactions between the protein level and FM level were observed in final weight (FW), weight gain (WG), Na+, K+‐ATPase and alkaline phosphatase (AKP) activities. The significant lowest FW, WG, Na+, K+‐ATPase and AKP activities were observed in fish fed with no fishmeal and 300 g/kg protein dietary while the highest were shown in 60 g/kg fishmeal and 330 g/kg protein treatment. Additionally, the microvillar length of the mid‐intestine in catfish was significantly affected by the interaction between dietary protein level and fishmeal level. The intestinal samples were dominated by three major phyla, Firmicutes, Proteobacteria and Fusobacteria. Genera Romboutsia and Turicibacter accounted for probably 800 g/kg of the phylum Firmicutes; meanwhile, genus Cetobacterium represented more than 900 g/kg of the phylum Fusobacteria. In conclusion, this study indicated that channel catfish juveniles can be fed with a practical diet without fishmeal as long as the protein level increased to 360 g/kg; however, if the percentage of dietary protein was 300 g/kg, it seemed that fishmeal need to be supplied as a protein source.  相似文献   

11.
A 70‐day growth trail was conducted to investigate the effects of inclusion of high levels of meat and bone meal (MBM) and protein concentrate (PC) on growth, digestibility and economic performances of climbing perch, Anabas testudineus. Four isonitrogenous diets were formulated by lowering the level of dietary fishmeal protein at 0 (D1, control), 70 (D2), 85 (D3) and 100% (D4) with a mixture of MBM and PC protein (1:1). Triplicate groups of 300 fish (mean weight of 0.80 g) stocked in each 40 m2 pond and fed the respective test diets. A digestibility trial was conducted after the growth trial in indoor glass aquarium. The result showed that growth parameters were significantly decreased (P < 0.05) with fishmeal replacement levels. However, significant differences were not found in feed conversion ratio and survival of fish. No difference was also found in protein efficiency ratio among D1, D2 and D3. Similar to growth parameters, total fish production was highest in D1, intermediate in D2 and D3; and lowest in D4. Apparent digestibility coefficients of dry matter, protein and lipid were highest (P < 0.05) in D1 and lowest in D4. The economic analysis revealed that the benefit cost ratio was ranked by D3 (1.81), D2 (1.71), D1 (1.66) and D4 (1.46) respectively. Upon considering the overall performances and unavailability of finite protein sources, it can be concluded that 70–85% fishmeal could be replaced with a mixture of MBM and PC (1:1) in practical diets for climbing perch.  相似文献   

12.
Juvenile channel catfish (5.6 g/fish) were fed a basal diet that contained major protein (soybean meal, cottonseed meal) and energy (ground corn grain, wheat middlings) ingredients that were derived from plant sources. The basal diet was supplemented with three levels of crystalline taurine to provide 1, 2 and 5 g/kg taurine. In addition, a fifth diet that contained 80 g/kg menhaden fishmeal formulated with the same plant‐source ingredients was included as the positive control diet. Fish were fed the five diets once daily for 12 weeks. Weight gain was highest in catfish fed taurine at 2 g/kg (47.8 g/fish) compared to catfish fed the control basal diet (40.8 g/fish) and 80 g/kg fishmeal diet (41.1 g/fish) (< .05). Among the taurine‐supplemented diets, weight gain was lowest in catfish fed taurine at 5 g/kg. Feed conversion ratio (FCR) was significantly improved in fish fed diets supplemented with taurine at 2 g/kg compared to all other treatments (< .01). Survival during the growth study ranged from 98.0 to 99.0% (> .05) for all treatments. The results suggest taurine supplementation to juvenile channel catfish may improve weight gain and FCR.  相似文献   

13.
An 8‐week feeding trial was run to investigate the replacement of fishmeal with corn protein concentrate (CPC; Empyreal®) in rainbow trou (100.5 ± 2.3 g) diet. Fishmeal was increasingly replaced with 0 (Control), 30 (CPC3), 60 (CPC6), 90 (CPC9) and 120 (CPC12) g/kg CPC. The results showed that the substitution of fishmeal with CPC up to 90 g/kg did not cause significant differences in the growth indices as compared to the control group, while further replacement resulted in the reduction of the growth performance. The fillet crude protein showed no significant difference between the control diet and diets containing up to 90 g/kg CPC (p > .05). Serum biochemical parameters such as albumin and glucose did not change notably, while the highest levels of alanine aminotransferase and lactate dehydrogenase were seen in the CPC12 group (p < .05). Also, serum lysozyme activity was increased with the elevation of dietary CPC up to 90 g/kg (p < .05). The redness and yellowness of the fillet were markedly elevated with the dietary incorporation of CPC (p < .05). Taken together, the optimum range of fishmeal substitution with CPC was 81.0–82.2 g/kg CPC in rainbow diet based on the broken‐line regression analysis.  相似文献   

14.
Two feeding trials were conducted to investigate the effect of replacing fishmeal with a combination of soy and corn protein concentrate (1:1 ratio) on growth performance of the Pacific white shrimp (Litopenaeus vannamei). A basal diet containing 200 g/kg fishmeal was systematically reduced (200, 150, 100, 50 and 0 g/kg) with protein concentrate on an isonitrogenous basis. Additionally, two diets containing 0 or 50 g/kg fishmeal were supplemented with lysine and methionine to evaluate possible limitations in EAAs. Each diet was randomly fed to five replicate tanks (15 shrimp per 75 L aquaria) reared in an indoor clear water system (Trial 1), or four replicate circular tanks (100 shrimp per 800 L) reared in outdoor green water system (Trial 2). In trial 1, results indicated a slight decrease in shrimp performance as fishmeal was replaced at the highest levels. Meanwhile, the supplementation of lysine and methionine to the diets did not result in shifts in survival, growth or FCR. In trial 2, there were no significant differences in growth performance across the tested diets. This study demonstrated that plant‐based protein concentrates can be used to replace fishmeal in practical shrimp diet in clear and green water under high stocking density.  相似文献   

15.
Dicentrarchus labrax were fed from 10 to 40 days posthatching with six microdiets differing in the inclusion level (60 g kg‐1 and 120 g kg‐1) and type of protein hydrolysate (PH; yeast, YPH; pig blood, PBPH; pig red blood cells, PRBCPH). A microdiet containing 120 g kg‐1 fish PH (FPH) was used as a control. PH differed in their amino acid (AA) profile and molecular weight distribution and therefore the tested microdiets too. The estimated content in FAA and di‐ and tripeptides in the FPH microdiet was 2 g kg‐1 and 44 g kg‐1, respectively. FAA estimated levels in YPH and PBPH microdiets were 26 g kg‐1 and 53 g kg‐1, whereas levels of di‐ and tripeptides were 30 g kg‐1 and 60 g kg‐1, respectively. The estimated levels of FAA in PRBCPH microdiets were 8 g kg‐1 and 17 g kg‐1, whereas estimated levels of di‐ and tripeptides were 11 g kg‐1 and 22 g kg‐1, respectively. Results revealed that FPH may be replaced by alternative PH from yeast and pig blood products, as fish fed those diets performed, in terms of growth, survival, digestive function and incidence of skeletal deformities, as well as those fed the FPH microdiet. Using YPH, PBPH and PRBCPH, the inclusion level of PH in microdiets might be reduced to a half with respect to current practices using FPH.  相似文献   

16.
The suitability of raw and methanol‐extracted moringa (Moringa oleifera Lam.) leaf meal to replace 10%, 20% and 30% of the total fishmeal‐based dietary protein in tilapia feeds was tested. Ten isonitrogenous and isocalorific feeds (35% crude protein and 20 MJ kg?1 gross energy), denoted as diets 1 (fishmeal‐based control), 2, 3, 4 (containing 13%, 27% and 40% raw moringa leaf meal), 5, 6, 7 (containing 11%, 22% and 33% methanol‐extracted moringa leaf meal), and 8, 9, 10 (containing methanol‐soluble extracts of the raw moringa leaf meal at the same level as would have been present in diets 2, 3, 4) were prepared. Forty tilapia (16.7±2.4 g), kept individually, were fed the experimental diets (four fish per treatment) at the rate of 15 g feed per kg metabolic body weight (kg0.8) per day. A reduction in the growth performance was observed with an increasing level of raw moringa leaf meal (diets 2–4), whereas inclusion of methanol‐extracted leaf meal (diets 5–7) had no significant (P<0.05) effect on the growth performance compared with the control (diet 1). The growth performance of fish fed diets 8–10 containing methanol extracts of the moringa leaf meal were also similar to the control. The chemical composition values of the gained weight showed that lipid accretion decreased with increased inclusion of moringa leaves, and ash content increased. Dietary moringa methanol extracts reduced protein accretion, but had no effects on lipid and ash contents compared with the control. The inclusion of raw, methanol‐extracted residues and methanol extracts of the moringa leaf meal (diets 3 and 4, 5, 6 and 7, and 8 respectively) reduced the plasma cholesterol content significantly. Similarly, a significant reduction in muscle cholesterol was observed in fish fed the diets 4, 8, 9 and 10. It was concluded that the solvent‐extracted moringa leaf meal could replace about 30% of fishmeal from Nile tilapia diets.  相似文献   

17.
A 12‐week feeding trial was conducted using Nile tilapia, Oreochromis niloticus (L.) to evaluate the interactive effects of fishmeal replacement and salinity on growth, feed utilization efficiencies and relative expression of growth related genes. Two iso‐nitrogenous and iso‐energetic diets were prepared (32% protein). The control diet included 15% fishmeal (FM diet) and fishmeal component in non‐fishmeal diet (NFM) was eliminated by a mixture of poultry by‐product meal, high protein distillers dried grains and distillers dried grains with soluble. The NFM diet was supplemented with DL‐methionine and L‐lysine. Duplicated group of fish with initial mean weight of 6 g, reared in four salinity levels (0, 4, 8 and 12 g/L) were fed one of the two diets twice a day to near satiety. At the end of the experiment, growth, feed utilization efficiency and expression of growth related genes were compared. The specific growth rate (SGR), mean feed intake (MFI) and feed conversion ratio (FCR) were not affected by the diets while salinity effects were significant. The fish in the 4 g/L salinity showed the highest SGR and MFI while fish in the 0 g/L treatment showed the lowest FCR. Relative expression of hepatic IGF‐I and IGF‐II was regulated by salinity but not by the diet. Expression of growth hormone receptor gene was not affected by either diet or salinity. The present findings provide evidence for the possibility of total fishmeal replacement in saline waters (0–12 g/L) without compromising growth, feed utilization and body composition of Nile tilapia.  相似文献   

18.
The objective of this study was to evaluate the effects of fishmeal (FM) replacement with corn protein concentrate (CPC) on growth performance, nutrient utilization, gut morphology and skin coloration of red hybrid tilapia, Oreochromis sp. Five isonitrogenous (350 g/kg crude protein) and isolipidic (10 g/kg lipid) diets were formulated to contain CPC that substituted 0%, 25%, 50%, 75% or 100% FM. Diets were fed to triplicate groups of tilapia (mean initial weight, 10.33 ± 0.02 g) twice daily for 63 days. The results showed that replacing up to 50% FM in red hybrid tilapia diet with CPC did not show any significant adverse effects on growth, feed utilization, haematocrit counts, condition factor and gut morphology of tilapia (p > 0.05). However, replacing 75% or 100% FM with CPC had deleterious effects (p < 0.05). Carotenoids in CPC contributed to skin yellowness, which was significantly higher in the diet where 100% FM was replaced with CPC. Using regression analysis, the optimal substitution level of FM by CPC was estimated at 25% for percentage weight gain, 33% for FCR and 29% for protein efficiency ratio. CPC could be used as a single plant protein source to substitute up to 50% FM in red hybrid tilapia diets.  相似文献   

19.
Aquaculture development in Ghana is currently limited by inadequate supply of fingerlings and prohibitive cost of commercial feeds among other challenges. This study tested the feasibility of using low‐cost feeds containing soybean meal instead of fishmeal for nursing Nile tilapia (Oreochromis niloticus) fry. Three isonitrogenous (~48% crude protein) and isoenergetic (~17 kJ/g) diets with increasing inclusions of soybean meal as partial replacements for fishmeal were formulated. A commercial fishmeal‐based fry feed served as the control diet. Triplicate groups of 225 fish per tank (average initial weight: 2.09 ± 0.14 g) were stocked in a recirculating aquaculture system and fed the experimental diets for 21 days. Afterwards, we investigated the postprandial metabolism, nutrient digestibility, growth and gut histology in Nile tilapia fry. Simple economic analyses were also conducted to assess the cost‐effectiveness of the diets used in the feed trial. The dietary inclusions of the soybean meal significantly reduced feed cost by ~43% relative to the control diet. The growth performance and feed utilization parameters did not vary significantly among the different treatments. The soybean diets elicited significant reductions in villi heights and goblet cell numbers, which corresponded with increasing dietary levels of soybean meal. This study confirms the potential of soybean meal as a partial replacement for fishmeal in Nile tilapia fry diets in terms of lower feed costs, fish growth performance, nutrient digestibility and postprandial nitrogenous excretions. The inclusion of soybean, however, affected negatively the gut integrity of the fry.  相似文献   

20.
This study examined the potential of using the freshwater shrimp, Caridina nilotica (CNM), and mung beans, Vigna radiata (VRM), to replace Rastrineobola argentea fishmeal (RAF) as the primary protein source in fish feeds in East Africa. Six diets with varying proportions of RAF, CNM, VRM and full fat soybean meal were tested on Nile tilapia (initial body mass ± SD: 3.30 ± 0.27 g). The growth performance was best in groups fed diets containing either R. argentea or C. nilotica or a combination of the two. Growth was poorest in the fish fed a combination of C. nilotica and V. radiata, and intermediate in the groups fed the commercial formulation and a diet containing a combination of R. argentea and V. radiata. The cost of feed per kg of fish produced decreased with increasing inclusion of C. nilotica. The price of feed per kg fish produced was comparatively high in feeds containing V. radiata due to poor feed conversion ratio. Of all the diets tested, the price of feed per kg of fish produced was highest in the commercial formulation. Caridina nilotica is a good candidate to substitute R. argentea fishmeal in practical diets for Nile tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号