首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
This study investigated the effects of dietary inulin or Jerusalem artichoke (JA) on the growth performance, haematological, blood chemical and immune parameters of Nile tilapia fingerlings. Five treatment diets were designed to incorporate inulin at 0 (basal diet), 2.5 and 5.0 g/kg and JA at 5.0 and 10.0 g/kg. Two basal diets including fish meal and formulated experimental feed were used for fry and fingerling growing periods, respectively. During the fry growing period, larvae were fed treatment diets for 4 weeks. There were no significant differences in growth performance or survival rate. Fingerlings were then nursed with the formulated experimental diets from weeks 5 to 12. Fingerlings fed on inulin at 5.0 g/kg or JA at either level had better growth performance and survival rate than that fed on the basal diets. There were no significant differences in body composition. Dietary prebiotic inulin and JA increased red blood cell number (p < .05). Among the five blood chemistry parameters examined, both inulin at 5.0 g kg and JA (5.0 and 10.0 g/kg) increased blood protein (p < .05). Dietary inulin at 5.0 g/kg and JA at 5.0 and 10.0 g/kg increased total immunoglobulin and lysozyme activity (p < .05). Both inulin and JA inclusion diets increased alternative complement activity (p < .05). Taken together, dietary inulin at 5 g/kg and JA at 5.0 and 10.0 g/kg had beneficial effects on the growth performance, survival rate and immune of Nile tilapia fingerlings.  相似文献   

2.
The dietary total and available requirement of tryptophan of Nile tilapia fingerlings was determined using linear regression analysis. Six hundred fish (3.4 ± 0.0 g) were fed diets containing 296.4 g/kg of crude protein and 14.1 MJ/kg of digestible energy. Five extruded diets containing 2.5, 3.0, 3.4, 3.8 and 4.2 g/kg of total tryptophan were evaluated. Fish were fed four times a day during 45 days. Final body weight, weight gain, feed intake, feed conversion ratio and net protein utilization of fish fed Trp 3.4 and Trp 3.8 diets were improved compared to fish fed Trp 2.5 and Trp 4.2 diets. No significant differences in survival rate, whole‐body moisture and ash were observed. Whole‐body amino acid profile of fish fed different diets did not differ statistically (p > .05). Fish fed Trp 3.0 and Trp 3.4 diets showed higher tryptophan retention compared to fish fed Trp 2.5 and Trp 4.2 diets. Excepting blood glucose, no effects of dietary tryptophan on haematological parameters were observed. The dietary total tryptophan requirement of Nile tilapia fingerlings based on weight gain was estimated to be 3.4 g/kg (11.0 g/kg of dietary crude protein) or 3.0 g/kg of available tryptophan (11.0 g/kg of dietary digestible protein).  相似文献   

3.
A two‐factor orthogonal test was conducted to determine the dietary vitamin E (VE, dl ‐α‐tocopheryl acetate) requirement for sub‐adult GIFT strain of Nile tilapia (Oreochromis niloticus) at two lipid levels, and evaluate its effect on antioxidant responses. A basal diet containing 60 or 130 g/kg of soybean oil was supplemented with 0, 20, 40, 60, 120 and 240 mg VE/kg, respectively. Each diet was fed to three replicate groups of tilapia with initial weight (80.3 ± 0.7) g for 10 weeks. Results showed that the weight gain, feed efficiency and hepatic VE retention of fish were significantly increased by the increased VE in diets. In groups with 60 and 130 g/kg lipid, fish fed diets supplemented with VE had higher serum superoxide dismutase (SOD) and catalase activity, and lower malondialdehyde content than fish fed the VE un‐supplemented diet (p < .05). The proximate composition of fish had no significant difference in the group with 130 g/kg lipid, whereas crude lipid and ash content were significantly affected by dietary VE in the group with 60 g/kg lipid. Based on broken‐line regression analysis, dietary VE requirement to support the maximum weight gain and serum SOD were 43.2–45.8 and 66.0–76.1 mg/kg in diets with 60 and 130 g/kg lipid, respectively.  相似文献   

4.
Four isocaloric‐isonitrogenous diets containing 0, 50, 100 and 190 g/kg corn protein concentrate (CPC) as replacement for dietary fish meal were fed to Nile tilapia Oreochromis niloticus fingerlings for 8 weeks. Tilapia growth parameters were not significantly (p > .05) different in fish fed diets with 0, 50 and 100 g/kg CPC and found to be superior compared to those fed on 190 g/kg CPC. Fish dressing ratios and body composition were similar among all treatments. The electron microscope indicated that the stomach size of control fish was slightly smaller and the wall was thinner while the stomach of the fish fed all other levels of CPC undergone a remarkable size increase and their walls were thicker after feeding diets with CPC. Total aerobic bacterial and coliform counts were significantly decreased in fish intestine when fed diets with 100 and 190 g/kg CPC compared with fish fed diets with 0 g/kg or 50 g/kg CPC. This study indicates that it is possible to replace up to 534 g/kg of dietary fish meal in tilapia fingerlings using 100 g/kg of CPC without any negative effect on fish growth and proximate body composition.  相似文献   

5.
The present investigation aimed to evaluate the effect of dietary chitosan supplementation on growth performance, body composition, immune response and histopathology of Nile tilapia, and also the in vitro antibacterial activity of chitosan against Streptococcus agalactiae (S. agalactiae). About 180 fish (average body weight 39.3 ± 0.3 g) were randomly divided into three groups according to chitosan supplementation: control group (basal diet without chitosan), Ch3 group (3 g chitosan/kg diet) and Ch5 group (5 g chitosan/kg diet). Growth performance parameters and body proximate composition were measured before infection but biochemical parameters and lysozyme and antibacterial activities before and after experimental infection. Results of the present investigation showed dietary chitosan (5 g chitosan/kg diet) significantly (p < .05) improved growth performance parameters, body composition (dry matter, crude protein, ether extract, ash, and carbohydrate) and serum biochemistry (total protein, albumin, globulin, with no effect on AST, ALT, urea and creatinine) before infection in Ch5 group than the control. After infection, liver enzymes (serum AST and ALT) were maintained lower in fish fed Ch3 or Ch5 than the control. Serum lysozyme and bactericidal activities significantly increased (p < .05) in chitosan groups before and after the challenge. The mortality rate was markedly reduced in the Ch3 group and prohibited in the Ch5 group after the experimental infection. In conclusion, feeding 3 or 5 g chitosan/kg diet increased the growth rate and improved FCR of Nile tilapia. In addition, it reduced mortality by its antibacterial and immunostimulant effects.  相似文献   

6.
Several studies investigated the usage of spirulina (Arthrospira platensis) in aquaculture as a functional dietary additive or plant proteins replacers; however, more efforts still needed to test its nano form inclusion in aquafeed. In this study, Nile tilapia (Oreochromis niloticus) fed dietary spirulina (Aplatensis) nanoparticles (SNP) at 0 (control), 0.1, 1 and 10 g/kg diet while the fifth diet was mixed with 10 g/kg of the normal form of Aplatensis as a positive control. The final weight (FW), weight gain (WG) and feed conversion ratio of fish fed SNP at 10 g/kg displayed improved values comparing with the other groups (p < 0.05). Further, fish fed 1 g SNP had higher FW and WG than the control and 0.1 g SNP and 10 g normal Aplatensis. The incorporation of SNP at 1 and 10 g/kg in Nile tilapia diets significantly (p < 0.05) enhanced total protein, albumin, globulin, lowered the values of serum glucose and activities of ALT and AST compared with control and spirulina groups. The SOD, CAT, GPx, lysozyme and respiratory burst activities were meaningfully promoted (p < 0.05) in fish received 1 and 10 g/kg diet concerning the control and spirulina groups. Nile tilapia challenged with Aeromonas hydrophila showed congestion of the kidney, liver and spleen tissues while SNP alleviated the inflammation induced by Ahydrophila. Different levels of SNP-incorporated group showed lower cumulative mortality than the other groups. In conclusion, the obtained results illustrated that spirulina in nano form is recommended to enhance Nile tilapia well-being.  相似文献   

7.
Effects of dietary supplementation of Tribulus terrestris (TT) and 17α‐methyl testosterone (MT) on growth performance and reproductive efficiency of male Nile tilapia, Oreochromis niloticus (N = 75, initial weight 60 ± 3.251 g), were evaluated. Five experimental treatments in triplicate were fed on basal diet (30% crude protein) (control group, CG), basal diet containing 60 mg MT (MT group) and basal diet containing 250, 500 and 750 mg/kg diet TT (TT250, TT500 and TT750 groups), respectively, for consecutive 45 days. Results revealed that the fish received TT in diet showed better growth performance (final body weight, weight gain, feed conversion ratio, specific growth rate, testes weight and gonadosomatic index) compared with MT and CG (p < .05), as well as for haemoglobin content and red blood cell count (p < .05). The highest level of testosterone, 11‐keto testosterone, sperm concentration and vitality was recorded in TT750 followed by TT500, TT250 and MT groups, while the lowest value was recorded in the CG (p < .05). The highest seminiferous tubule diameter was recorded in TT750 followed by TT500, TT250 and CG, while the lowest diameter was recorded in the MT group (p < .05). Fish received TT showed normal dilated seminiferous tubule filled with large amount of free sperms within their lumen in a dose related effect. In conclusion, male Nile tilapia dietary supplementation with different inclusions of Tribulus terrestris extract specially 500 and 750 mg/kg diet improves growth performance, health condition, semen quality and reproductive efficiency without any harmful effect on water quality.  相似文献   

8.
Yeasts used as a probiotic in fish diets could stimulate fish resistance against bacterial infection and could enhance the activities of digestive enzymes in fish guts. In addition to yeast importance, dietary protein is another important part in fish diets that should be carefully optimized to meet fish requirement. It is proposed that the yeast supplementation may enhance the dietary protein turnover and reduce the protein requirement for fish. Therefore, the interactive effects of dietary protein and yeast levels on the growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection was evaluated. In the present study, ten experimental diets were formulated to contain either 35% or 45% crude protein (CP). For each protein level treatment, bakery yeast (Saccharomyces cerevisiae) was supplemented at 0.0, 0.50, 1.0, 2.0, or 5.0 g/kg diet. Fish (0.25–0.48 g) were distributed at a rate of 25 fish per 140-L aquarium. For each diet, triplicate aquaria were fed twice a day, 5 days a week for 12 weeks. Fish growth and feed utilization were significantly affected by either dietary protein or yeast levels alone, while no significant effect of their interaction was observed. The highest fish growth was obtained at 1.0–5.0 g yeast/kg diet at both protein levels; however, the fish performance at 45% CP was better than that fed on 35% CP diets. The optimum feed conversion ratio (FCR) was obtained when fish fed on 1.0–5.0 and 2.0–5.0 g yeast/kg diet at 35 and 45% CP, respectively. The cumulative fish mortality, after interperitoneal injection with A. hydrophila for 10 days, and bactericidal activity was significantly higher in fish fed 35% CP diets than those fed 45% CP diets. Both variables decreased significantly with the increase in yeast levels. The lowest bacterial count and bactericidal activity were obtained in fish fed 5.0 g yeast/kg diet irrespective to dietary protein levels. It could be concluded that the inclusion of live bakery yeast in practical diets could improve the growth performances, feed utilization, and physiological status of Nile tilapia fry and their challenge against A. hydrophila infection. Moreover, fish performance when fed 45% CP diet was better than those fed 35% CP diet. Based on these results, the most suitable yeast level for maximum Nile tilapia growth was determined to be 2.0 g yeast/kg diet with 45% CP diet; however, this level was recommended to stimulate their productive performance and enhances their resistance against A. hydrophila infection.  相似文献   

9.
A 60‐day indoor feeding trial was conducted to evaluate the effects of dietary tryptophan supplementation on growth performances, whole‐body chemical composition, expression of muscle growth‐related genes (MyoD, myogenin and myostatin), and haematological and biochemical responses of juvenile genetically improved farmed tilapia (GIFT). Five corn–soy‐based isonitrogenous and isoenergetic diets were formulated to contain graded levels of dietary tryptophan (2.6, 3.2, 3.7, 4.2 and 4.8 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 fish (5.3 ± 0.1 g) per experimental unit, which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances and feed utilization were observed in fish fed tryptophan at 3.7 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acid profile by dietary tryptophan supplementation. However, significant (p < .05) differences were observed in plasma metabolites and the mRNA expression of MyoD, myogenin and myostatin. Serum cortisol level was found significantly lowest in fish fed tryptophan at 3.7 g/kg of diet. Second‐order polynomial regression analysis of weight gain and nitrogen gain against dietary tryptophan levels indicated that the optimum dietary tryptophan requirement for maximum growth and feed utilization of juvenile GIFT tilapia was 3.8 g/kg of diet.  相似文献   

10.
The effect of spray‐dried porcine plasma (SDPP) on the intestinal histological organization and autochthonous microbiota composition was evaluated in Sparus aurata. Fish were fed a basal diet (51 g/kg protein, 17 g/kg fat, 20.6 MJ/kg gross energy) and a diet containing 3 g/kg SDPP for 95 days (initial body weight, BW = 9.5 ± 0.2g, mean ± SD). The inclusion of SDPP promoted growth (p < .05), being fish fed the SDPP diet 6.2% (BW = 88.2 ± 1.6 g) heavier than the control (BW = 82.7 ± 3.2 g). SDPP increased the density of intestinal goblet cells (p < .05), whereas no differences in villi height were found (p > .05) between both groups. Intestinal microbiota was dominated by Proteobacteria (>85%) and Firmicutes (5%–12%), whereas Bacteroidetes never represented more than 1.5%. γ‐Proteobacteria, and Bacilli and Clostridia were the predominant classes. The short administration of SDPP (20 days) resulted in changes in microbiota diversity and richness associated with an increase in the sequences of the genus Lactobacillus and to a decrease in the genus Vibrio, whereas these changes were reverted at 95 days. Intestinal goblet cell density was not correlated to microbiota diversity and richness changes rather than to the immunostimulatory effect of the SDPP.  相似文献   

11.
The optimum water temperature required for the normal growth of Nile tilapia is 25–30°C. In this study, tilapia was reared under suboptimal temperature (21.50 ± 1.50°C) and fed four diets with fish oil (FO), corn oil (CO), sunflower oil (SFO) and linseed oil (LnO) for 8 weeks. The results revealed improved final weight, average daily gain and intestinal amylase activity in the LnO group compared to FO and SFO groups (p < .05). The feed intake was increased significantly in FO and LnO groups compared to CO and SFO groups, while the feed conversion ratio was increased in the FO group (p < .05). The CO, SFO and LnO diets resulted in higher carcass lipids than fish fed FO, while CO decreased the ash content (p < .05). The growth hormone was significantly lowered by LnO, followed by SFO, while CO improved the serum alkaline phosphatase activity (p < .05). Glutathione peroxidase enhanced in fish fed SFO, while the lowest activities were recorded in fish fed FO (p < .05). Total superoxide dismutase was significantly elevated by CO and LnO when compared with fish fed FO and SFO (p < .05). Substituting FO with vegetable oils had normal intestinal and liver histological appearance. It could be concluded that substituting FO with either CO or LnO for Nile tilapia could maintain the normal growth performance and feed utilization with enhanced antioxidant capacity under suboptimal temperature.  相似文献   

12.
Five isonitrogenous and isocaloric diets containing dietary lipid concentrations from 71.90 to 142.70 g/kg were formulated and fed to Chinese rice field eel Monopterus albus fingerlings (5.00 ± 0.50 g). The highest values of weight gain, specific growth rate (SGR), together with the lowest feed conversion ratio (FCR) were found in fish fed with 89.10 g/kg lipid diet. Fish fed with 71.90 g/kg diet (F1) had higher hepatosomatic index, viscerosomatic index and whole‐body crude lipid than fish in the other four treatments (p < .05). Plasma concentration of triacylglycerol and the activity of alanine aminotransferase were also higher in fish fed with F1 diet. Whole‐body fatty acid profile varied exclusively, but with a stable value of n?3/n?6 ratio. Gas chromatography–mass spectrometry‐based metabolomics identified eighteen differential metabolites (including idose, alanine, glutamic acid, serine and hypotaurine) in liver affected by dietary lipid content using PLS‐DA analysis. The subsequent pathway enrichment revealed ten affected pathways, with the top three pathways being glycine, serine and threonine metabolism; starch and sucrose metabolism; and D‐glutamine and D‐glutamate metabolism. The broken‐line model of SGR suggested that a dietary lipid concentration of 83.50 g/kg was appropriate for M. albus fingerlings.  相似文献   

13.
A 60‐day trial was conducted to investigate the effect of dietary protein on growth, whole‐body composition, hepatopancreas enzymes, digestion and absorption in the juveniles of Schizopygopsis younghusbandi. Six graded levels of dietary protein (200.0, 248.7, 303.5, 351.2, 395.8 and 449.3 g/kg diet) were formulated and assigned to triplicate groups of 60 fish (8.16 ± 0.02) for each aquarium. Results showed a significantly increased specific growth rate (SGR) in fish fed protein containing 351.2 g/kg diet (p < .05). Besides, intestinal ratio (IR), intestinal somatic index (ISI) and hepatosomatic index (HSI) were decreased and the condition factor (CF) was increased with dietary protein up to 351.2 g/kg diet, then altered reversely. Fish fed the optimal dietary protein showed the highest crude protein calcium, phosphorous and lowest crude lipid contents of the whole body in fish. Additionally, plasma ammonia content (PAC), and activities of GOT and GPT were enhanced by dietary protein levels (p < .05). The digestive enzymes of hepatopancreas were generally increased with the quadratic response to dietary protein levels. Optimal dietary protein level increased the intestinal enzyme activities of Na+, K+‐ATPase (NKA), alkaline phosphatase (AKP), gamma‐glutamyl transpeptidase (γ‐GT) and creatine kinase (CK). Based on the 2‐slope broken‐line model analysis of PWG, dietary protein requirement was determined to be 349.6 g/kg diet.  相似文献   

14.
An 8‐week feeding trial was conducted to quantify the dietary valine requirement of cultured juvenile Nile tilapia, Oreochromis niloticus. Six isonitrogenous (280 g/kg crude protein) and isoenergetic (16.06 MJ/kg gross energy) diets with graded levels of valine (amounting to 4.1, 7.2, 9.9, 12.7, 15.6 and 18.8 g/kg of dry diet) were formulated. Each diet was randomly assigned to triplicate groups of 20 fish (6.48 ± 0.06 g). Results showed that the weight gain, specific growth rate, protein efficiency ratio and protein retention efficiency all increased with an increasing level of dietary valine up to 12.7 g/kg, but remained relatively constant for fish fed higher levels of dietary valine. In addition, the total protein concentration and aspirate aminotransferase activity in plasma, hepatic lysozyme and catalase activities were all significantly (< .05) improved by dietary valine supplementation. Based on the broken‐line regression analysis of weight gain and protein retention efficiency, the optimal dietary valine requirement for juvenile Nile tilapia occurred between a level of 11.5 g/kg of diet (equivalent to 41.1 g/kg of dietary protein) and 12.7 g/kg of diet (equivalent to 45.3 g/kg of dietary protein).  相似文献   

15.
A feeding trial was conducted to evaluate the effect of pawpaw–onion powder (POP) mixture on the growth, and haemato‐biochemical and antioxidant responses of Clarias gariepinus (4.02 ± 0.01g/fish) for 60 days. Five trial diets were formulated as control (without POP or antimicrobial growth promoter (AGP)), AGP (basal diet + 10ml AGP/kg diet), POP 2.5 (basal diet + 2.5g POP/kg diet), POP 5.0 (basal diet + 5.0g POP/kg diet) and POP 10 (basal diet + 10g POP/kg diet). Two hundred and twenty‐five fish were equally distributed into five groups in triplicate and fed twice daily. The results indicate that AGP or POP supplementation exerted no effects on the growth and blood profile among the various groups, but a significantly higher lymphocyte count was observed in POP 10g/kg. The highest whole‐body protein and lipid contents were noticed in fish fed the control diet (p < .05), whereas POP 5.0g/kg group recorded the highest hepatosomatic value. Furthermore, the cholesterol level was found to be lower in the AGP‐ and POP‐fed fish compared with the higher level recorded in the control. The glucose concentration and superoxide dismutase enzyme activity were found to be higher in POP 2.5‐fed fish, whereas POP 10‐fed fish showed higher catalase activities compared with other groups (p < .05). Based on the result obtained, this study showed that dietary POP had no significant impact on the growth performance but has direct effects on the whole‐body lipid content, lymphocyte count, cholesterol level, alanine aminotransferase, alkaline phosphatase and antioxidant response of Clarias gariepinus.  相似文献   

16.
An 8-week growth experiment was conducted to estimate the dietary requirement of myo-inositol (MI) for juvenile hybrid tilapia. MI was supplemented at 0, 150, 250, 350, 450, 600, and 1200 mg/kg diet in the basal diet providing 0, 167, 259, 367, 479, 612, and 1253 mg MI/kg diet. Basal diet without MI but with succinylsulfathiazole to suppress MI synthesis by intestinal bacteria was included for comparison. Each diet was fed to triplicate groups of tilapia (mean initial weight 0.51±0.01 g, n=3). Fish fed ≥367 mg MI/kg diet had significantly (P<0.05) higher weight gain, followed by fish fed 259 mg MI/kg diet, and lowest for fish fed the unsupplemented basal diet. Fish fed ≥367 mg MI/kg diet had higher feed efficiency than fish fed the basal diet. Supplementation of dietary inositol did not affect survival of tilapia. The MI concentrations in liver were highest in fish fed the ≥479 mg MI/kg diet, followed by fish fed the 259 and 167 mg MI/kg diets, and lowest in fish fed the basal diet. Hepatic lipid concentrations were higher in fish fed 367 mg MI/kg diet than fish fed ≤259 mg MI/kg diet. Weight gain percentage and MI concentrations in the liver for the different treatments were analyzed by broken-line regression and indicated that the requirement for dietary MI in growing tilapia is about 400 mg/kg diet. Addition of an antibiotic to basal diet did not affect the growth and hepatic inositol concentration of tilapia, suggesting that the intestinal microbial synthesis was not a significant source of inositol for tilapia.  相似文献   

17.
This study evaluated the impact of dietary ginger and liquorice supplementation on growth performance, physiological and histopathological profiles and heavy metal accumulation in Nile tilapia fingerlings. Fish (n = 1,800, 17.5 ± 0.11 g BW) were randomly distributed into four treatment groups in triplicates and received no supplementation (control group), 5 ml aqueous ginger extract/kg feed (ginger group), 4 ml aqueous liquorice extract/kg feed (liquorice group) or 2.5 ml ginger plus 2 ml liquorice aqueous extracts/kg feed (mix group). The ginger‐liquorice mix supply improved the growth performance and feed efficiency (p < .05), increased the haematocrit and haemoglobin (p < .05), leucocytes (p = .108), neutrophils (p = .054), serum total protein (p < .05), albumin (p = .011) and globulin (p = .094) but decreased (p < .05) the blood urea nitrogen and creatinine than feeding liquorice or ginger lonely compared to the control. Heavy metal loads in pond water induced lamellar telangiectasis of gills and necrosis with sloughing of intestinal villi tips. These detrimental effects were alleviated, and the intestinal villus length (p = .041) and crypt depth (p = .069) were increased with liquorice supply. In all treatment groups, heavy metal contents in fish flesh were lower compared to the control. Thus, using ginger and/or liquorice aqueous extracts can decrease heavy metal accumulation in the fish flesh and exert positive effects on growth performance, metabolic profile and the intestinal and gill morphology of Nile tilapia.  相似文献   

18.
Indian lotus, Nelumbo nucifera (Gaertn.) is a valued medicinal plant that exhibits several pharmacological properties. The present work aimed to investigate the effect of Indian lotus as a feed supplement on the growth performance, haematological and biochemical indices, and intestinal histo‐morphology of Nile tilapia (Oreochromis niloticus L.). The fish were randomly distributed into four groups and fed on a basal diet containing Indian lotus leaf powder at different concentrations (0, 0.1, 0.2 and 0.4%) for up to 60 days. The results elucidated that Indian lotus supplemented diets (0.2% and 0.4% followed by 0.1%) significantly improved weight gain, specific growth rate (%) and feed conversion ratio (p < .05). The feed intake was significantly increased in the fish fed on the Indian lotus supplemented diets in a dose‐dependent manner (p < .05). However, Indian lotus had no significant effect (p > .05) on survival rate, total erythrocytes (RBCs) count, haemoglobin (Hb) and hematocrit value (PCV, %) except a significant reduction on Hb content of the fish fed on 0.2% Indian lotus and a significant increase in PCV (%) in the fish fed on 0.1% Indian lotus (p < .05). The total leucocytes (WBCs), neutrophils and lymphocytes counts displayed significant elevations in the fish fed on the Indian lotus diets especially at 0.2% and 0.4%, whereas significant reduction in neutrophils count in the fish fed on 0.1% Indian lotus (p < .05) was observed. The serum glucose was significantly decreased in the fish fed on Indian lotus (0.1% and 0.2%), whereas cholesterol and triglycerides were markedly increased in the fish fed on the Indian lotus supplemented diets (p < .05). Moreover, the intestinal villous heights and the numbers of goblet cells and intraepithelial lymphocytes (IEL) were significantly boosted in all parts of the intestine in all Indian lotus diet groups as compared with the control group. However, as an exception, villous heights in the middle part of the intestine in the fish fed on 0.1% and 0.4% diets (p < .05) were not affected. In the proximal part, the villous heights and the numbers of goblet cells were markedly increased in fish fed on 0.2% and 0.4% diets followed by 0.1% diet. The fish fed on 0.2% lotus supplemented diet followed by 0.1% and 0.4% supplemented diets exhibited significant elevations in villous heights in the distal part and the numbers of goblet cells in the middle part of the intestine. There were no significant differences between the fish fed on the supplemented diets in the numbers of goblet cells in the distal part and the numbers of IEL in the proximal and middle parts (p > .05). In the distal part, the numbers of IEL revealed a significant elevation in 0.4% lotus supplemented diet followed by 0.1% and 0.2% lotus supplemented diet groups (p < .05). Therefore, this study indicates the advantageous effect of the Indian lotus leaves as a natural feed additive for improving growth, intestinal structure and hence, health status of Nile tilapia.  相似文献   

19.
This study investigated the effects of dietary exogenous protease on the growth performance, intestinal health, immune parameters and disease resistance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Five test diets with commercial protease at the levels of 0, 1.38, 2.76, 5.52 and 11.04 U/g (named PE0, PE1, PE2, PE5 and PE11, respectively) were administered to triplicate tanks with 30 fish for 60 days, and then, the fish were challenged with Streptococcus agalactiae for 14 days. The results indicated that weight gain increased as exogenous protease increased from 0 to 5.52 U protease/g diet and then decreased significantly (p < .05) with a further increase in exogenous protease supplementation (p < .05). The height of the villi in the proximal intestine and distal intestine, the width of the villi in three segments of the intestine, and the thickness of the muscle layer in the proximal intestine and mid‐intestine (p < .05) were increased in the fish fed the PE5 diet. Immune and antioxidant indices (except malondialdehyde), and survival after challenged with S. agalactiae were higher in fish fed PE5 diets than in those fed other diets (p < .05). In conclusion, 5.52 U/g protease supplementation in a plant‐based diet could promote the growth performance, intestinal physical barrier function, innate immunity and S. agalactiae resistance of GIFT.  相似文献   

20.
The effect of the essential oils (EOs) of peppermint, Mentha piperita L., and tea tree, Melaleuca alternifolia (Maiden & Betche) Cheel, on the haematological, biochemical, and immunological parameters and intestinal morphology of Nile tilapia, Oreochromis niloticus L., was evaluated. Fish (58.09 ± 5.87 g) were fed 100 mg/kg and 250 mg/kg of each EO and sampled on days 7, 14, 30 and 60 after starting supplementation. The haematological and biochemical parameters were not altered by the supplementation of EOs compared to the control (p > .05). With regard to the immunological parameters, the activation of the complement system of fish fed 250 mg/kg peppermint and 100 mg/kg and 250 mg/kg tea tree EOs were significantly higher compared to the control after 60 days of feeding (p < .05). The complement system plays an essential role in innate immunity and contributes significantly to the acquired immune response; thus, its activation through supplementation with EOs is promising for the formulation of nutritional additives in aquaculture. Regarding intestinal morphology, fish fed 250 mg/kg tea tree EO presented higher villus size compared to all other groups (p < .05), which represents a healthier gut. These fish present a larger intestinal surface, which can result in better absorption and utilization of the nutrients. Based on the responses found in this study, both EOs were considered promising for the formulation of feed additives for Nile tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号