首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of different machining processes on surface roughness and on adhesive tensile strength of end-grain-bonded spruce wood specimens was studied. Surfaces that had been cut with two different circular saws containing 48 and 96 teeth were compared with those that had been further processed by smoothing with a microtome, machine planing, or sanding. Two different adhesives and two different spreading quantities were used to join the test specimens by their end-grain surfaces. Increasing tensile strength of the bonded specimens was observed with increased surface roughness, which was ascribed to an enlarged bonding area in the case of circular-sawn samples with a rough surface. On the other hand, more pronounced starving of the bond line and thus decreased bond strength was observed in the more open cells of the smoothed end-grain surfaces. A positive effect regarding tensile strength was further observed with increased spreading quantity of the adhesives. Machining was found to particularly affect earlywood tracheids, whereas surface roughness of latewood tracheids was comparable for the differently treated end-grain surfaces  相似文献   

2.
Abstract

The shear fracture properties of green-glued one-component polyurethane (PUR) wood adhesive bonds subjected to kiln drying were investigated. The local shear strength and fracture energy of the wood adhesive bonds were determined from experimentally recorded complete shear stress versus deformation curves of the bond line. A stable test set-up and small specimens that were anti-symmetrically loaded were used in order to get a uniform and pure state of shear stress. Different moisture contents (MCs) and pressing times were investigated. The fracture properties of conventionally dry-glued wood adhesive bonds and of solid wood were used as reference. The results show that the fracture energy of green-glued bonds with PUR adhesive is dependent on the MC of wood and on the pressing time. The same fracture energy and strength can be obtained by green gluing as by dry gluing, but there seems to exist a maximum MC of sapwood, in the range between 78% and 160%, and a minimum pressing time, in the range between 3 h and 48 h, for which it can be achieved. Both dry- and green-glued polyurethane adhesive bonds were more ductile than solid wood.  相似文献   

3.
Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

4.
Sanding is a common practice required in order to prepare wood surfaces for coating. Little literature is available regarding the effect of sanding parameters on the quality of surfaces. Sugar maple wood surfaces were evaluated in samples that had been sanded using two types of abrasive minerals, three grit sizes and four feed speeds. Roughness, wetting properties and cell damage were used to assess surface quality. Both abrasives decreased roughness and cell damage from 100- to 120-grit sanding stage. Addition of a 150-grit stage did not further reduce the roughness, whereas the cell damage continued to decrease. Increasing feed speed led to rougher surfaces due to higher fibrillation. Surfaces produced by silicon carbide were smoother and less damaged than those obtained with aluminum oxide. However, the surfaces sanded with aluminum oxide were more wettable and showed no significant difference in wetting time as a function of grit size. For these surfaces, the wetting time was reduced as feed speed increased.An erratum to this article is available at .An erratum to this article can be found at  相似文献   

5.
A method for evaluating the influence of the operating parameters of wood machining (planing, sanding) on the quality of a finished surface was established. The influence of each of the operations involved was studied using different strategies. For the planing operation, three levels were established (Level 1, 2 and 3) by determining different values for each of the major process parameters (tool rotation speed, feed speed, depth of cut). For both, surface preparation and polishing, two levels were established with a fixed setup. Finally, as finishing products, two different transparent coatings were selected (water-borne and solvent-borne). The quantitative evaluation of the state of the surface was assessed by means of an artificial vision system for the determination of the pseudo-roughness of wood surfaces. A filtering method based on fast Fourier transforms was applied and it was possible to derive three criteria for evaluating the resulting profile.  相似文献   

6.
Abstract

Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

7.
To evaluate the effect of grain orientation on the adhesive bond strength, three-layered Norway spruce wood specimens were tested in shear. The two axial-oriented outer layers were jointed with the middle layer using three typical glues for load bearing constructions, i.e. one-component polyurethane (PUR), melamine–urea–formaldehyde (MUF) and phenol–resorcinol–formaldehyde (PRF). The grain orientation of the middle layers was varied from 0° (parallel to grain of the surface layer) to 90° (perpendicular to grain of the surface layer) in incremental steps of 10°. Samples with middle layers oriented parallel to the outer layers showed shear values in the range of solid spruce wood. Decreased shear strength values were expected for increased grain angles of the middle layer. However, no explicit tendency was observed for the shear strength in dependence of the grain direction. In general, MUF-bonded samples showed slightly higher shear strength values compared with PUR- and PRF-bonded specimens.  相似文献   

8.
The current article presents an attempt to describe the strength of profile-adhesive joints. Its main objective was to develop mathematical models describing phenomena occurring in bent mortise joints prevalent in constructions of skeleton furniture, but also to determine factors influencing the strength of profile-adhesive joints. The presented cases of gluing of a mortise joint reveal that mutual interactions of compressed wood surfaces influence significantly the strength of the developed node. In extreme cases, when a glue bond fails to form on surfaces of elements, the strength of the joint will depend only on the compression strength of wood. That is why, despite the impairment of the adhesive bond, the construction will still be able to carry considerable outside loads. However, the best situation is when well fitted elements of the joint, compressing one another, reduce stresses in the glue bond and increase its strength above the value of outside loads exceeding greatly the shear strength of the glue. Received 1 November 1999  相似文献   

9.
笔者研究了桦木、落叶松和樟子松高温热处理材的胶合性能,并与常规干燥材进行了对比。测试结果表明木材的胶合剪切强度与所用的胶黏剂有关,聚氨酯胶合的三个树种木材的剪切强度普遍大于白乳胶胶合的木材。无论是室内用的白乳胶或室外木结构用的聚氨酯胶都能与三个树种的高温热处理材很好地胶合,胶合试件的浸渍剥离率或煮沸剥离率皆为零。木材经高温热处理后,其剪切强度均有不同程度的降低,阔叶材桦木下降幅度最大,针叶材落叶松下降幅度最小。  相似文献   

10.
In the present study, elastic properties of scarf-jointed oak (Quercus castaneifolia) timbers with the application of two different types of adhesives (polyvinyl acetate and isocyanate) were evaluated using free flexural vibration of free–free beam method in different flexural directions of vibration, i.e., tangential and redial directions. Samples were taken from trees of Hyrcanian forests in Iran with nominal dimensions of 20 × 20 × 360 mm3. Comparing the results of elastic properties of clear oak wood beams with scarf-jointed samples wood showed that scarf joints with the bonding angles of 70° and 75°, covered by polyvinyl acetate adhesive, did not demonstrate any significant effect on modules of elasticity. Scarf-jointed beams with smaller joint angles (60° and 65°) were considerably weaker or totally unreliable in their moduli of elasticity. It is also shown that the magnitude of effect gets worst by using isocyanate rather than polyvinyl acetate adhesive.  相似文献   

11.
程瑞香  顾继友 《林业科学》2004,40(4):157-161
对落叶松木材水性高分子异氰酸酯 (API)胶粘剂弦径面胶接强度进行了研究。结果表明 :落叶松木材API胶粘剂弦径面胶接强度存在着差异 ,落叶松木材API胶粘剂径切板胶合强度试件的常态压缩剪切强度是弦切板的 1 4 1倍 ,而反复煮沸压缩剪切强度径切板的却比弦切板的低。落叶松木材本身弦径面顺纹抗剪强度和剪切强度率的试验结果表明 :造成落叶松胶合强度试件弦径面常态压缩剪切强度存在差异的根本原因在于落叶松木材本身弦径向的强度存在差异 ,木材径向的强度比弦向的大 ,文中对这造成这种差异的原因进行了分析  相似文献   

12.
胶合性能是胶合木制品的重要性能之一。在正交胶合木(CLT)中木材特征、胶黏剂性能以及木材与胶黏剂之间界面性能共同决定了正交胶合木的胶合性能。木材作为一种天然各向异性材料,其纹理方向不同,造成组坯方式对于胶合性能影响巨大。在胶合性能测试中,取样尺寸、取样形状对于胶合性能的测试结果都有一定的影响。胶合界面性能表征方面的研究正逐渐兴起,但是针对CLT胶合界面性能表征的相关研究报道并不多。有关CLT胶合的研究多集中在胶黏剂和胶合工艺方面,而针对不同锯材单元的特性对胶合性能尤其是耐久性影响的研究尚少有报道。文中基于现有研究对CLT胶合界面性能影响因素进行总结,梳理对比CLT胶合性能测试方法以及胶合界面性能表征技术,并对今后研究方向提出意见和建议。  相似文献   

13.
方晓阳  徐伟  黄琼涛 《林产工业》2019,46(7):11-15,34
以胶合压力、施胶量(单面)、加压时间为影响因素,通过正交试验优化小径柚木胶合工艺,在此基础上研究胶合工艺参数、组合纹理与异型单元件斜边角度对集成材胶合性能的影响。结果表明:优化胶合工艺参数为胶合压力0.7 MPa,施胶量(单面)220 g/m^2,加压时间40 min;胶合压力对胶合剪切强度有显著影响,施胶量(单面)和加压时间对胶合性能影响不显著,随着胶合压力增大,胶合剪切强度随之减小。异型单元件斜边角度和不同纹理组合都对胶合剪切强度有显著影响,对木破率无显著影响。随着梯形组坯单元件斜边角度的增加,胶合剪切强度增加。在弦弦、径弦、径径纹理组合中,弦弦组合纹理胶合剪切强度最大。  相似文献   

14.
Abstract

The potential of near infrared spectroscopy (NIRS) to estimate wood moisture content (MC), surface energy characteristics and adhesive bond strength were evaluated on aspen (Populus tremuloides Michx.) veneer subjected to different drying times. For samples dried progressively at 103°C, the best MC prediction model was for the total MC range (0–100%) with an R2 value of 0.68. However, exposure at 180°C produced surface colour changes, and the CIE L*a*b* colour parameters measuring colour changes were better estimated using the 400–900 nm spectral data than the 1100–2400 nm spectral data. Increased exposure time at 180°C resulted in lower wettability and, hence, larger contact angles, especially when ethylene glycol was used as probe solvent. Lap shear strength tests on veneers showed that adhesion by phenol formaldehyde resins was impaired by the high temperature exposure; however, the lap shear strength test had high variability so there was not always a clear relationship between contact angle and lap shear strength test.  相似文献   

15.
The effects of screw type, moisture content, and grain direction on the screw and nail withdrawal strength and bonding strength were investigated for paulownia (Paulownia tomentosa Steud.) wood grown in Turkey. The withdrawal strength was carried out according to the ASTM-D 143 and ASTM-D 1761 and Turkish Standard 6094 in three directions (tangential, radial, and longitudinal) on 60 samples. The moisture content of half of the samples was 12 % and that of the other half 28 %.The experiment of bonding strength (BS EN 205) was applied to both sanded surfaces jointed by poly-vinly acetate and Desmodur-VTKA adhesives. Results of the tests indicate that, the withdrawal strength values at 12 % moisture content were higher than the 28 % for screws whereas the withdrawal strength for 28 % moisture content was higher than 12 % for nails. The maximum withdrawal strength value was found in the chipboard screw. In the case of directions, the withdrawal strength values of radial direction were found to be higher than the others for all parameters. The lowest withdrawal strength values were found in the longitudinal directions for both nails and screws. For adhesive types, the highest bonding strength of D-VTKA was found to be 5.64 N mm?2 and it was higher than the bonding strength with PVAc (5.33 N mm?2). However, there were no significant statistical differences between the two adhesive types. The results show that paulownia wood can be used for different purposes such as house construction, roof systems, and box cases as it possesses enough strength.  相似文献   

16.
对两种木材用常温固化胶粘剂--单宁-甲醛胶粘剂和聚氨酯胶粘剂胶接的速生杨木的静态剪切强度进行了测试与分析.研究结果表明,以速生杨I-72为被胶接对象,自制的双组分型单宁胶压缩剪切强度范围为8.08~8.92MPa,但木破率较低,要满足日本集成材JAS标准中用胶规定,需进一步研究改进.相比较而言,聚氨酯胶粘剂的胶接强度较高,其压缩剪切强度值均在9.8MPa以上,木破率在75%以上,能够满足日本集成材JAS标准中用胶的规定.  相似文献   

17.
Veneer drying is one of the most important stages in the manufacturing of veneer-based composites such as plywood and laminated veneer lumber. Due to the high drying costs, increased temperatures are being used commonly in plywood industry to reduce the overall drying time and increase capacity. However, high drying temperatures can alter some physical, mechanical and chemical characteristics of wood and cause some drying-related defects. In this study, it was attempted to predict the optimum drying temperature for beech and spruce veneers via artificial neural network modeling for optimum bonding. Therefore, bonding shear strength values of plywood panels manufactured from beech and spruce veneers dried at temperatures of 20, 110, 150 and 180 °C were obtained experimentally. Then, the intermediate bond strength values based on veneer drying temperatures were predicted by artificial neural network modeling, and the values not measured experimentally were evaluated. The optimum drying temperature values that yielded the highest bonding strength were obtained as 169 °C for urea formaldehyde and 125 °C for phenol formaldehyde adhesive in beech plywood panels, while 162 °C for urea formaldehyde and 151 °C for phenol formaldehyde in spruce plywood panels.  相似文献   

18.
A conductive and corrosion-resistant wood-based composite was obtained via electroless Ni–W–P plating on birch veneers. The W content of the Ni–W–P coatings obtained under different Na2WO4 concentrations in the plating bath was analyzed. The crystal structure, surface morphology, electrical resistivity, electromagnetic shielding effectiveness, surface wettability, adhesive strength and corrosion resistance of the composite were investigated. Energy-dispersive spectroscopy and X-ray photoelectron spectroscopy results showed that the coating consisted mainly of Ni0, Mo0 and P0 doped with little of their oxides. X-ray diffractometry analysis suggested the obtained coatings contained a nanocrystalline structure. Scanning electron microscopy images showed that the veneer surfaces were covered with uniform and continuous coatings. Birch veneers plated with Ni–W–P alloy exhibited good electrical conductivity with surface resistivity below 200 mΩ/cm2 and shielding effectiveness above 35 dB from 9 kHz to 1.5 GHz. Ni–W–P films firmly adhered to the wood surface. Water contact angle of the composite reached about 130° indicating the hydrophobic surface. The Ni–W–P-plated veneers showed excellent corrosion resistance due to the polarization resistance above 3.1 kΩ/cm2. This study further provides a new method for fabricating multifunctional wood-based composites.  相似文献   

19.
Oblique cutting differs from orthogonal cutting by an inclination given to the knife edge, which induces several changes on tool geometry, cutting forces, as well as on the quality of machined surfaces. In this work, a pressure bar was used during oblique cutting to reduce the occurrence of torn grain. The effects of cutting depth, rake angle, and oblique angle on cutting forces and surface quality were studied. Surface topography, cell damage and wetting properties were used to assess surface quality. All force components were increased by increasing cutting depth and decreasing rake and oblique angles. The lateral force, however, increased as the oblique angle increased. The surface roughness increased with increasing the lateral cutting force. Higher cutting depths and oblique angles tended to provide higher surface roughness, while higher rake angles tended to reduce surface roughness. The pressure bar was not always able to completely prevent the occurrence of defects when cutting against the grain. The occurrence of machining defects increased at higher cutting depths and oblique angles. As the rake angle decreased, the type of machining defect tended to change from torn grain to slight fuzzy grain. Moreover, the best wetting properties were obtained at lower rake angles, as they induced higher surface roughness. A 25° rake angle, a 30° oblique angle, and thinner cutting depths should be preferred to reduce dependence on ulterior sanding.  相似文献   

20.
Summary A simple model, based on the use of transformations of second-order tensors, is presented in this paper to predict the failure mode of wood members stressed in various degrees of parallel-and perpendicular-to-grain tension and parallel-to-grain shear. This type of loading is indicative of structural wood members with cross grain or grain deviations in the vicinity of knots subjected to bending or tension. The model is based on the assumptions that failure is dictated by the presence of any of the aforementioned stresses that exceed the clear wood strength in that mode and that failure does not result from stress interactions. The magnitudes of the applied stresses are normalized relative to the wood strength in that mode. The ratio of applied stress to material strength that is greatest at any particular angle of load to grain is presumed to be the failure mode at that angle. To verify model predictions, optical and microscopic analyses of surfaces of failed specimens loaded in uniaxial tension at angles between 0° and 90° to grain were compared to previously obtained, or otherwise known, surfaces of specimens tested in tension and shear. Specimens tested at various angles to grain demonstrated failed surfaces very much like those associated with specimens loaded in the modes predicted by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号