首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
为了探求合理的灌水技术要素的组合,科学地指导田间灌水的实施,使设计的灌水定额均匀的灌入田间,减少地面流失和深层渗漏,达到节水节能,提高田间水有效利用率的目的,从而开展了地面畦田灌水技术试验研究。试验结果表明:单宽流量相同时,短畦省水;在畦长相同、畦面坡降基本相同条件下,单宽流量q=1~8L/(s·m)范围内,随着单宽流量的加大,灌水定额减小;在畦面受水均匀,单宽流量相同条件下,畦宽(5~10m范围内)对灌水定额大小无明显影响。  相似文献   

2.
针对田间资料较难明确其改造方案是否合理的问题,文中利用Win SRFR模型对试验结果进行预测,并与实测结果进行对比,明确Win SRFR模型在研究区域的适用性;进而采用单一变量法原则,运用Win SRFR模型设定不同畦长、不同畦宽的畦田规格,模拟不同畦田规格对水流推进和消退运动、土壤含水量分布情况以及灌水效率、灌水均匀度的影响.研究结果表明:在研究区域内,畦宽一定,畦长递增时,水流推进过程时间不变,消退过程时间增大,距离畦首相同位置处土壤水分累积入渗量增大,影响明显.畦长一定,畦宽递增时,单宽流量变小,水流推进过程时间增长,消退过程时间变短;距离畦首相同位置处水分累积入渗量先有减小趋势,在总畦长约3/4处后有明显增大趋势.当畦长在60~80 m,畦宽为5~7 m时可获得最优的灌水质量指标参数,所确定的灌水流量为40 L/s,畦田最佳单宽流量值为5.7~8.0 L/(m·s).结果可为灌区制定合理的灌溉,提高水资源利用效率提供科学依据.  相似文献   

3.
干旱区夏玉米畦灌灌水技术参数试验研究   总被引:2,自引:2,他引:0  
为了合理优化河西干旱区夏玉米畦灌灌水技术参数,通过对畦灌不同畦长、畦宽、单宽流量及田面坡度等要素组合下进行灌水试验,分析了其灌水质量评价指标。结果表明,处理4(畦长50 m、畦宽2.5 m、单宽流量3.5 L/(s·m)及田面坡度1.3‰)灌水均匀度为0.87,储水率为0.92,灌溉水利用效率为0.95,除灌水均匀度外其余2指标均较好。结合处理1(畦长30 m、畦宽1.5 m、单宽流量6.5 L/(s·m)及田面坡度1.5‰)、处理2(畦长30 m、畦宽2.5 m、单宽流量3.5 L/(s·m)及田面坡度1.3‰)的评价结果,说明当畦田长度控制在30~50 m范围内,入畦流量为3.5 L/(s·m)、畦宽为2.5 m、田面坡度为1.3‰时,各种灌水质量评价指标均较高。  相似文献   

4.
河套灌区畦灌灌水质量评价与优化   总被引:2,自引:0,他引:2  
针对河套灌区农田规格不合理问题,为探求变化环境下适宜的畦灌灌水技术要素,在不同畦田宽度下进行田间灌水试验,采用模型模拟与回归分析方法,分析了畦灌水流运动状态及灌水质量变化情况。结果表明:畦田宽度为18~23 m时灌水质量不佳,灌水效率、灌水均匀度仅分别为59. 78%~77. 40%和84. 61%~87. 02%,尽管此时储水效率为100%,但其灌水效果仍然较差;畦田宽度缩小到10~15 m时,灌水效率为70. 20%~87. 00%,灌水均匀度为86. 77%~90. 80%,灌水质量最好;当缩小畦田宽度到5 m时,灌水质量反而降低。在此基础上,结合田间实测资料,通过模型模拟、均匀试验设计以及多元回归分析相结合的方法,构建了包含灌水效率、灌水均匀度以及储水效率的单目标优化模型(Single objective optimization model),将单宽流量和灌水时间作为决策变量,采用冒泡排序法(Bubble sort method)对模型进行求解,得到畦灌适宜的单宽流量和灌水时间组合,根据示范区实际入田流量,初步确定最优畦田宽度为10. 7~14. 2 m。研究结果为灌区节水改造设计、水资源高效利用和农业可持续发展提供了理论依据。  相似文献   

5.
关中西部畦灌优化灌水技术要素组合的初步研究   总被引:12,自引:3,他引:9  
在杨凌区砂壤土、中壤土的冬小麦和果树地,进行了畦田规格和灌水技术要素对水流推进和消退过程、灌水效率与灌水均匀度影响的田间试验,利用地面灌溉水流运动数学模型对畦灌条件下的最佳灌水技术要素组合进行了模拟和分析。结果表明,零惯量模型可以很好的模拟畦灌灌水过程中水流运动规律;畦田规格和灌水技术要素对灌水效率和灌水均匀度具有明显影响,对所研究的砂壤土冬小麦地在1‰、3‰田面坡度条件下,单宽流量以7L/(s·m)为宜,最大畦长应分别以40m、90m;对中壤土果树地1‰、3‰、5‰坡度条件下的畦长和单宽流量组合为分别以50m和6.0L/(s·m)、90m和6.0L/(s·m)、90m和5.0L/(s·m)左右为宜。同时为达到较高的灌水效率和灌水均匀度,畦田坡度不宜过大。  相似文献   

6.
基于WinSRFR软件的河套灌区水平畦田规格的优化   总被引:1,自引:0,他引:1  
为了提升河套灌区的土地资源与灌水质量,以大田水平畦灌试验水流推进与消退实测数据为基础,采用数值模拟和分析方法,对河套灌区现状畦田规格进行优化设计.通过WinSRFR软件系统设计功能,基于田间各灌水要素,采用水量平衡法计算灌水质量指标并采用零惯量模拟率定.模拟出不同畦田规格组合的灌水质量指标等值线图,确定了满足灌水要求并具有较高灌水质量的灌溉系统的优化范围,考虑土地权属与畦田规格现状,提出了典型田块设计方案.方案1:合并田-毛渠-田,畦长为102 m、畦宽为65~95 m,畦田面积为6 670 ~10 005 m2.方案2:合并田-毛渠-田-路-田,畦长为154 m、畦宽为65~110 m,畦田面积为10 005 ~16 675 m2.  相似文献   

7.
考虑初始含水率沿程不均匀分布的畦灌技术要素调控   总被引:1,自引:0,他引:1  
畦田土壤初始含水率是影响灌水质量的重要因素之一,由降雨产流导致的畦田土壤含水率沿程不均匀分布是华北平原农田常见的现象。为探究土壤初始含水率空间变异性对畦灌水流运动以及灌水质量的影响,本文开展一维土柱入渗试验与二维土槽灌溉试验,结合WinSRFR地面灌溉模拟模型,优化求解初始含水率沿程不均匀条件下的畦灌技术要素。结果表明:畦田土壤初始含水率沿程增幅越大,畦灌田面水流推进速度越快,田面水流消退速度越慢;相较于初始含水率均匀分布,畦田土壤初始含水率沿程不均匀分布条件下,灌水效率和灌水均匀度有所下降,储水效率无明显变化;当畦田土壤初始含水率沿程增加时,灌水效率和储水效率受畦田长度、入畦单宽流量及改水成数的影响,而灌后土壤水分均匀度仅受畦田长度和单宽流量的影响;当畦田土壤初始含水率沿程由0.189 0 m3/m3均匀增大至0.464 3 m3/m3时,畦田长度L为85 m、改水成数G为6、单宽流量q为7.0 L/(m·s)时可取得最优灌水质量。本研究结果可为降雨产流带来的畦田土壤初始含水率不均匀条件下的灌水技...  相似文献   

8.
针对畦灌系统运行管理水平和灌水质量较低的问题,该文应用稳健设计的基本理论,结合地面灌溉SRFR模拟模型,评价了畦田的灌水质量,模拟了单宽流量和入渗参数对灌水质量的影响,分析了灌水质量对各因素的敏感性。结果表明,对某一固定的畦田,单宽流量并非越大越好,单宽流量在4~7 L/(s·m)时,畦灌可以获得较高的灌水效率和灌水均匀度。灌水均匀度对入渗参数的敏感程度要大于灌水效率,灌水质量对入渗指数的敏感性大于入渗系数,增加单宽流量能够降低灌水质量对入渗参数的敏感程度。对灌水质量影响较大的因素依次为单宽流量、入渗指数  相似文献   

9.
在华北引黄灌区内,大田作物的主要灌溉方式依然是畦灌。由于畦田规格过长过宽,导致灌溉水浪费严重,灌水效率低下。在平原县张庄管道灌溉示范区进行畦田灌溉试验,研究了黄河下游引黄灌区不同灌水技术参数组合对灌水质量的影响。利用地面灌溉水流运动的计算机模拟软件WinSRFR4.1,对不同规格畦田的灌水过程进行模拟,得出畦田灌溉的田间灌水效率和灌水均匀度,研究不同灌水技术参数组合对灌水质量的影响。综合考虑管道灌溉出水口规格与当地耕作农具尺寸等因素,模拟了多种畦长、畦宽、坡度和单宽流量下灌溉方案的灌水效果,结果表明,畦宽1.5m,畦长50~60m,坡度为0.3%畦田灌溉技术改进方案的灌水效率和灌水均匀度均提高到80%以上,灌水性能较优,建议在黄河下游引黄灌区内推广使用。  相似文献   

10.
【目的】进一步提升灌区尺度畦田规格的标准化程度。【方法】选取陕西省泾惠渠灌区作为典型研究区域,采用遥感影像数字化处理技术和数值模拟相结合的技术路线,提出了灌区尺度田面坡度和不同土壤质地条件下土壤入渗特性参数等数据的获取方法;以Win SRFR软件模拟为基础,提出了泾惠渠灌区合理的畦田规格布置模式。【结果】(1)文中所提方法获取的田面坡度计算值与实测值具有较好的一致性,所有田块相对误差绝对值均值为16.8%;泾惠渠灌区田面坡度分布最多的区间为2‰~4‰,其与灌区整体地面坡降基本匹配,说明所提灌区尺度田面坡度获取方法具有一定的可靠性;(2)得到了泾惠渠灌区不同土壤质地条件下Kostiakov公式入渗参数值,其入渗系数和入渗指数的取值范围分别为0.916~1.675 cm/minα和0.490~0.553,与已有文献资料所给出的取值范围基本一致,可满足灌区尺度畦田规格优化研究的需要;(3)以畦灌综合灌水质量指标≥80%作为畦田规格优化的约束条件,通过改变不同畦灌灌水技术要素组合,提出了泾惠渠灌区不同土壤质地和田面坡度条件下合理的畦田规格布置模式。【结论】泾惠渠灌区塿土、黄墡土和新积土不同田面坡度条件下,合理的畦长分别为50~130、50~80和40~80m,畦宽分别为4~8、5~10和6~10 m,其中田面坡度越小,畦长取小值,畦宽取大值,反之亦然。  相似文献   

11.
膜孔灌溉条件下玉米灌溉制度试验   总被引:1,自引:0,他引:1  
通过大田试验研究了膜孔灌溉条件下,不同灌溉制度对玉米土壤水分动态、产量及其指标以及水分利用的影响。研究表明:灌溉定额4500m3/hm2时与灌溉定额为5400 m3/hm2的产量相近,但前者的水分利用效率却明显高于后者,灌溉定额为3600 m3/hm2时,虽产量明显低于前两者,但其水分利用效率最高2.7273kg/m3,故最节水。在当地灌溉定额为4500m3 m3/hm2.、灌水四次的灌溉制度经济效益最优。且在相同的灌溉制度下膜孔灌溉与不覆膜对照相比,具有明显的增产效果和较高的水分利用率。  相似文献   

12.
影响水平畦田灌溉质量的灌水技术要素分析   总被引:4,自引:0,他引:4  
在开展激光控制土地精细平整技术应用的基础上 ,根据田间畦灌试验资料 ,对影响水平畦田灌溉质量的灌水技术要素进行分析和评价 ,给出适宜于水平畦田灌溉方法应用的田间技术参数组合方式。结果表明 ,在较佳的田间微地形条件下 ,通过选择合理的地面纵坡和畦田规格 ,采用适宜的入畦流量并加强田间灌溉管理 ,可达到改进和提高水平畦田灌溉系统性能的目的  相似文献   

13.
甘肃景泰提水灌区田间灌水技术评价与改进   总被引:2,自引:1,他引:2  
通过田间灌溉试验和计算机模拟,对景泰提水灌区现行地面灌水技术进行了评价,研究对比了地面灌溉田间灌水效率的2种计算方法,用模拟地面灌水流运动的计算机模型模拟灌溉试验,得到平均灌水均匀度和田间灌水效率,并针对灌区田间灌水技术存在的问题,提出了改进建议。  相似文献   

14.
河套灌区灌溉制度研究   总被引:6,自引:4,他引:6  
根据河套灌区的气象、土壤、灌水等资料,利用ISAREG模型模拟了4种主要作物充分灌溉和非充分灌溉2种灌溉制度方案。根据模型的优化模拟结果分析,在作物产量比率仅略有下降的情况下,作物实施非充分灌溉将减少灌水次数和灌溉定额(平均下降45 mm),建议灌区把作物实施非充分灌溉作为一种节水措施之一。  相似文献   

15.
在考虑降水蒸发蒸腾等影响一致的情况下,研究了常规灌溉、控制灌溉Ⅰ、控制灌溉Ⅱ、控制灌溉Ⅲ4种不同灌溉模式下水稻各生育期灌水量、产量性状,通过方差分析研究了不同灌溉模式对水稻产量的影响、灌溉水利用率并拟合得到灌水量与产量的回归方程。试验结果表明:各灌溉模式灌溉水利用率为控制灌溉Ⅰ控制灌溉Ⅲ控制灌溉Ⅱ常规灌溉,图表中看出返青到分蘖末为需水非敏感期、拔节孕穗期和抽穗开花期为需水敏感期,不同灌溉模式对产量影响显著。控Ⅰ灌溉水利用率最高,能够达到节水增产的目的,合理利用水资源。  相似文献   

16.
将模拟灌溉制度的ISAREG模型与灌水方式相结合研究辣椒常规沟灌和隔沟灌条件下的灌溉制度。对不同灌水方式条件下灌溉制度模拟所需的各项参数进行了预处理和验证,分析评价了辣椒2个试验处理的实际灌溉制度,在此基础上根据辣椒的需水特性进行了多组合灌水方案设计,分别得到了现状供水状况下和不受灌水日期约束时的优选灌溉制度。  相似文献   

17.
甘蔗是亚热带的高杆作物,是广西的主要农作物,由于其独特的生长特性,一般种植在旱坡地,缺乏灌溉,产量及品质均较低。喷灌是目前解决甘蔗灌溉的比较好的模式。本人着重介绍了卷盘式喷灌机对甘蔗灌溉的适用条件及使用要求,为推广卷盘式喷灌机在甘蔗喷灌中的应用提供建议。  相似文献   

18.
河套灌区井渠双灌条件下主要作物灌溉制度优化   总被引:2,自引:0,他引:2  
依据田间试验,研究了井渠双灌条件下河套灌区小麦和向日葵的灌溉制度。结果表明,Jensen模型最能较好地表达研究区小麦、向日葵井渠双灌条件下各生育阶段水分的量化关系。小麦和向日葵整个生育期均需灌水4次,灌水量分别为67.5、75、75、67.5mm和75、67.5、67.5、52.5mm。小麦拔节—开花期、向日葵现蕾—开花期适合井灌,灌水量分别为75、67.5mm,相应其他生育阶段均采用渠灌。  相似文献   

19.
温室西红柿滴灌灌水制度试验研究   总被引:2,自引:0,他引:2  
对温室樱桃、西红柿进行了滴灌灌水制度的试验研究。结果表明 ,根据西红柿不同生育期的生理特性及其需水特征确定其相应适宜的土壤含水率范围 (占田间持水量的百分比 )为 :苗期55%~ 70 % ,开花坐果期 65%~ 85% ,结果期 70 %~ 90 %。不同生育期的灌水定额为 :苗期 10~15mm,开花坐果期 15~ 2 5mm,结果期 2 0~ 30 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号