首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
A set of test crosses of diploid potatoes was used to identify QTLs for foliage resistance against Phytophthora infestans and QTLs for foliage maturity type, and to assess their genetic relationship. The most important locus for both traits was found on chromosome 5 near marker GP21: the allele of marker GP21 that is associated with resistance to late blight is also associated with late foliage maturity. An additional QTL with a small effect on foliage maturity type was identified on chromosome 3, and additional QTLs for late blight resistance were found on chromosomes 3 and 10. Another QTL was detected on chromosome 7 when resistance was adjusted for the effect of foliage maturity type. The additional QTLs for resistance against P. infestans on chromosomes 3 and 10 seem to be independent of foliage maturity type and are not affected by epistatic effects of the locus on chromosome 5. The effects of the additional QTLs for resistance are small, but early maturing genotypes that necessarily have the allele for susceptibility for late blight on chromosome 5 may benefit from the resistance that is provided by these QTLs on chromosomes 3 and 10.  相似文献   

2.
Late blight caused by the oomycete Phytophthora infestans (Mont.) de Bary (Pi) is the most important foliar disease of potato worldwide. An intraspecific hybrid between individuals of a resistant and a susceptible S. pinnatisectum accession was backcrossed to the susceptible parent to generate a segregating population for late blight resistance consisting of 84 plants. In detached‐leaflet assays, reaction to late blight segregated in a 1r:1s manner in BC1 progeny indicating the presence of a single dominant resistance gene. A genetic map was constructed based on 1,583 DArT/SSR markers which were allocated to 12 linkage groups, covering 1,793.5 cM with an average marker distance of 1.1 cM. The late blight resistance locus derived from S. pinnatisectum was mapped on chromosome VII. In comparison with the previously reported resistance genes Rpi1 and Rpi2, the new target resistance locus most likely is located on the opposite arm of chromosome VII. Results of this study will serve as a basis for future fine mapping of the late blight resistance locus and the development of locus‐specific markers for marker‐assisted selection.  相似文献   

3.
Net blotch, caused by Pyrenophora teres f. teres, is a damaging foliar disease of barley worldwide. It is important to identify resistance germplasm and study their genetics. 'Chevron', a six-rowed barley used as a parent for the production of a doubled haploid (DH) population for mapping of Fusarium head blight (FHB) resistance, was also found to be resistant to net blotch. To map the resistance genes, the population was evaluated for resistance at the seedling stage in a greenhouse. The resistance data showed a two-peak distribution. Through linkage mapping, one resistance gene, tentatively called Rpt, was located on chromosome 6HS flanked by Xksua3b-Xwg719d, which was also detected by QTL mapping. This QTL explained 64% of the phenotypic variance for the resistance in this DH population. In addition, a minor QTL was found on chromosome 2HS defined by Xcdo786-Xabc156a. 'Chevron' and 'Stander' contributed the resistant alleles of Rpt and the 2HS QTL, respectively. Both QTLs together explained nearly 70% of the phenotypic variance. The markers for these QTLs are useful for marker-assisted selection of net blotch resistance in barley breeding.  相似文献   

4.
Late blight (Phytophthora infestans) can have devastating effects on tomato production over the whole world. Most of the commercial cultivars of tomato, Solanum lycopersicum, are susceptible. Qualitative and quantitative resistance has been described in wild relatives of tomato. In general qualitative resistance can more easily be overcome by newly evolved isolates. Screening of three S. habrochaites accessions (LA1033, LA2099 and LA1777) through a whole plant assay showed that accession LA1777 had a good level of resistance to several isolates of P. infestans. To explore the potential in this wild species, an introgression line (IL) population of S. habrochaites LA1777 was used to screen individual chromosome regions of the wild species by a detached leaf assay. Two major isolates (T1,2 and T1,2,4) were used and two parameters were measured: lesion size (LS), and disease incidence (DI). Substantial variation was observed between the individual lines. QTLs were identified for LS but not for DI. The presence of five QTLs derived from LA1777 (Rlbq4a, Rlbq4b, Rlbq7, Rlbq8 and Rlbq12) results in unambiguous higher levels of resistance. All QTLs co-localized with previously described QTLs from S. habrochaites LA2099 except QTL Rlbq4b, which is therefore a novel QTL.  相似文献   

5.
Nineteen accessions of the tuber-bearing species Solanum berthaultii, S. chacoense, S. leptophyes, S. microdontum, S. sparsipilum, S. sucrense, S. venturii, S. vernei and S. verrucosum were tested for their resistance to late blight in two years of field experiments. Plants were artifically inoculated with zoospores of race 1.2.3.4.5.7.10.11 and the development of the disease was followed. Resistance ratings, calculated as the areas under the disease progress curves (ADPC), demonstrated a high resistance in all accessions except in S. sparsipilum, S. leptophyes and their interspecific hybrid. Segregations suggest that major genes for resistance are present in S. sucrense and S. venturii, and may also play a role in S. verrucosum. It is not yet certain wether the resistance of the other accessions is comparable to the partial and durable resistance of S. tuberosum cultivars like Pimpernel, as inheritance and mechanism have yet to be established. However, segregations suggesting the presence of single major genes with complete dominance were not found in these other accessions. Tuber initiation in the field occurred in only one accession, S. tuberosum ssp. andigena, and maturity of the clones was not related to their resistance. In the other accessions maturity types could not be assessed, as the clones require short day conditions for tuber initiation.  相似文献   

6.
水稻抗纹枯病QTL表达的遗传背景及环境效应   总被引:6,自引:4,他引:2  
利用水稻纹枯病菌强致病菌系RH-9人工接种Lemont导入到特青背景的213个近等基因导入系(TQ-ILs)群体和特青导入到Lemont背景的195个近等基因导入系(LT-ILs)群体,定位和分析了水稻抗纹枯病数量性状座位(quantitative trait loci, QTL)及其表达的环境与遗传背景效应。亲本Lemont对RH-9表现为高度感病,特青表现为中等抗病。人工接种后TQ-ILs群体的相对病斑高度(病斑高度与株高比)呈连续正态分布,LT-IL群体则明显偏向感病亲本Lemont。在不同年份和遗传背景下检测到影响纹枯病相对病斑高度的主效QTL 10个和互作QTL 13个,其中2006年在TQ-IL群体定位到的6个主效QTL在2007年均得到验证,表明这些QTL具有较好年度间的重复性。QSh4是唯一在双向导入系背景下表达的QTL,该位点特青等位基因降低相对病斑高度,提高抗性水平。在TQ-ILs群体中定位到位于第10染色体RM216~RM311区间的QSb10a与在LT-IL群体中定位到的位于相邻区间RM222~RM216的QSb10b的基因作用方向不同,推断这两个QTL存在紧密连锁关系。绝大多数在TQ-IL群体中表达的主效及互作QTL在LT-ILs群体中不表达,表明水稻抗纹枯病QTL具有明显的遗传背景效应。通过比较作图,本研究定位到的其中8个QTL在以往不同群体中同样被检测到,这些主效QTL对通过分子标记辅助选择(marker-assisted selection, MAS)培育水稻抗纹枯病育种可能具有应用价值。研究指出,标记辅助选择在不同遗传背景中能稳定表达的QTL或通过聚合不同抗病QTL是进一步提高水稻纹枯病抗性水平的一个有效途径。  相似文献   

7.
QTL mapping of sheath blight resistance in a deep-water rice cultivar   总被引:2,自引:0,他引:2  
Sheath blight, caused by the pathogen Rhizoctonia solani Kühn, is one of the most serious diseases of rice and leads to severe yield loss worldwide. A recombinant inbred line (RIL) population consisting of 121 lines was constructed from a cross between HH1B and RSB03, the latter of which is a deep-water rice variety. Five traits were used to evaluate sheath blight resistance, namely disease rating (DR), lesion length (LL), lesion height (LH), relative lesion length [RLL, the ratio of LL to plant height (PH)], and relative LH (RLH, the ratio of LH to PH). Using the RIL population and 123 molecular markers, we identified 28 quantitative trait loci (QTLs) for the five traits in two environments. These QTLs are located on nine chromosomes and most of them are environment specific. A major QTL for DR (qSBR1) on chromosome 1 was identified with contributions of 12.7% at Shanghai and 42.6% at Hainan, and it collocated with a QTL for PH. The allele at this locus from RSB03 enhances sheath blight resistance and increases PH. Another QTL for DR on chromosome 7 was adjacent to QTLs for heading date (HD) and four other disease traits. RSB03 also carries the resistant allele at this locus and shortens HD. The susceptible parent, HH1B, provides the resistance allele at the locus qSBR8, where QTLs for four other disease traits were identified. QTL mapping results showed that most QTLs for LL, LH, RLL, and RLH are collocated with QTLs for DR. Three QTLs for DR are independent from HD, PH, and four other disease traits, while four QTLs are closely related to HD and PH. Four QTLs for LL, LH, RLL, and RLH are independent from DR, HD, and PH, while there is only one region harboring QTLs for these four traits and HD. Correlation analysis and QTL mapping results indicated that LL, LH, RLL, and RLH might be important indices, like DR, for evaluating the level of resistance to rice sheath blight.  相似文献   

8.
9.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

10.
Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in Australia and elsewhere. In order to identify molecular markers associated with partial seedling resistance to this disease, bulked segregant analysis and quantitative trait loci (QTL) mapping approaches were undertaken using a population of 145 doubled haploid lines constructed from ‘2‐49’ (partially resistant) × ‘Janz’ (susceptible) parents. Phenotypic data indicated that the trait is quantitatively inherited. The largest QTLs were located on chromosomes 1D and 1A, and explained 21% and 9% of the phenotypic variance, respectively. Using the best markers associated with five QTLs identified by composite interval mapping, the combined effect of the QTLs explained 40.6% of the phenotypic variance. All resistance alleles were inherited from ‘2‐49’ with the exception of a QTL on 2B, which was inherited from ‘Janz’. A minor QTL on 4B was loosely linked (19.8 cM) to the Rht1 locus in repulsion. None of the QTLs identified in this study were located in the same region as resistance QTLs identified in other populations segregating for Fusarium head blight, caused by Fusarium graminearum.  相似文献   

11.
The objective of this study was to determine quantitative trait loci (QTL) underlying ten floral and related traits in Aquilegia. The traits assessed were calyx diameter, corolla diameter, petal length, petal blade length, sepal length, sepal width, spur length, spur width, plant height and flower number. These are important traits for ornamental value and reproductive isolation of Aquilegia. QTL analysis of these traits was conducted using single‐marker analysis and composite interval mapping (CIM). We used an F2 population consisting of 148 individuals derived from a cross between the Chinese wild species Aquilegia oxysepala and the cultivar Aquilegia flabellata ‘pumila’. Resulting CIM analysis identified 39 QTLs associated with these traits, which were mapped on seven linkage groups. These QTLs could explain 1.22–53.28% of the phenotypic variance. Thirty‐one QTLs, which explained more than 10% of the phenotypic variation, were classified as major QTLs. Graphical representations of the QTLs on seven linkage groups were made. Our research provides the potential for future molecular assisted selection breeding programmes and the cloning of target genes through fine mapping.  相似文献   

12.
Hop powdery mildew [Podosphaera macularis (Wallr.) U. Braun & S. Takam.] is best controlled via the production of resistant varieties. Recent evidence supports selection against plant susceptibility genes to fungal pathogens as a more durable resistance mechanism than selection for resistance genes. The objective of this study was to identify molecular-based QTLs, their genetic effects and epistasis among QTLs associated with susceptibility to powdery mildew. Parents and offspring from the cross, ‘Perle’ × ‘USDA 19058M’, were clonally replicated and inoculated in a greenhouse using a CRD experimental design in Corvallis, OR. DNA was extracted, purified and analyzed via three different marker systems. Analysis of the resulting markers was based upon the “two-way pseudo-testcross” procedure. QTL mapping using multiple interval mapping and Bayesian interval mapping analyses were performed using WinQTL Cartographer 2.5_003. Comparison amongst mapping analyses identified three persistent QTLs on three linkage groups without significant epistatic effect upon expression. The persistent QTL on linkage group C7 had both additive and dominant effects controlling phenotype expression. The presence or absence of the two AFLP markers bordering the QTL on C7 defined susceptibility in offspring. This is the first report in hop identifying molecular markers linked to QTLs associated with disease susceptibility.  相似文献   

13.
The R10 late blight differential of potato, 3681ad1, exhibits good field resistance. Progeny from the cross between 3681ad1 and the susceptible cultivar ‘Katahdin’ were assessed for late blight resistance to three Phytophthora infestans isolates, using a detached leaf assay. Progeny differed in response to the three isolates. Resistance to isolates IPO‐0 and 99018 was controlled by quantitative trait loci (QTL), whereas resistance to isolate 89148‐9 was inherited as a dominant R gene, designated as R10 in this study. Statistical analysis revealed that one of the resistance QTLs to isolates IPO‐0 and 99018 is linked to the R10 gene, which maps to chromosome 11 in a region where a complex late blight resistance locus has been reported previously. A high‐resolution map of R10 was constructed using a large segregating population, and the gene was delimited to a genetic interval of 0.26 cM. The clustering of the qualitative gene R10 with resistance QTLs could explain the field resistance observed with 3681ad1.  相似文献   

14.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   

15.
Ascochyta blight is a devastating disease of chickpea. Breeders have been trying to introduce resistance from wild Cicer into cultivated chickpea, however, the effort is hampered by the frequent genetic drag of undesirable traits. Therefore, this study was aimed to identify potential markers linked to plant growth habit, ascochyta blight resistance and days to flowering for marker-assisted breeding. An interspecific F2 population between chickpea and C. reticulatum was constructed to develop a genetic linkage map. F2 plants were cloned through stem cuttings for replicated assessment of ascochyta blight resistance. A closely linked marker (TA34) on linkage group (LG) 3 was identified for plant growth habit explaining 95.2% of the variation. Three quantitative trait loci (QTLs) explaining approximately 49% of the phenotypic variation were found for ascochyta blight resistance on LG 3 and LG 4. Flowering time was controlled by two QTLs on LG3 explaining 90.2% of the variation. Ascochyta blight resistance was negatively correlated with flowering time (r = −0.22, P < 0.001) but not correlated with plant growth habit.  相似文献   

16.
I. Simko    S. Costanzo    V. Ramanjulu    B. J. Christ    K. G. Haynes 《Plant Breeding》2006,125(4):385-389
Potato tuber blight is a disease caused by the oomycete Phytophthora infestans (Mont.) de Bary. Due to the significant economic impact of this disease, introgression of durable resistance into the cultivated potato is one of the top priorities of breeding programmes worldwide. Though numerous resistance loci against this devastating disease have already been mapped, most of the detected loci are contributing towards foliar resistance while specific information on tuber resistance is limited. To identify the genetic components of tuber resistance and its relationship to foliar resistance and plant maturity we have investigated the host‐pathogen interaction in a segregating diploid hybrid Solanum phureja × S. stenotomum family. Mature tubers from this mapping family were inoculated with a sporangial suspension of P. infestans (US‐8 clonal lineage) and evaluated for lesion expansion. No significant correlation was detected between late blight resistance in foliage and tubers, and between plant maturity and tuber resistance. Four chromosomal regions were significantly associated with tuber resistance to the disease. The largest effect was detected near the marker locus PSC (LOD 10.7) located on chromosome 10. This locus explained about 63% of the total phenotypic variation of the trait. The other three resistance‐related loci were mapped on chromosomes 8 (GP1282, LOD 4.4), 6 (CP18, LOD 4.0) and 2 (CP157, LOD 3.8). None of the four tuber resistance loci coincides with the foliage resistance loci detected in this same family. Tuber blight resistance quantitative trait loci (QTL) on chromosomes 2, 8 and 10 are distinct from the maturity QTLs and have an additive effect on tuber resistance. These results indicate that different genes are involved in foliar and tuber resistance to P. infestans in the present family and that some of the resistance genes might be associated with late maturity.  相似文献   

17.
A genetic analysis of blast resistance in upland rice variety is very crucial. In this study, we performed a linkage mapping of quantitative trait loci (QTLs) for blast resistance using an advanced backcross population from a cross between Way Rarem (susceptible indica variety) and Oryzica Llanos 5 (durable resistant indica variety). A transgressive segregation was observed in the advanced backcross population of Way Rarem//Oryzica Llanos 5. A total of 16 QTLs have been identified along chromosomes 1, 3, 5, 6, 7, 8, 9, and 11 against eight blast pathogen isolates. Each QTL accounted from 11.31 to 45.11% of the variation in blast resistance. Most QTLs showed race specificity, demonstrating the small effect of such QTLs. Unexpectedly, several superior blast resistance alleles were contributed by Way Rarem, the susceptible-recurrent parent. Among eight candidate defense response genes detected in several loci, a single gene (oxalate oxidase) present on chromosome 3 was found to be associated with blast resistance in upland indica rice. Ultimately, these advanced backcross lines with resistance to blast tagged by markers might be useful for pyramiding blast resistance alleles in upland rice.  相似文献   

18.
Summary A doubled haploid (DH) wheat population derived from the cross Wangshuibai/Alondra‘s’ was developed through chromosome doubling of haploids generated by anther culture of hybrids. Fusarium head blight (FHB) was evaluated for three years from 2001 to 2003 in Jianyang, Fujian Province, China, where epidemics of FHB have been consistently severe. After 307 pairs of simple sequence repeat (SSR) primers were screened, 110 pairs were polymorphic between Wangshuibai and Alondra`s’, and used to construct a genetic linkage map for detection of quantitative trait loci (QTLs). A stable QTL for low FHB severity was detected on chromosomes 3B over all three years, and QTLs on chromosomes 5B, 2D, and 7A were detected over two years. Additional QTLs on chromosomes 3A, 3D, 4B, 5A, 5D, 6B and 7B showed marginal significance in only one year. Six QTLs were detected when phenotypic data from three years were combined. In addition, significant additive-by-additive epistasis was detected for a QTL on 6A although its additive effect was not significant. Additive effects (A) and additive-by-additive epistasis (AA) explained a major portion of the phenotypic variation (76.5%) for FHB response. Xgwm533-3B and Xgwm335-5B were the closest markers to QTLs, and have potential to be used as selectable markers for marker-assisted selection (MAS) in wheat breeding programs.  相似文献   

19.
Late blight is the most devastating disease of the potato crop that can be effectively managed by growing resistant cultivars. Introgression of resistance (R) genes/quantitative trait loci (QTLs) from the Solanum germplasm into common potato is one of the plausible approaches to breed resistant cultivars. Although the conventional method of breeding will continue to play a primary role in potato improvement, molecular marker technology is becoming one of its integral components. To achieve rapid success, from the past to recent years, several R genes/QTLs that originated from wild/cultivated Solanum species were mapped on the potato genome and a few genes were cloned using molecular approaches. As a result, molecular markers closely linked to resistance genes or QTLs offer a quicker potato breeding option through marker‐assisted selection (MAS). However, limited progress has been achieved so far through MAS in potato breeding. In near future, new resistance genes/QTLs are expected to be discovered from wild Solanum gene pools and linked molecular markers would be available for MAS. This article presents an update on the development of molecular markers linked to late blight resistance genes or QTLs by utilization of Solanum species for MAS in potato.  相似文献   

20.
Forage sorghum cultivars grown in India are susceptible to various foliar diseases, of which anthracnose, rust, zonate leaf spot, drechslera leaf blight and target leaf spot cause severe damage. We report here the quantitative trait loci (QTLs) conferring resistance to these foliar diseases. QTL analysis was undertaken using 168 F7 recombinant inbred lines (RILs) of a cross between a female parental line 296B (resistant) and a germplasm accession IS18551 (susceptible). RILs and parents were evaluated in replicated field trials in two environments. A total of twelve QTLs for five foliar diseases on three sorghum linkage groups (SBI-03, SBI-04 and SBI-06) were detected, accounting for 6.9–44.9% phenotypic variance. The morphological marker Plant color (Plcor) was associated with most of the QTL across years and locations. The QTL information generated in this study will aid in the transfer of foliar disease resistance into elite susceptible sorghum breeding lines through marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号