首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
木质原料性质对KOH活化法制备活性炭的影响   总被引:2,自引:0,他引:2  
以北方落叶松、杨木、桦木、浸提落叶松锯屑和麦秸为原料,采用KOH化学活化,在相同条件下制备高比表面积活性炭,研究原料性质对活性炭的得率、灰分质量分数、比表面积及碘值的影响.以麦秸为原料制得活性炭比表面积最高,为3 753.39 m2/g;以浸提落叶松为原料制得活性炭得率最高,为22.82%;以落叶松为原料制得活性炭灰分质量分数最高,为10.7%.结果表明:m(KOH)∶ m(原料)=4∶ 1,750 ℃活化1 h,木质素质量分数是活性炭比表面积的主要影响因素.木质素质量分数越高,所制得的活性炭比表面积越小,且碘值相应减小.对针、阔叶材来说,木质素质量分数越大,活性炭的得率越大,且原料灰分对得率的影响没有木质素大.  相似文献   

2.
炭化温度对牛粪生物炭结构性质的影响   总被引:2,自引:0,他引:2  
以牛粪为原料,在不同炭化温度下(200、300、400、500、600、700 ℃)采用热裂解法制备生物炭,借助扫描电子显微镜、元素分析仪、比表面积分析仪,结合Boehm滴定法、碘吸附及亚甲蓝吸附等,对所制得的牛粪生物炭的形貌特征、元素组成、比表面积、孔径、表面官能团和吸附性能等进行分析。结果表明:随着炭化温度升高,产率和挥发分含量降低,灰分和固定碳含量升高,pH值增加,制得生物炭的形貌特征更有规则且孔隙更加紧密。适当的升高炭化温度有利于孔隙的形成及微孔数量的增多,比表面积和孔容逐渐变大,而孔径逐渐减小。随炭化温度升高,牛粪生物炭的C含量增加,而H、O含量减小,N含量先增加后减小,H/C、(O+N)/C和O/C均下降,说明制得生物炭的芳香性和结构稳定性增强,但极性和亲水性减弱。表面官能团中羧基含量随炭化温度升高先增加后降低,羰基含量持续增加,而内酯基、酚羟基含量、酸总量和表面含氧官能团总量逐渐降低。碘吸附值和亚甲基蓝吸附值随炭化温度升高先增加后减小,在600 ℃下吸附值最大。  相似文献   

3.
以废弃刨花板为原料,KOH为活化剂制备活性炭,探讨活化温度、活化剂用量对活性炭的影响。通过X射线光电子能谱对所得活性炭结构进行表征,采用氮气吸附法和元素分析对其比表面积、孔隙结构和元素组成进行分析。制备双电层电容器,测试含N活性炭电极的恒流充放电曲线、倍率特性、伏安特性和阻抗特性,分析电化学性能。结果表明,活化温度为850℃,m(碱)∶m(碳)=2.5∶1时,BET比表面积和总孔容积最大,分别达到1 083 m~2/g和0.862 cm~3/g;当活化温度为750℃,碱碳比为2.5∶1时,电化学性能最优,其质量比电容量在0.05 A/g的电流密度下达到184 F/g。  相似文献   

4.
以新疆棉花秸秆为原料,研究炭化温度和炭化时间、升温速率对棉秆基生物炭产量和理化性质的影响。选择300℃、400℃、500℃、600℃为最高炭化温度,5℃/min、10℃/min、15℃/min、20℃/min为升温速率,30 min、60 min、90 min、120min为炭化时间。棉秆生物炭的最高固定碳为63%。原料的热解特性在惰性气体N2保护下进行TG-DTG分析。对棉秆生物炭的元素成分、PH值、固定碳、灰分和碳含量进行研究,同时进行了SEM,FT-IR表征。随着炭化温度的增加,生物炭pH值、灰分含量、碳稳定性及总碳的含量也逐渐增加,而生物炭产量、挥发分、H、O、N、S元素的含量减少。比表面积结果显示高温制备生物炭的孔隙率有所增加,但增加幅度并不大。研究发现加热时间和升温速率对棉秆生物炭性质的影响不显著,炭化温度对棉秆生物炭性质的影响显著。  相似文献   

5.
以污水厂剩余污泥为原料,以氯化锌和硝酸铁为活化药剂,制备了新型碳质催化剂,主要制备步骤包括化学活化、浸渍、热解和洗涤.通过扫描电镜、BET表面积和热重分析对催化剂进行了表征分析.结果显示,催化剂表面具有丰富的孔结构,BET比表面积可达307 m2/g或更大.考察了它们在NH3选择催化还原NOx中的催化活性,同时考察了n(Zn2 )/n(Fe3 )、热解温度、氧气体积分数对催化剂活性的影响.实验结果表明:控制n(Zn2 )/n(Fe3 )为1∶0.5,750℃热解制得的催化剂活性最好,在反应温度400℃时最高NOx转化率可达98.3%;催化反应在氧气体积分数为15%,温度350~450℃条件下进行较好.  相似文献   

6.
稻草秸秆活性炭的制备及其表征   总被引:14,自引:0,他引:14  
利用廉价的农业废弃物稻草秸秆,选择磷酸氢二铵为活化剂在不同的活化温度和预氧化条件下来制备活性炭.应用N2吸附-脱附等温曲线对产品表面孔结构进行表征,采用热重分析来研究稻草秸秆的活化过程.结果表明,同其他处理方法相比,先浸泡后预氧化处理并在700 ℃下活化制得的样品不但有最大的比表而积(1 078.21 m2·g-1,),其得率和碘吸附值也最大,分别为39.75%和636 mg·g-1.热重分析表明磷酸氢二铵的浸泡可以增加稻草秸秆的热稳定性.不论是否经过预氧化,制得的样品平均孔径在2~3 nm.(NH4)2HPO4的浸泡可以明显地增加样品的比表面积从而增加其吸附性能.  相似文献   

7.
目的以工业碱木质素和甲醛为原料,在盐的制孔和稳定作用下,水热反应后直接碳化制备多孔碳气凝胶,并检测其结构、理化性质和电化学性能,探究其在超级电容器电极材料中的运用。方法将2 g工业碱木质素分别与3种盐(ZnCl2、NaCl、Na2CO3)混合均匀,各加入1.5 mL甲醛,搅拌成黏稠浆状,转移至反应釜中,160 ℃反应2 h,得到一系列的木质素碳气凝胶(LCA)前驱体,在通氮气保护的管式炉中,以3 ℃/min的升温速率升温至900 ℃,保温3 h进行碳化,自然冷却后取出并洗涤,得到LCA。通过比表面积测定(SSA)、扫描电镜(SEM)、X射线衍射(XRD)表征碳气凝胶的结构和理化性质,将其研磨粉碎后制成超级电容器电极,通过循环伏安测试、恒流充放电测试和开位电路阻抗测试进行电化学储能表征。结果以ZnCl2为模板制备的LCA最高比表面积可达711 m2/g,在SEM下能观察到凝胶状结构,XRD表明LCA以无定形碳为主。在0.2 A/g的电流密度下,比电容达到124 F/g;在10 A/g的高电流密度下,比电容维持在60 F/g,电容保持率约为48%,拥有最佳的倍率性能。结论本实验以价格低廉的工业碱木质素为原料,在盐模板下经过水热和碳化过程直接制备LCA。在ZnCl2盐模板下可以制备出高比表面积,以无定形碳为主的LCA,并拥有优良的电化学性能,可用于超级电容器电极材料。该方法绿色环保、操作简单、成本低,具有潜在的工业化利用前景。   相似文献   

8.
卢辛成  何跃  蒋剑春  林玉锁  孙康  刘雪梅  徐凡 《安徽农业科学》2011,39(7):4162-4164,4166
以小麦秸秆为原料采用磷酸活化法制备活性炭,考察了制备条件对活性炭性质的影响,并结合氮气吸附、TG-DDTG、SEM对其结构进行了表征。结果表明:在浸渍比为3∶1、活化温度450℃、升温速率3℃/m in的条件下活化60 m in,制得的麦秆基活性炭比表面积为1 279 m2/g,总孔容积为1.36 cm3/g,平均孔径为4.2 nm,有丰富的中孔,可用做大分子吸附材料。麦秆适合作为制备具有丰富大中孔的活性炭的原料。  相似文献   

9.
竹材制备醋酸乙烯载体活性炭   总被引:2,自引:1,他引:1  
以竹节为原料,采用磷酸法制备醋酸乙烯载体活性炭.探讨了温度、浸渍比和硝酸改性对载体活性炭的表观密度、醋酸吸附量和醋酸锌吸附量的影响,并对其孔结构和表面化学结构进行表征.结果表明,随着温度和浸渍比的升高,载体活性炭的醋酸吸附量、比表面积、微孔容积呈先升后降的趋势,而醋酸锌吸附量则呈相反趋势;硝酸改性有助于表观密度和醋酸锌吸附量的提高;N2吸附等温线表明,竹节活性炭具有发达的微孔和大孔结构;Boehm滴定和TG-MS分析表明,载体活性炭具有羧酸根和酚羟基表面官能团.在较优的工艺条件下制得载体活性炭的醋酸吸附量、醋酸锌吸附量、比表面积和微孔容积分别为527.5 mg·g-1,70 g.L-1,999.0 m2·g-1和0.468 cm3·g-1.  相似文献   

10.
为提高土壤肥力、充分利用秸秆资源,探究秸秆秋季湿耙还田对水稻叶片和土壤碳(C)、氮(N)、磷(P)化学计量特征的影响及其与产量的关系,在辽宁省盘锦市采用随机区组设计,设置秸秆不还田(CK)、1年秸秆秋季湿耙还田(S1)和连续2年秸秆秋季湿耙还田(S2)处理,测定不同生育时期水稻叶片和土壤C、N、P含量,并计算其化学计量比。结果表明:S1和S2处理水稻成熟期的土壤有机碳含量分别比CK显著(P<0.05)提高8.71%和28.36%。S1、S2处理各生育时期的土壤全磷含量均显著高于CK,S2处理分蘖期和成熟期的土壤全氮含量显著高于CK。与CK相比,S1处理各生育时期的土壤碳磷比(C∶P)均显著降低,而S2处理仅拔节期的土壤C∶P显著降低。各处理的土壤氮磷比(N∶P)为2.02~2.74,除成熟期外,其余生育时期各处理的土壤N∶P均表现为S1相似文献   

11.
氢氧化钾活化法制备杨木刨花板活性炭的研究   总被引:1,自引:0,他引:1  
为探索废弃刨花板的再利用方式,以杨木刨花板为原料,采用氢氧化钾活化法制备活性炭。以活化温度、活 化时间、浸渍比和施胶量为参数研究活化工艺对所得活性炭吸附性能和活化得率的影响,并对试验范围内较优试 验条件下制备的活性炭的微观结构和表面吸附性能进行元素分析、扫描电镜分析和N2 吸附测试。结果表明:浸渍 比是氢氧化钾活化法制备木质活性炭最重要的影响因素;在活化温度1 000 益、活化时间40 min、浸渍比1颐3、施胶 量6%的条件下,活性炭样品的BET 比表面积为2 459.708 m2 / g、碘吸附值为2.047 g/ g、活化得率为58.30%。   相似文献   

12.
[目的]研究无患子活性炭制备的最佳工艺及其对苯酚的吸附。[方法]以H3PO4为活化剂制备无患子残渣活性炭,通过正交试验对制备工艺进行优化,探讨浸渍比、活化温度、活化时间对活性炭亚甲基蓝和碘吸附值的影响。利用N2吸脱附试验、SEM,对活性炭的结构与性能进行表征。选取了投炭量、苯酚溶液pH、苯酚初始浓度、吸附温度为单因素,探讨其对苯酚吸附的影响。[结果]浸渍比为1∶1、活化温度为500℃、活化时间为60 min时,制备的活性炭对亚基蓝的吸附值为82 mg/g、碘吸附值为773 mg/g、BET比表面为738m2/g、总孔容达0.669 2 cm3/g、平均孔径为3.625 7 nm。活性炭在中性条件下对苯酚吸附效果最佳;低温有利于吸附,但温度的影响不大。[结论]所制备的活性炭具有良好的苯酚吸附效果。  相似文献   

13.
低温预处理磷酸法制备活性炭   总被引:1,自引:1,他引:0  
以磷酸浸渍杉木屑,并在低温下进行预处理,制备活性炭.探讨了预处理温度、活化温度、浸渍比、保温时间和磷酸浓度等因素对活性炭性能的影响.结果表明,低温预处理有利于磷酸在木质原料内部的渗透,促进磷酸的活化作用,提高活性炭的吸附性能;活化温度、保温时间和磷酸浓度对活性炭的吸附性能、比表面积和孔容积具有正向作用;随着浸渍比的增大,活性炭的吸附性能呈先升后降的趋势;N2吸附等温线分析表明,活化温度的升高有利于其比表面积和孔容积的提高.在较佳的实验条件下,活性炭的比表面积、总孔容积和微孔容积分别为1628.7 m2.g-1和0.894、0.699 cm3.g-1.  相似文献   

14.
[目的]研究竹炭制备高比表面积活性炭及其电容性质。[方法]采用竹材加工剩余物制成的竹炭为原料,以氢氧化钾为活化剂制备了双电层电容器用活性炭,并通过正交试验研究了液固比、活化温度、活化时间及升温速率对产品吸附性能的影响。[结果]得到最优的活化工艺参数如下:碱炭比为4∶1,活化温度为770℃,活化时间为60 min,升温速率为10℃/min,比表面积高达2 379 m2/g,但其质量比电容不是最大。当比表面积为2 121 m2/g时,质量比电容最大(323 F/g),但其体积比电容偏小。[结论]为研制高比电容量且具有实际应用价值的电极材料提供了依据。  相似文献   

15.
目的与普通活性炭比较,介孔活性炭具有疏水性好、孔体积大、导电性能好等优势,然而传统制备方法繁杂,原料成本较高。因此,探究新型介孔活性炭制备工艺尤为重要。方法以木糖渣为原料,采用NaOH预处理、低温硫酸辅助炭化与磷酸活化相结合的方法制备了高介孔率活性炭。通过单因素实验,分析NaOH预处理时间、浸渍比以及活化温度对活性炭的亚甲基蓝(MB)吸附性能的影响。结果研究表明:NaOH预处理脱除木质素促使原料形成孔隙通道,同时使木糖渣纤维发生润胀,有利于活化剂与原料接触,从而获得高介孔率、高比表面积活性炭。当NaOH预处理时间为4h,磷酸与原料浸渍比4:1,活化温度500℃,活化时间为1h所制备的活性炭具有较高的MB吸附值436mg/g。扫描电镜分析结果表明:样品表面含有丰富的大孔及中孔结构,整体活化充分均匀。氮气物理吸附-脱附分析结果表明:活性炭具有发达的孔隙结构,其比表面积和总孔体积分别高达2038m2/g和2.13cm3/g,其中介孔孔容1.56cm3/g,介孔率达到73.2%,平均孔径为4.18nm。结论采用适当的NaOH预处理有利于制备孔隙结构优越的活性炭,在重金属离子吸附、有机大分子废水处理以及电子元器件等领域有广泛的应用前景。本研究将为高比表面积介孔活性炭的制备奠定理论基础,并为工业木糖渣的高值化利用提供了一条新途径。   相似文献   

16.
以正硅酸乙酯(TEOS)为前驱体,以氨水为催化剂,制得含有SiO_2粒子的碱催化SiO_2溶胶;向碱催化SiO_2溶胶中加入前驱体钛酸丁酯(TBOT)和酸催化剂盐酸,得到以SiO_2粒子为核和以TiO_2为壳的"核—壳"SiO_2-TiO_2纳米材料.结果表明:SiO_2核的粒径约为13.5 nm;随着钛酸丁酯添加量的增加,SiO_2核表面不断有TiO_2壳形成,其粒径从13.5 nm增大至24.4 nm.XRD测定结果表明煅烧温度为500℃时,锐钛矿TiO_2的特征衍射峰明显增强.该温度下"核—壳"SiO_2-TiO_2复合粉末对罗丹明B的降解率从21.99%提高到94.86%.  相似文献   

17.
以生物质油茶壳为原料,氯化锌为活化剂,探讨活化温度、氯化锌与油茶壳的浸渍比、油茶壳颗粒大小对制备的活性炭的比表面积、孔体积和介孔体积的影响规律,并对活性炭的组织结构、形貌、石墨化程度及表面化学成分进行了分析。结果表明,在考察的活化温度(T=500℃~800℃)范围内,活化温度对活性炭的比表面积和孔体积具有较大的影响,对孔径影响较小;在500℃时制备的活性炭具有较高的高比表面积和孔体积,活化温度越高,活性炭的比表面积和孔体积越小;氯化锌与油茶壳浸渍比为1时,制备的活性炭为微孔体系,当浸渍比为4时,活性炭具有较高的比表面积和最大的孔体积,其比表面积和孔体积分别为1890m^2·g^-1和2.42cm^3·g^-1,介孔体积占总体积的83.06%;在考察的油茶壳颗粒尺寸范围内,油茶壳原料颗粒的粒径对活性炭的组织结构影响较小。表面形貌和化学组成分析结果表明,活性炭表面由菜花状的小颗粒堆积而成,相互贯通的蠕虫状孔结构构成其孔隙结构,其表面含有一定数量的醚基、羰基、酚羟基及羧基等含氧官能团。  相似文献   

18.
氮密调控对两个冬小麦品种碳氮代谢及产量的影响   总被引:1,自引:0,他引:1  
【目的】研究品种、施氮量、种植密度及其交互作用对豫东南黏壤潮土区冬小麦碳氮代谢及籽粒产量的影响,明确该区冬小麦适宜的氮密调控处理组合,以期为该地区冬小麦高产高效栽培提供技术支撑。【方法】于2018—2020年连续2个冬小麦生长季,在豫东南黏壤潮土区设置品种(分蘖力中等、成穗率较高品种,鑫华麦818;分蘖力强、成穗率中等品种,百农207)、施氮量(N0,0;N240,240 kg·hm-2;N360,360 kg·hm-2)和种植密度(M1,225 万株/hm2;M2,375万株/hm2;M3,525万株/hm2)三因素裂裂区试验,重点分析三因子处理下冬小麦碳代谢(可溶性糖含量;磷酸蔗糖合成酶SPS活性;蔗糖合成酶SS活性)、氮代谢(可溶性蛋白质含量;硝酸还原酶NR活性;谷氨酰胺合成酶GS活性)生理参数及产量的差异。【结果】品种、氮肥、密度及其交互作用显著影响冬小麦的碳氮代谢,氮肥是影响2个品种产量及其构成因素的主控调节因子。施氮量、种植密度对碳氮代谢的影响因生育时期、品种而异。总体来看,氮密调控对2个品种碳代谢的调控优势主要在灌浆后期,对氮代谢的调控优势主要在灌浆中期,灌浆中后期M2N240处理的碳氮代谢指标参数值较最小处理组合平均增幅达358.28%。碳氮代谢平衡对不同分蘖成穗特性冬小麦品种产量形成的影响较大,尤其是生育后期,这可能是鑫华麦818整体产量高于百农207的主要生理原因。两年度试验均以M2N240处理下的产量较高,较产量最低的M1N0处理提高96.49%。【结论】综合考虑品种、氮肥、密度及其交互作用对冬小麦碳氮代谢平衡及产量的影响,施氮量和种植密度对2个冬小麦品种碳氮代谢的调控优势主要在灌浆中后期,M2N240处理可作为豫东南黏壤潮土区适宜的氮密调控组合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号