共查询到17条相似文献,搜索用时 72 毫秒
1.
研究高寒草甸微尺度海拔和坡向下土壤酶活性及其化学计量特征的变化对于探讨草地生态系统养分循环过程具有重要的生态学意义。以东祁连山高寒草甸为研究对象,分析了7个海拔(2 800,3 000,3 200,3 400,3 600,3 800,4 000 m)和2个坡向(阴坡、阳坡)高寒草甸的土壤酶活性、化学计量特征变化规律及其与土壤理化因子之间的关系。结果表明:海拔和坡向的交互效应对土壤亮氨酸氨基肽酶(LAP)、β-葡萄糖苷酶(BG)、多酚氧化酶(PPO)和过氧化物酶(POD)酶活性、lnBG/ln (NAG+LAP)、lnBG/lnAP和ln (NAG+LAP)/lnAP有显著影响;LAP、AP、BG、POD、lnBG/ln (NAG+LAP)、lnBG/ln (NAG+LAP)随海拔的升高呈先升高后降低,β—1,4—乙酰基氨基葡萄糖苷酶(NAG)和PPO随海拔升高而降低;同一海拔,阳坡土壤AP、BG、POD、PPO酶活性低于阴坡,阳坡土壤NAG酶活性高于阴坡,海拔3 800 m以下阳坡LAP酶活性低于阴坡,除海拔3 000 m和4 000 m外的其他海拔阳坡的土壤lnBG/ln (NAG+LAP)高于阴坡,海拔3 000~3 400 m的土壤lnBG/lnAP和海拔3 000~3 600 m的土壤ln (NAG+LAP)/lnAP在阳坡低于阴坡。相关分析发现,土壤酶活性及其化学计量特征不同程度受土壤C、N、P资源及土壤水分条件等的调控,土壤含水量和有机碳是影响土壤酶活性的主要因子。综上,土壤酶活性及其化学计量特征在微尺度海拔和坡向上具有差异性,且受土壤C、N、P资源及土壤水分条件的综合影响,以土壤含水量和有机碳尤为突出。 相似文献
2.
东祁连山高寒草地土壤微生物三大类群的时空动态特征 总被引:5,自引:1,他引:5
通过对2005年和2006年东祁连山高寒草地4种不同草地类型(珠芽蓼草地、禾草草地、沼泽草地、嵩草草地)土壤3大类群微生物(真菌、细菌、放线菌)数量的时空动态进行研究。结果表明:(1)不同空间层次草地土壤3大类群微生物数量变化均较大,0-10 cm土层的数量为10-20 cm土层的1.02~3.89倍;(2)不同植被下土壤3大类微生物数量季节变化各有其自身的特点,年际变化也不一致;(3)不同植被下同一时间草地土壤三大类群微生物总数量差异较大,为0.83×107~4.71×107个/g;(4)三大类微生物中,细菌数量最大,放线菌次之,真菌最小,分别占微生物总数的48.9%~67.69%,32.18%~48.96%和0.08%~0.25%。 相似文献
3.
纳板河自然保护区土壤酶对不同海拔、坡向的响应 总被引:1,自引:0,他引:1
在纳板河自然保护区内分海拔和坡向采集土样,测定分析了尿酶、蛋白酶、蔗糖酶、过氧化氢酶4种主要土壤酶活性和主要养分指标的变化。结果表明:土壤有机质、水解氮含量随海拔升高显著增加;阳坡全氮含量随海拔升高呈现由中间向两端减小的趋势,阴坡全氮含量随海拔升高波动增加;土壤速效磷含量随海拔呈现由中间向两端减小趋势;蛋白酶活性高海拔 > 低海拔,海拔对表层过氧化氢酶活性影响较小,脲酶、蔗糖酶活性随海拔呈现波动。土壤有机质、全氮、水解氮、速效磷含量阳坡 > 阴坡;土壤蛋白酶、过氧化氢酶、蔗糖酶活性阴坡 > 阳坡,各土层土壤脲酶活性阳坡 > 阴坡。各养分含量及酶活性表层 > 中下层。土壤酶活性与各肥力因子间相关关系显著,各土壤酶活性间相关性显著。有机质、全氮、全磷是影响蛋白酶活性的主导因子,速效磷和水解氮为次要因子;全磷、速效磷、水解氮为影响脲酶活性的主要因子,有机质、全磷、速效钾为次要因子。主成分分析结果表明蛋白酶和脲酶活性作为保护区土壤肥力指标具有可行性。 相似文献
4.
东祁连山不同高寒灌丛草地土壤抗蚀性研究 总被引:1,自引:5,他引:1
为探讨祁连山东段不同高寒灌丛草地的土壤抗蚀性特征,采用野外调查和室内试验的方式,对东祁连山金露梅、柳、杜鹃3类高寒灌丛草地的土壤抗蚀性特征及其影响因素进行了研究。结果表明:不同灌丛草地土壤水稳性团聚体主要以0.5mm的大粒径水稳性团聚体为主,土壤团聚结构破坏率表现为:柳灌丛草地杜鹃灌丛草地金露梅灌丛草地;土壤水稳性指数依次为:杜鹃灌丛草地(97.1%)柳灌丛草地(96.9%)金露梅灌丛草地(95.8%);土壤抗蚀指数表现为:杜鹃灌丛草地最大(95.0%),金露梅灌丛草地最小(92.9%)。总体上,杜鹃灌丛草地的土壤抗蚀性最强,金露梅灌丛草地的土壤抗蚀性最差。通过灰色关联度法,对0.5mm的机械团聚体含量、0.25mm的机械团聚体含量、0.25mm的水稳性团聚体含量、0.5mm的水稳性团聚体含量、土壤结构破坏率、水稳性团聚体平均质量直径、有机质、土壤崩解率、土壤水稳性指数、土壤抗蚀指数10个土壤抗蚀性指标进行评价分析认为,影响高寒灌丛草地土壤抗蚀性最主要的因素是水稳性指数、0.25mm水稳团聚体和水稳性团聚体平均质量直径。 相似文献
5.
不同海拔梯度高寒草甸土基本理化指标及氮素的变化动态 总被引:2,自引:0,他引:2
为探讨海拔对高寒草甸土供氮能力的影响,以祁连山脉高寒草甸土为研究对象,分析了不同海拔梯度下土壤pH值、有机质、氨态氮、硝态氮、全氮的变化动态,结果表明:(1)以KCl提取法测定的土壤pH值随海拔的升高先上升后下降,在海拔3 000 m处最大,土壤整体呈酸性。(2)土壤有机质含量在3 000 m以下的较低海拔区随海拔的升高缓慢减少,在3 000 m以上的较高海拔区随海拔的升高而明显增加。(3)土壤氨态氮含量随海拔的升高整体呈减少趋势,在2 500~3 000 m处变化较平缓。(4)土壤硝态氮含量在0~5 cm深度土层随海拔的升高先增加后减少;在5~10 cm深度土层随海拔的升高而减少;在10~30 cm深度土层随海拔的升高先减少后增加,在3 000 m处最低。(5)土壤全氮含量在0~5和5~10 cm深度随海拔的升高先增加后减少,在2 600 m处达最高;在10~30 cm深度随海拔的上升整体呈减少趋势。 相似文献
6.
[目的]探究青藏高原长期的冻融与水蚀造成的凹陷对高寒沼泽草甸土壤呼吸的影响,为探讨和评估高寒沼泽草甸碳循环过程提供一定的科学依据。[方法]以青海湖北岸冻融—水蚀凹陷的高寒沼泽草甸为研究对象,选取了非冻融—水蚀凹陷区和冻融—水蚀凹陷区,2019年5月监测土壤呼吸、5 cm土壤温度、5 cm土壤含水量及空气温度和空气相对湿度,2018年8月观察了植被群落特征(优势种、地上生物量、植物高度、群落盖度)。[结果]①冻融—水蚀凹陷区的平均土壤呼吸速率显著低于非冻融—水蚀凹陷样区。②冻融—水蚀造成地表下陷,下陷的洼地微生态系统具有类似盆地的聚温保湿效应,因此在凹陷样区中空气相对湿度显著增加,空气温度降低,5 cm土壤温度显著增加(p0.05),以上环境要素的变化深刻影响着土壤呼吸。[结论]青藏高原冻融—水蚀过程形成的凹陷改变了高寒沼泽草甸土壤环境,使原生系统的土壤呼吸发生变化,进而影响高寒沼泽草甸生态系统碳循环。 相似文献
7.
高寒草甸植被土壤腐殖质组成及性质的研究 总被引:9,自引:0,他引:9
不同草甸植被下土壤有机质含量变化在70.0~122.8gkg-1之间,同时,腐殖质特性亦存在较大差异。采用熊田法研究表明,可提取腐殖质中胡敏酸所占比率为47.99%~56.98%,游离胡敏酸(fHA)比率为51.67%~60.10%,游离富里酸(fFA)比率为80.01%~86.46%;此外,不同草甸植被下土壤腐殖质的相对色度(RF),E4也有明显差异。 相似文献
8.
大型土壤动物群落对高寒草甸退化的响应 总被引:3,自引:0,他引:3
为了查明大型土壤动物群落对高寒草甸退化的响应,2009至2010年间对青藏东缘若尔盖湿地的沼泽草甸、草原草甸、退化草甸和沙化草甸4个退化阶段的大型土壤动物群落进行了7次调查.结果表明:高寒草甸的不同退化阶段大型土壤动物群落的类群组成和优势类群存在差异,且退化和沙化对大型土壤动物群落的丰富度、密度、Shannon多样性和群落结构均有显著影响(p<0.01或p<0.05).其中退化可使带马陆目(Polydesmida)和鞘翅目幼虫(Coleoptera)等多个类群的密度显著增加(p<0.05),而沙化则使优势类群密度显著降低(P<0.05)、常见类群和稀有类群消失.植物种类、生物量和土壤理化性质,尤其是有效磷和速效钾含量与大型土壤动物的丰富度、密度和多样性间存在显著相关关系(p<0.01或p<0.05).季节变化对大型土壤动物的群落密度和多样性有显著影响(p <0.01或P<0.05),但不同退化阶段的大型土壤动物对季节变化的响应存在差异.研究结果表明高寒草甸的中度退化能够增加大型土壤动物群落多样性,而严重退化(即沙化)则显著降低土壤动物群落多样性,且不同退化阶段大型土壤动物群落的季节动态不同. 相似文献
9.
藏北高寒草甸土壤线虫群落对围封及自由放牧的响应 总被引:1,自引:0,他引:1
为了解放牧干扰对藏北高寒草甸的影响,以及连续围封措施对草地的恢复作用,2013—2015年连续3年对那曲县围封、自由放牧天然高寒草甸土壤线虫群落进行取样调查及数据分析。结果表明:围封、放牧样地的线虫个体数量在年际间的变化均较明显,植食性线虫是整个线虫群落个体数量变化的主要贡献者;围封样地的线虫个体密度、多样性指数H′、丰富度指数SR,以及优势度指数λ的年际变化幅度均大于放牧样地;食细菌性线虫个体数量及线虫通路比值(NCR)表明放牧样地的有机质转化效率高于围封样地;成熟度指数(MI)、植物寄生线虫指数(PPI)分析表明,所研究区域经5年围封,高寒草甸生态系统稳定性没有明显的提高,相反,现有放牧强度维持或者增加了线虫群落的物种多样性,利于物种共存和草地生态系统稳定性的维持。 相似文献
10.
11.
12.
[目的]探究祁连山区土壤养分及含水率分布特征,为祁连山区水土保持和生态植被恢复提供参考。[方法]以高寒草甸、高山灌丛、温性草原、温性荒漠4种高寒植被类型土壤为研究对象,采用野外调查、室内试验及数理统计相结合的方法,研究了4种植被类型下不同土层深度和4种坡向下土壤有机质(SOM)、全氮(TN)、全磷(TP)、含水率(SMC)分布特征,及其与年平均气温、年累积降雨量之间的相关性。[结果](1)研究区SOM含量范围为1.85~190.31 mg/g, TN含量为0.07~7.99 mg/g, TP含量为0.24~1.81 mg/g, SMC为0.79%~73.21%。(2)土壤SOM,TN,TP,SMC含量差异主要受植被类型影响,不同植被类型土壤SOM,SMC含量大小顺序均为:高寒草甸>高山灌丛>温性草原>温性荒漠;TN含量:高山灌丛>高寒草甸>温性草原>温性荒漠;TP含量:温性草原>高寒草甸>高山灌丛>温性荒漠。在4种坡向中,TP含量在半阴坡最高,阳坡最低,SOM,TN,SMC含量在半阳坡最高。(3)SOM,TN,TP,SMC与年累积降... 相似文献
13.
青藏高原被誉为“中华水塔”,高寒草甸是主要植被类型但其水源涵养功能有待准确量化。以祁连山南麓高寒禾草-矮嵩草草甸为研究对象,通过分析2014—2018年的植被生长季(6—9月)土壤体积含水量的长期观测数据,探讨了土壤有效水源涵养量(土壤现实持水量与最小持水量之差)和水文调节功能(有效水源涵养量的时间变化速率)的变化特征及其环境调控机制。结果表明:高寒草甸0—100 cm年均土壤有效水源涵养量为(44.3±8.7)mm(平均值±标准差,下同),呈现出双峰型的季节趋势,最高峰和次高峰分别为6月下旬的(57.8±14.4)mm和9月中旬的(59.2±15.7)mm。浅层(0—20 cm)、中层(20—60 cm)和深层(60—100 cm)土壤有效水源涵养量占比分别为53.1%,34.9%和12.0%,土壤有效含水源涵养量随土层深度增加表现为对数衰减(R2=0.82,p<0.001)。增强回归树的结果表明土壤有效水源涵养量的季节变化主要受控于土壤温度,尤其是5 cm土壤温度,二者呈现出显著负相关。不同深度的年均土壤有效水源涵养量和土壤黏粒比例显著负相关(R2=0.99,p=0.004)。根系区(0—40 cm)年均土壤吸湿速率和脱湿速率分别为(0.21±0.02)mm/h和(0.22±0.02)mm/h,t检验的结果表明除了0—5 cm之外,根系区土壤脱湿速率显著大于吸湿速率。分析表明土壤温度是土壤吸湿和脱湿速率的显著环境驱动因子。因此,土壤温度是高寒禾草-矮嵩草草甸土壤有效水源涵养量和水文调节功能的主要影响因素,维持土壤的低温是高寒草甸水源涵养功能保育和提升的重要基础。 相似文献
14.
祁连山东段青海云杉林土壤理化特性研究 总被引:2,自引:0,他引:2
采集祁连山东段青海云杉林林地0—10cm,10—20cm和20—40cm土层的土壤剖面样品,测定分析了其土壤物理性质、土壤水分状况、土壤全量养分和有机质含量。结果表明,不同土层的土壤容重值均低于1.00g/cm3,且随土层深度的增加呈增加趋势;土壤总孔隙度的变化规律和土壤容重的变化规律相似,不同土层的总孔隙度均在63%以上,通气状况良好;土壤水分含量随深度的增加呈减小趋势,不同土层土壤平均质量含水量最低为18.7%;土壤有机质和土壤全氮含量都达到养分1级;土壤全钾贮量级别为养分2级;土壤全磷含量缺乏,养分级别为4级或5级;土壤pH均值为7.5,表明林地土壤为中性土壤。建议继续加强祁连山东段青海云杉森林生态系统的有效保护和管理。 相似文献
15.
祁连山东段不同植被下土壤养分状况研究 总被引:4,自引:1,他引:4
通过分析祁连山东段天祝县地区5种植被类型(丛生禾草草地、银露梅灌丛、青海云杉林、青海云杉-白桦混交林和白桦林)覆盖下土壤碳、氮、磷含量的变化情况,研究了不同植被对土壤养分的影响。结果表明:植被对土壤养分具有表聚效应,不同植被覆盖下的土壤0-20 cm土层养分含量显著高于20-40 cm土层(p<0.05),乔木林的表聚效应强于灌丛和草地。随上覆植被从草本植物到灌木再到乔木的变化,土壤有机碳、全氮、铵态氮和速效磷等养分均呈现出逐渐增加的趋势(p<0.05);硝态氮含量变化情况为白桦林>银露梅灌丛>青海云杉林>青海云杉-白桦混交林>丛生禾草草地,土壤全磷除白桦林下较高外,其他4种植被之间都无显著差异(p>0.05)。青海云杉-白桦混交林维持土壤养分平衡的能力强于其他4种植被。 相似文献
16.
祁连山哈溪林区移植前后土壤氮对比研究 总被引:1,自引:0,他引:1
研究不同海拔梯度森林土壤氮的分布特征,对于合理利用森林资源、改善森林的生态功能都有重要意义。采用封顶埋管法,对祁连山东段哈溪林区不同海拔梯度和不同植被类型的土壤氮进行了研究。结果表明:(1)海拔2 650m青海云杉林土壤的初始TN,NH_4~+-N和NO_3~--N含量均最低,海拔2 950 m青海云杉林土壤的初始TN,NH_4~+-N和NO_3~--N含量均最高;各海拔梯度青海云杉林土壤经培养后,其TN,NH_4~+-N和NO_3~--N含量均减小。(2)就不同植被类型而言,青海云杉林土壤TN,NH_4~+-N和NO_3~--N含量均最高,草地和灌丛土壤TN,NH_4~+-N和NO_3~--N含量较低,且二者差异不大。草地和灌丛土壤培养后TN和NH_4~+-N含量显著升高,NO_3~--N含量变化不大。(3)某一海拔青海云杉林土壤移植到其他海拔青海云杉林培养后,土壤TN,NH_4~+-N和NO_3~--N含量变化不大;不同植被类型之间土壤相互移植培养后,土壤TN,NH_4~+-N和NO_3~--N含量变化明显,不同植被类型对土壤氮的含量差异显著。 相似文献
17.
全球气候变化背景下,青藏高原高寒草甸灌丛化已经成为青藏高原植被景观的主要变化趋势。为了更好地认识和理解灌丛化与高寒草甸生态系统的关系,以青藏高原东缘川西锦鸡儿(Caragana Erinacea Kom)和金露梅(Potentilla Fruticosa)灌丛化高寒草甸为对象,采用环刀浸泡法和双环入渗法研究了其在未灌丛化、轻度灌丛化、中度灌丛化和重度灌丛化阶段土壤持水和入渗能力特征。结果表明:(1)2种灌丛化草甸土壤容重在中度灌丛化阶段最低,总孔隙度在中度灌丛化阶段最高。(2)随着灌丛化程度的增加,2种灌丛化草甸土壤含水量呈增加趋势,表现为在重度灌丛化阶段最高;土壤毛管持水量、田间持水量和最大持水量呈抛物线变化趋势,在中度灌丛化阶段最大。(3)2种灌丛化草甸土壤的初渗率、稳渗率和入渗速度随灌丛化程度的增加总体表现为增加趋势,其中在中度和重度灌丛化阶段显著高于未灌丛化阶段。(4)相关性分析表明,灌丛化草甸土壤的入渗指标与土壤含水量、非毛管孔隙度有显著相关关系。因此,高寒草甸灌丛化过程中,土壤水力性质的改变通常发生在中度和重度灌丛化阶段。 相似文献