首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood glycosylated hemoglobin (GHb) concentration was quantified in 84 healthy cats, 9 cats with stress-induced hyperglycemia, 37 cats with newly diagnosed diabetes mellitus, and 122 diabetic cats treated with insulin or glipizide. Diabetic control was classified as good or poor in insulin-treated or glipizide-treated cats based on review of history, physical examination findings, changes in body weight, and measurement of blood glucose concentrations. Blood GHb concentration was determined using an affinity chromatography assay. Mean blood GHb concentration was similar for healthy normoglycemic cats and cats with transient, stress-induced hyperglycemia, but was significantly (P < .001) higher in untreated diabetic cats when compared with healthy normoglycemic cats. Mean blood GHb concentration was significantly (P < .001) higher in 84 cats with poorly controlled diabetes mellitus when compared with 38 cats in which the disease was well controlled. Mean blood GHb concentration decreased significantly (P < .01) in 6 cats with untreated diabetes mellitus after insulin and dietary treatment. A similar significant (P < .01) decrease in mean blood GHb concentration occurred in 7 cats with poorly controlled diabetes mellitus after diabetic control was improved by an increase in insulin dosage from 1.1 ± 0.9 to 1.4 ± 0.6 U/kg/ 24 h and by feeding a diet containing increased fiber content and in 6 cats with transient diabetes mellitus 8.2 ± 0.6 weeks after discontinuing insulin treatment. There was a significant (P< .01) stress-induced increase in mean fasting blood glucose concentration and mean blood glucose concentration for 12 hours after administration of insulin or glipizide but no change in mean blood GHb concentration in 5 docile diabetic cats 12.2 ± 0.4 weeks after the cats became fractious as a result of frequent hospitalizations and blood samplings. Results of this study suggest that evaluation of blood GHb concentration may be a clinically useful tool for monitoring glycemic control of diabetes in cats.  相似文献   

2.
Fifty-one dogs (27 diabetic dogs, four that had recovered from diabetes and 20 healthy control dogs) were given 0.5 or 1.0 mg glucagon intravenously. Blood samples were taken before the injection and 10 and 20 minutes after it. Samples were analysed to determine C-peptide, insulin and glucose concentrations, and one sample from each dog was analysed for fructosamine. The median (interquartile range) concentrations of C-peptide in the samples taken at 10 minutes were 0.5 (0.3 to 0.8) nmol/l in the control dogs, 0.1 (0 to 0.2) nmol/l in the diabetic dogs, and 0.3 (0.2 to 0.4) nmol/l in the dogs that had recovered from diabetes. Seven of the 51 dogs showed mild adverse reactions after the injection of glucagon.  相似文献   

3.
OBJECTIVE: To examine acid-base and hormonal abnormalities in dogs with diabetes mellitus. DESIGN: Cross-sectional study. ANIMALS: 48 dogs with diabetes mellitus and 17 healthy dogs. PROCEDURES: Blood was collected and serum ketone, glucose, lactate, electrolytes, insulin, glucagon, cortisol, epinephrine, norepinephrine, nonesterified fatty acid, and triglyceride concentrations were measured. Indicators of acid-base status were calculated and compared between groups. RESULTS: Serum ketone and glucose concentrations were significantly higher in diabetic than in healthy dogs, but there was no difference in venous blood pH or base excess between groups. Anion gap and strong ion difference were significantly higher and strong ion gap and serum bicarbonate concentration were significantly lower in the diabetic dogs. There were significant linear relationships between measures of acid-base status and serum ketone concentration, but not between measures of acid-base status and serum lactate concentration. Serum insulin concentration did not differ significantly between groups, but diabetic dogs had a wider range of values. All diabetic dogs with a serum ketone concentration > 1,000 micromol/L had a serum insulin concentration < 5 microU/mL. There were strong relationships between serum ketone concentration and serum glucagon-insulin ratio, serum cortisol concentration, and plasma norepinephrine concentration. Serum beta-hydroxybutyrate concentration, expressed as a percentage of serum ketone concentration, decreased as serum ketone concentration increased. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that ketosis in diabetic dogs was related to the glucagon-insulin ratio with only low concentrations of insulin required to prevent ketosis. Acidosis in ketotic dogs was attributable largely to high serum ketone concentrations.  相似文献   

4.
OBJECTIVE: To evaluate the reliability of history and physical examination findings for assessing control of glycemia in insulin-treated diabetic dogs. DESIGN: Retrospective study. ANIMALS: 53 insulin-treated dogs with diabetes mellitus. PROCEDURE: Medical records of insulin-treated diabetic dogs from June 1995 to June 1998 were reviewed, and information on owner perception of their dog's response to insulin treatment, physical examination findings, body weight, insulin dosage, and concentrations of food-withheld (i.e., fasting) blood glucose (FBG), mean blood glucose (MBG) during an 8-hour period, blood glycosylated hemoglobin (GHb), and serum fructosamine was obtained. Owner's perception of their dog's response to insulin treatment, physical examination findings, and changes in body weight were used to classify control of glycemia as good or poor for each dog. The FBG, MBG/8 h, blood GHb, and serum fructosamine concentrations were compared between well-controlled and poorly controlled insulin-treated diabetic dogs. RESULTS: Presence or absence of polyuria, polydipsia, polyphagia, lethargy, and weakness were most helpful in classifying control of glycemia. Mean FBG and MBG/8 h concentrations, blood GHb concentrations, and serum fructosamine concentrations were significantly decreased in 25 well-controlled diabetic dogs, compared with 28 poorly controlled diabetic dogs. Most well-controlled diabetic dogs had concentrations of FBG between 100 and 300 mg/dl, MBG/8 h < or = 250 mg/dl, blood GHb < or = 7.5%, and serum fructosamine < or = 525 mumol/L, whereas most poorly controlled diabetic dogs had results that were greater than these values. CONCLUSIONS AND CLINICAL RELEVANCE: Reliance on history, physical examination findings, and changes in body weight are effective for initially assessing control of glycemia in insulin-treated diabetic dogs.  相似文献   

5.
OBJECTIVE: To assess serum 17-alpha-hydroxyprogesterone (17OHP) and corticosterone concentrations in dogs with nonadrenal neoplasia and dogs being screened for hyperadrenocorticism. DESIGN: Prospective study. ANIMALS: 16 clinically normal dogs, 35 dogs with nonadrenal neoplasia, and 127 dogs with suspected hyperadrenocorticism. PROCEDURE: ACTH stimulation tests were performed in all dogs. Baseline serum cortisol and corticosterone concentrations were measured in the healthy dogs; baseline serum cortisol concentration and ACTH-stimulated cortisol, corticosterone, and 17OHP concentrations were measured in all dogs. Endogenous plasma ACTH concentration was also measured before administration of ACTH in dogs with neoplasia. RESULTS: In 35 dogs with neoplasia, 31.4% had high serum 17OHP concentration and 22.9% had high serum corticosterone concentration. Of the 127 dogs with suspected hyperadrenocorticism, 59 (46.5%) had high ACTH-stimulated cortisol concentrations; of those, 42 of 59 (71.2%) and 32 of 53 (60.4%) had high serum 17OHP and corticosterone concentrations, respectively. Of dogs with serum cortisol concentration within reference range after ACTH administration, 9 of 68 (13.2%) and 7 of 67 (10.4%) had high serum 17OHP and corticosterone concentrations, respectively. In the dogs with neoplasia and dogs suspected of having hyperadrenocorticism, post-ACTH serum hormone concentrations were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of 17OHP or corticosterone after administration of ACTH may be high in dogs with nonadrenal neoplasia and no evidence of hyperadrenocorticism. Changes in serum 17OHP or corticosterone concentrations after administration of ACTH are proportionate with changes in cortisol concentration.  相似文献   

6.
The inhibitory effect of the somatostatin analogue octreotide on the secretion of insulin could be used in the treatment of insulinoma. However, current information on the effectiveness of octreotide in dogs is conflicting. Therefore, the endocrine effects of a single subcutaneous dose of 50 microg octreotide were studied in healthy dogs in the fasting state (n=7) and in dogs with insulinoma (n=12). Octreotide did not cause any adverse effects. In healthy dogs in the fasting state, both plasma insulin and glucagon concentrations declined significantly. Basal (non-pulse related) GH and ACTH concentrations were not affected. A slight but significant decrease in the plasma glucose concentrations occurred. Dogs with insulinoma had significantly higher baseline insulin concentrations and lower baseline glucose concentrations than healthy dogs in the fasting state. Plasma glucagon, GH, ACTH, and cortisol concentrations did not differ from those in healthy dogs. Baseline plasma insulin concentrations decreased significantly in dogs with insulinoma after octreotide administration, whereas plasma concentrations of glucagon, GH, ACTH, and cortisol did not change. In contrast to the effects in the healthy dogs, in the dogs with insulinoma plasma glucose concentrations increased. Thus, the consistent suppression of plasma insulin concentrations in dogs with insulinoma, in the absence of an suppressive effect on counter-regulatory hormones, suggests that further studies on the effectiveness of slow-release preparations in the long-term medical treatment of dogs with insulinoma are warranted.  相似文献   

7.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

8.
The aim of this study was to evaluate the accuracy of serum beta-hydroxybutyrate (beta-OHB) measurements for the diagnosis of diabetic ketoacidosis (DKA) in dogs. One hundred sixteen diabetic dogs were prospectively enrolled in the study: 18 insulin-treated (IT) diabetic dogs that had a positive urine ketone test and 88 untreated, newly diagnosed diabetic dogs. Venous blood gas tensions and pH, serum glucose and urea nitrogen (SUN), and electrolyte (Na+, Cl-, and K+) and urine acetoacetate (AA) concentrations were measured concurrently with serum beta-OHB concentrations. On the basis of laboratory findings, the patients were assigned to I of 3 groups: diabetic ketoacidosis (n = 43); diabetic ketosis (DK, n = 41); and nonketotic diabetes (NDK, n = 31). Serum beta-OHB concentrations differed significantly (P < .001) among the study groups. Although marked differences in beta-OHB concentrations were found, a considerable overlap exists between the distributions of dogs with DK and those with DKA. The overall accuracy of beta-OHB determination as a diagnostic test for DKA, determined by the area under the receiver operating characteristic (ROC) curve, was 0.92. In the 1.9- to 4.8-mmol/L range, serum beta-OHB determination sensitivity varied from 100 to 35.7%, whereas specificity varied from 39 to 100%. The cutoff value of 3.8 mmol/L showed the best equilibrium between specificity (95%), sensitivity (72%), and likelihood ratio (14.8). We concluded that the quantitative measurement of serum beta-OHB may be a potential tool for diagnosing and monitoring ketosis and ketoacidosis in diabetic dogs.  相似文献   

9.
In this study, we measured the insulin-like growth factor (IGF)-I levels and evaluated the serum protein profiles of diabetic, insulin-treated, and healthy cats and dogs. The total IGF-I concentrations were 33.74 ± 3.4 ng/mL for normal, 25.8 ± 4.5 ng/mL for diabetic, and 180.4 ± 31.4 ng/mL for insulin-treated cats. IGF-I concentrations were 46.4 ± 6.6 ng/mL for normal, 25.1 ± 4.1 ng/mL for diabetic, and 303.0 ± 61.3 ng/mL for insulin-treated dogs. Total serum protein profiles were analyzed by SDS-PAGE. Fourteen bands ranging from 25 to 240 kDa in size were observed for cats, and 17 bands ranging from 25 to 289 kDa were observed for dogs. The densities of the bands differed among control, diabetic, and insulin-treated animals. In conclusion, we found that serum protein profiles and IGF-I concentrations were altered in both diabetic and insulin-treated animals. When judiciously interpreted in the light of other clinical and laboratory data, the techniques used in our study provide a valuable modality for measuring the severity of diabetes mellitus in dogs and cats.  相似文献   

10.
Objective: To determine endogenous serum insulin concentration in dogs with diabetic ketoacidosis (DKA), and to compare it to endogenous serum insulin concentration in diabetic dogs with ketonuria but no acidosis (KDM), diabetic dogs with uncomplicated diabetes mellitus (DM) that did not have ketonuria or acidosis, and dogs with non‐pancreatic disease (NP). Design: Prospective study. Setting: Veterinary Hospital of the University of Pennsylvania. Animals: Forty‐four client‐owned dogs; 20 dogs with newly diagnosed diabetes mellitus (7 dogs with DKA, 6 dogs with KDM, and 7 dogs with DM) and 24 dogs with non‐pancreatic disease. Interventions: Blood and urine samples were obtained at the time of admission to the hospital. Measurements and main results: Signalment, clinical signs, physical examination findings, and concurrent disease were recorded for all dogs. Blood glucose concentration, venous blood pH, venous blood HCO3? concentration, urinalysis, and endogenous serum insulin concentration were determined in all dogs. Dogs with DKA have significantly decreased endogenous serum insulin concentrations compared to dogs with DM (P = 0.03) and dogs with non‐pancreatic disease (P = 0.0002), but not compared to dogs with KDM (P = 0.2). Five of 7 dogs with DKA had detectable endogenous serum insulin concentrations, and 2 of these dogs had endogenous serum insulin concentration within the normal range. Conclusions: Diabetic dogs with ketoacidosis have significantly decreased endogenous serum insulin concentration compared to dogs with uncomplicated diabetes mellitus. However, most dogs with DKA have detectable endogenous serum insulin concentrations, and some dogs with DKA have endogenous serum insulin concentrations within the normal range.  相似文献   

11.
A retrospective study on stored plasma from normal dogs and dogs with pituitary dependent hyperadrenocorticism (PDH), pituitary dependent hyperadrenocorticism controlled by mitotane (o,p'-DDD),* iatrogenic hyperadrenocorticism, and hypoadrenocorticism was conducted to determine if alterations in aldosterone production exist in these disorders. The plasma aldosterone concentration (PAC) was measured by radioimmunoassay immediately before and 1 hour after adrenocorticotropic hormone (ACTH) administration (0.5 IU/kg, intravenously [IV]). PACs increased significantly when ACTH was administered to normal dogs. Dogs with PDH had a lower baseline PAC, but their PAC increased to levels similar to that of normal dogs after ACTH administration. In dogs with PDH controlled by o,p'-DDD therapy, the response to ACTH was significantly less than that of normal dogs or dogs with untreated PDH. Dogs with iatrogenic hyperadrenocorticism had a lower baseline and post-ACTH PAC than normal dogs. Dogs with hypoadrenocorticism had a normal basal PAC, but showed no significant increase in PAC following ACTH administration. These findings suggest that PACs are significantly altered in a variety of adrenal diseases, and that the ACTH stimulation test may be useful when evaluating aldosterone secretion in adrenopathic disorders. In addition, at therapeutic dosages, o,p'-DDD treatment was associated with a decrease in basal and post-ACTH PACs in dogs with PDH.  相似文献   

12.
Plasma taurine concentrations were determined in 76 dogs with dilated cardiomyopathy (DCM), 28 dogs with acquired valvular disease (AVD), and 47 normal (control) dogs. The data were collected at 2 referral centers. The Animal Medical Center, New York, NY (AMC), and the University of California, Davis (UCD), and the studies were conducted independently. Different anticoagulants (sodium citrate at AMC and lithium heparin at UCD) were used to collect the plasma samples. Paired analysis of samples showed a significant difference in plasma taurine concentrations, depending on the anticoagulant used. Consequently, results from each clinic were analyzed separately. Plasma taurine concentrations were significantly higher in dogs with AVD (median, 133 nmol/mL; range, 25 to 229 nmol/mL) than in control dogs (median, 63 nmol/mL; range 44 to 224 nmol/mL) and dogs with DCM (median, 72 nmol/mL; range, 1 to 247 nmol/mL) at AMC (P= .001). The number of dogs with AVD at UCD was too small to draw meaningful conclusions. At UCD, the median plasma taurine concentration was 98 nmol/mL (range, 28–169 nmol/mL) in dogs with AVD, 75 nmol/mL (range, 0.1–184 nmol/mL) in dogs with DCM, and 88 nmol/mL (range 52–180 nmol/mL) in control dogs. There were no significant differences in plasma taurine concentrations between dogs with DCM and the control dogs at either hospital. Congestive heart failure and administration of cardiac medication had no significant effect on plasma taurine concentrations. Plasma taurine concentration was low (<25 nmol/mL) in 17% (13/76) of the dogs with DCM. Seven of the 13 dogs with low plasma taurine concentrations were Cocker Spaniels or Golden Retrievers. It was concluded that most dogs with DCM do not have low plasma taurine concentrations. However, certain breeds or individual dogs may have low plasma taurine concentrations in association with DCM. Whether this association is causal or not is unknown. The significance of the high plasma taurine concentrations in dogs with AVD is also unknown.  相似文献   

13.
OBJECTIVE: To evaluate serum 17-hydroxyprogesterone (17-OHP) concentration measurement after administration of ACTH for use in the diagnosis of hyperadrenocorticism in dogs. DESIGN: Prospective study. ANIMALS: 110 dogs. PROCEDURE: Serum 17-OHP concentrations were measured before and after ACTH stimulation in 53 healthy dogs to establish reference values for this study. Affected dogs had pituitary-dependent (n = 40) or adrenal tumor-associated (12) hyperadrenocorticism or potentially had atypical hyperadrenocorticism (5; diagnosis confirmed in 1 dog). In affected dogs, frequency interval and borderline and abnormal serum 17-OHP concentrations after ACTH stimulation were determined. Serum cortisol concentrations were assessed via low-dose dexamethasone suppression and ACTH stimulation tests. RESULTS: In healthy dogs, serum 17-OHP concentration frequency intervals were grouped by sex and reproductive status (defined as < 95th percentile). Frequency intervals of serum 17-OHP concentrations after ACTH stimulation were < 77, < 2.0, < 3.2, and < 3.4 ng/mL (< 23.3, < 6.1, < 9.7, and < 10.3 nmol/L) for sexually intact and neutered females and sexually intact and neutered males, respectively. In 53 dogs with confirmed hyperadrenocorticism, serum cortisol concentrations after ACTH stimulation and 8 hours after administration of dexamethasone and serum 17-OHP concentrations after ACTH stimulation were considered borderline or abnormal in 79%, 93%, and 69% of dogs, respectively. Two of 5 dogs considered to have atypical hyperadrenocorticism had abnormal serum 17-OHP concentrations after ACTH stimulation. CONCLUSIONS AND CLINICAL RELEVANCE: Serum 17-OHP concentration measurement after ACTH stimulation may be useful in the diagnosis of hyperadrenocorticism in dogs when other test results are equivocal.  相似文献   

14.
Unbound or free cortisol constitutes a small fraction of total plasma cortisol, but is believed to represent the biologically active portion of this circulating glucocorticoid. We tested the hypothesis that the percentage free cortisol was altered in plasma from dogs with hyperadrenocorticism, which could account for a greater target tissue response to this circulating hormone. The percentage free cortisol in plasma samples from human beings, healthy dogs, and dogs with hyperadrenocorticism was estimated, using centrifugal ultrafiltration-dialysis. Total cortisol concentrations were determined by use of radioimmunoassay. Total cortisol concentrations appeared greater in plasma from human beings than in plasma from either group of dogs. However, the percentage free cortisol was lower in plasma from human beings, resulting in a calculated concentration of free cortisol that was quite similar between plasma from human beings and healthy dogs. Total plasma cortisol concentrations were greater (P less than 0.01) in samples from dogs with hyperadrenocorticism (190 +/- 113 nmol/L; mean +/- SD) than in healthy dogs (102 +/- 85 nmol/L), but the percentage free cortisol was not different between these 2 groups (dogs with hyperadrenocorticism, 16 +/- 9%; healthy dogs, 13 +/- 6%). However, plasma free cortisol concentrations (product of total and the percentage of free cortisol) were greater (P less than 0.01) in samples from dogs with hyperadrenocorticism (36 +/- 41 nmol/L) than in those from healthy dogs (16 +/- 9 nmol/L). Significant (P less than 0.001) positive linear relationships were found between total cortisol concentrations and percentage free cortisol in plasma samples from healthy dogs and dogs with hyperadrenocorticism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Background: Alterations in circulating amino acids have been documented in animal models and in critically ill people but have not been evaluated in dogs with spontaneously occurring disease.
Hypothesis/Objectives: To compare amino acid concentrations in critically ill dogs and healthy controls and to investigate potential relationships among amino acids, markers of inflammation, illness severity, and clinical outcome.
Animals: Forty-eight critically ill dogs and 24 healthy control dogs.
Methods: Plasma was analyzed for amino acids and C-reactive protein (CRP) was measured in serum. The Fischer ratio (the molar ratio of branched chain amino acids [BCAA] to aromatic amino acids [AAA]) and survival prediction index (SPI2) were calculated.
Results: Median CRP concentrations were significantly higher in the critically ill dogs compared with controls ( P < .001). Critically ill dogs had significantly lower concentrations of alanine ( P = .001), arginine ( P < .001), citrulline ( P < .001), glycine ( P < .001), methionine ( P < .001), proline ( P < .001), and serine ( P = .001) but significantly higher concentrations of lysine ( P = .02) and phenylalanine ( P < .001; Table 1 ). This pattern resulted in a significantly lower Fischer ratio ( P = .001) in the critically ill group. Median SPI2 score was significantly higher in dogs that survived ( P = .03). Concentrations of arginine ( P = .02), isoleucine ( P = .01), leucine ( P = .04), serine ( P = .04), valine ( P = .04), total BCAA ( P = .03), and the Fischer ratio ( P = .03) were significantly higher in survivors compared with nonsurvivors.  

  Table 1.   Comparison between critically ill and healthy control dogs and among different subgroups of diseases within the critically ill group.  相似文献   


16.
Background: Measurement of salivary cortisol is a useful diagnostic test for hypercortisolism (HC) in humans. Objectives: To determine whether measurement of salivary cortisol concentration is a practical alternative to plasma cortisol to diagnose HC, to validate the use of salivary cortisol, and to examine the effect of time of day and sampling location on salivary cortisol. Animals: Thirty healthy dogs and 6 dogs with HC. Methods: Prospective, observational clinical trial including healthy volunteer dogs and dogs newly diagnosed with HC. Salivary and plasma cortisol concentrations were measured with an immunoassay analyzer. Intra‐ and interassay variability, linearity, and correlation between salivary and plasma cortisol concentrations were determined. Results: The required 300 μL of saliva could not be obtained in 88/326 samples from healthy dogs and in 15/30 samples from dogs with HC. The intra‐assay variability for measurement of salivary cortisol was 5–17.7%, the interassay variability 8.5 and 17.3%, and the observed to expected ratio 89–125%. The correlation (r) between salivary and plasma cortisol was 0.98. The time of day and location of collection did not affect salivary cortisol concentrations. Dogs with HC had significantly higher salivary cortisol values than healthy dogs (10.2 ± 7.3 nmol/L versus 1.54 ± 0.97 nmol/L; P < .001). Conclusions and Clinical Importance: The ROCHE Elecsys immunoassay analyzer correctly measured salivary cortisol in dogs. However, a broad clinical application of the method seems limited, because of the large sample volume required.  相似文献   

17.
After a 12-hour fast, blood samples were obtained from 31 dogs with previously untreated lymphoma. Blood samples were also collected from 16 of these dogs after up to 5 treatments with doxorubicin (30 mg/m2 intravenously every 3 weeks). All 16 dogs underwent complete remission. Five dogs were re-evaluated after relapse and after overt signs of cancer cachexia had become clinically apparent. Samples were assayed for 8 quantitative parameters: total cholesterol (T-CH) and total triglyceride (T-TG) concentrations, and the concentration of cholesterol and triglyceride in each of the three major lipoprotein fractions, very-low-density lipoprotein (VLDL-CH and VLDL-TG), low-density lipoprotein (LDL-CH and LDL-TG), and high-density lipoprotein (HDL-CH and HDL-TG). The results were compared with those from 20 healthy control dogs of similar weight and age before and 3 weeks after being given one dose of doxorubicin (30 mg/m2 intravenously). The administration of doxorubicin to control dogs resulted in a significant (P> .05) decrease in T-CH, LDL-CH, and HDL-CH, as well as a significant increase in VLOL-TG and HDL-TG. When compared with untreated controls, untreated dogs with lymphoma had significantly higher concentrations of VLDL-CH, T-TG, VLDL-TG, LDL-TG, and HDL-TG, and significantly lower concentrations of HDL-CH. HDL-TG and VLDL-TG concentrations from dogs with lymphoma were significantly increased above pretreatment values after relapse and development of overt signs of cancer cachexia. Dogs in remission that were evaluated after one dose of doxorubicin had significantly higher concentrations of T-CH, VLDL-CH, T-TG, and LDL-TG when compared with controls that were evaluated after an identical dose of doxorubicin. HDL-TG increased significantly over pretreatment values in dogs with lymphoma after doxorubicin therapy. These results suggest that dogs with lymphoma have significant alterations in lipid profiles, and with the possible exception of HDL-CH, these abnormalities do not normalize when clinical remission is obtained.  相似文献   

18.
The effect of ciclosporin A (CsA) on glucose homeostasis was investigated in 16 dogs with atopic dermatitis by determining plasma glucose, serum fructosamine and insulin concentrations, and serial insulin and glucose concentrations following a glucagon stimulation test, before and 6 weeks after CsA therapy at 5 mg/kg once daily. All dogs completed the study. Following CsA treatment, the median serum fructosamine concentrations were significantly higher (pretreatment 227.5 μmol/L; post-treatment 246.5 μmol/L; P = 0.001; reference range 162-310 μmol/L). Based on analyses of the areas under concentration-time curves (AUC) pre- and post-CsA treatment, plasma glucose concentrations were significantly higher (AUC without baseline correction 31.0 mmol/L/min greater; P = 0.021) and serum insulin concentrations were significantly lower (AUC without baseline correction 217.1 μIU/mL/min lower; P = 0.044) following CsA treatment. Peak glucose concentrations after glucagon stimulation test were significantly higher following CsA treatment (10.75 versus 12.05 mmol/L; P = 0.021), but there was no significant difference in peak serum insulin (52.0 versus 35.0 μIU/mL; P = 0.052). There was a negative correlation between baseline uncorrected insulin AUC and trough serum log CsA concentrations (r = -0.70, P = 0.005). The administration of CsA to dogs with atopic dermatitis leads to disturbances in glucose homeostasis. The clinical significance of this is unclear, but it should be taken into account when considering CsA treatment in dogs that already have such impairments.  相似文献   

19.
Background: Measurement of canine serum insulin has relied on methods developed to measure human insulin. A species‐optimized test for measurement of serum insulin in dogs is now commercially available. Objective: The purpose of this study was to validate the canine ELISA for determination of serum insulin concentration in dogs. Methods: Precision was determined by evaluating intra‐ and interassay coefficient of variation (CV), and accuracy was determined by dilution and spike recovery studies. A method comparison study with samples from 34 clinically healthy dogs and 73 dogs examined for various illnesses and disorders (“patients”) was performed using the canine ELISA and an ELISA for human insulin. Biologic relevance of the canine assay was evaluated by measuring insulin in samples collected from 8 healthy dogs after administration of glucagon. A stability study was preformed with 6 samples stored at 20°C, 4–8°C, and ?20°C. Results: For the canine ELISA, intra‐ and interassay CVs were 4.3–7.8% and 4.4–7.7%, respectively. Mean recovery after dilution was 99% and recovery after spiking with porcine insulin was 116%. The canine and human ELISAs correlated well (r2=.94 for healthy dogs, r2=.88 for patient samples). After glucagon injection serum insulin concentrations increased significantly in 8 dogs. Insulin was stable for 30 days in 6 serum samples stored at ?20°C and in most samples for 8 days at 4–8°C. Insulin was stable for <3 days at room temperature (20°C). Conclusions: The new canine serum insulin ELISA had good precision and accuracy and correlated well with the previously used assay.  相似文献   

20.

Background

Studies in humans identified the synthesis and secretion of inhibin from adrenocortical tumors, but not pheochromocytoma (PHEO). Inhibin has not been examined in dogs as a serum biomarker for adrenal gland tumors.

Objective

To determine serum inhibin concentration in dogs with adrenal gland disease and in healthy dogs.

Animals

Forty‐eight neutered dogs with adrenal disease including pituitary‐dependent hyperadrenocorticism (PDH, 17), adrenocortical tumor (18), and PHEO (13), and 41 healthy intact or neutered dogs.

Methods

Prospective observational study. Dogs were diagnosed with PDH, adrenocortical tumor (hyperadrenocorticism or noncortisol secreting), or PHEO based on clinical signs, endocrine function tests, abdominal ultrasound examination, and histopathology. Inhibin concentration was measured by radioimmunoassay in serum before and after ACTH stimulation, and before and after treatment.

Results

In neutered dogs, median inhibin concentration was significantly higher in dogs with adrenocortical tumors (0.82 ng/mL) and PDH (0.16 ng/mL) than in dogs with PHEO and healthy dogs (both undetectable). Median inhibin concentration was significantly higher in dogs with adrenocortical tumors than in those with PDH and decreased after adrenalectomy. Median inhibin concentration was significantly higher in intact than in neutered healthy dogs and was similar in pre‐ and post‐ACTH stimulation. Sensitivity, specificity, and accuracy of serum inhibin concentration for identifying an adrenal tumor as a PHEO were 100, 88.9, and 93.6%, respectively.

Conclusions and Clinical Importance

Adrenocortical tumors and PDH but not PHEOs are associated with increased serum inhibin concentration; undetectable inhibin is highly supportive of PHEO in neutered dogs with adrenal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号