首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Scab is an important disease of apple and its control depends almost exclusively on frequent use of fungicides. Primary scab infection in the spring assumes several steps: ascospore maturation, liberation of ascospores that become airborne, deposition on susceptible tissues, and infection. However, the spatial heterogeneity of ascospores within the tree canopy is unknown. Aerial concentration of ascospore (ACA), ascospore concentration in rain water (ACR) and ascospore deposition (AD) were therefore measured at six heights (20–257 cm from the ground) with rotating-arm air samplers, funnels, and greased glass slides, respectively, during five rain events in 2001 and in 2002. In addition, ACR and AD were measured at eight locations within tree canopy at 196 cm height. Apple scab was assessed at the end of the primary infection period in each sampling location within the apple tree. A similar experimental design was used in 2003 to study the spatial heterogeneity of both AD and primary scab lesions. ACA and AD decreased with increasing height, while ACR increased with increasing height. Based on both variance to mean ratio and the power law relationship in both years, the ACR was heterogeneous, while AD was heterogeneous only during the peaks of ascospore release. The ACR was significantly higher at the centre of the trees and the AD was significantly higher at the centre and at the western edge of the trees. Only the cumulative AD was significantly correlated with apple scab lesions at the same location (r = 0.83). In 2003, a similar pattern of spatial heterogeneity within the tree canopy was observed for AD and primary scab lesion counts and there was a linear relationship (R 2 = 0.84) between these two variables. It was concluded that ACR and AD within the tree canopy are not randomly distributed at least during peaks of ascospore release and that AD is a good estimate of primary scab lesion development. This spatial heterogeneity should be considered when estimating ascospore deposition using mathematical models or when quantifying ascosporic inoculum using spore samplers.  相似文献   

2.
For sustainable management of scab‐resistant apple cultivars, it is necessary to understand the role of aggressiveness in the adaptation of Venturia inaequalis populations and particularly the costs to the organism of acquiring additional virulence. The aims of the present study were (i) to identify the quantitative variables that are most important in determining the differences in aggressiveness among groups of V. inaequalis isolates, and (ii) to ascertain whether virulent and avirulent isolates of V. inaequalis differ significantly in aggressiveness. The aggressiveness of eight isolates that differed in their virulence to the major resistance gene Rvi6 was compared on the non‐Rvi6 apple cv. Gala. Three components of aggressiveness, namely lesion density, the number of spores per square centimetre of leaf area, and the number of spores per lesion, were evaluated 21 days after inoculation, and the kinetics of lesion density over time were analysed in terms of maximum lesion density, length of latent period and rate of lesion appearance. On the second youngest but fully developed leaf at the time of inoculation, maximum lesion density in the virulent group was 20% lower and the latent period 7% longer, than in the avirulent group. However, the alternative hypothesis, namely that isolates had adapted to quantitative resistance present in cv. Gala depending on their cultivar of origin, could not be rejected. The analysis of the kinetics of lesion density by a non‐linear mixed‐effect model proved useful in the assessment of aggressiveness.  相似文献   

3.
A 2-year study was conducted to determine the widespread occurrence of overwintered conidial inoculum of Venturia inaequalis and its impact on the apple scab control in 18 apple orchards (organic and integrated) with various levels of scab in the Netherlands. Autumn assessments of scab lesions showed that the integrated orchards had a significantly lower scab incidence (<20%) compared to that of the organic orchards (>60%). At the bud-break phenological stage, the mean numbers of nonviable and viable conidia on 1 cm pieces of shoots ranged from 1 to about 90 and from 6 to more than 1000 in the integrated and the organic orchards, respectively, for both years. However, viable conidia on shoots were found only in 2 integrated and 6 organic orchards out of the 18 and the viability of conidia was below 2%. The mean numbers of viable and nonviable conidia per 100 buds ranged from 24 to more than 1000 and from 230 to almost 5000 in the integrated and the organic orchards, respectively, for both years. In both years, some 60–85% of the conidia was found on the outer bud scales. The percentage viability associated with the outer bud tissues was below 2% for all the orchards. However, the percentage of viable conidia within the inner bud tissues ranged from 0% to 6% in the integrated and from 2% to 11% in the organic orchards for both years. Differences between the organic and the integrated orchards were clearly demonstrated for overwintered conidia associated with both shoot and bud samples. The relationship between autumn scab incidence and numbers of overwintered conidia associated with shoots or buds was exponential. If the autumn scab incidence was above 40%, then the number of overwintered conidia markedly increased. We conclude that specific treatments for overwintering conidia of Venturia inaequalis may not be necessary in integrated orchards with a low scab incidence in the previous autumn. However, the risk of early scab epidemics initiated by overwintered conidia potentially is high in organic orchards. Preventative measures in early spring and also in the previous year must be established in these orchards.  相似文献   

4.
Apple scab, caused by Venturia inaequalis, can lead to large losses of marketable fruit if left uncontrolled. The disease appears in orchards during spring as lesions on leaves. These primary lesions are caused by spores released at bud burst from overwintering sources; these spores can be sexually produced ascospores from the leaf litter or asexual conidia from mycelium in wood scab or within buds. The relative importance of conidia and ascospores as primary inoculum were investigated in an orchard in southeast England, UK. Potted trees not previously exposed to apple scab were placed next to (c. 1 m) orchard trees to trap air‐dispersed ascospores. Number and position of scab lesions were assessed on the leaves of shoots from both the potted trees (infection by airborne ascospores) and neighbouring orchard trees (infection by both ascospores and splash‐dispersed, overwintered conidia). The distribution and population similarity of scab lesions were compared in the two tree types by molecular analysis and through modelling of scab incidence and count data. Molecular analysis was inconclusive. Statistical modelling of results suggested that conidia may have contributed approximately 20–50% of the primary inoculum in early spring within this orchard: incidence was estimated to be reduced by 20% on potted trees, and lesion number by 50%. These results indicate that, although conidia are still a minority contributor to primary inoculum, their contribution in this orchard is sufficient to require current management to be reviewed. This might also be true of other orchards with a similar climate.  相似文献   

5.
ABSTRACT Association of the incidence of leaf blight (caused by Phomopsis obscurans) and leaf spot of strawberry (caused by Mycosphaerella fragariae) was assessed at multiple scales in perennial plantings at several commercial farms over 3 years (1996 to 1998). For each field, the presence or absence of each disease was recorded from n = 15 leaflets in each of N approximately 70 evenly spaced sampling units, and the proportion of leaflets with blight, spot, and total disease (blight or spot) was determined. Individual diseases and total disease incidence were all well described by the beta-binomial distribution but not by the binomial distribution, indicating overdispersion of disease. The Jaccard similarity index was used to measure disease co-occurrence at the leaflet, sampling-unit, and field scales. Standard errors of this index for the lower two scales were obtained using the jackknife (resampling) procedure, and data randomizations were used to determine the expected Jaccard index for an independent arrangement of the two diseases, conditioned on the incidence and spatial heterogeneity of the observed disease data. Results based on these statistics showed that only 4 of 52 data sets at the leaflet level and no data sets at the sampling-unit level had Jaccard index values significantly different from that expected under an independent rearrangement of the two diseases. Rank correlation and cross-correlation statistics were calculated to determine the degree of covariation in incidence between the two diseases. Additionally, covariation between diseases was tested using a new procedure in the Spatial Analysis by Distance IndicEs (SADIE) class of tests. Covariation was detected in 21% of the data sets using rank correlation methods and in 15% of the data sets using the SADIE-based approach. The discrepancy between these two methods may be due to the rank correlation procedure not taking into account the effects of spatial pattern of disease incidence. There was no relationship between mean disease incidence per field of spot and blight or between degree of heterogeneity of the two diseases (as measured by theta of the beta-binomial distribution), demonstrating lack of covariation at the field scale. Incidence of leaflets with either disease (total disease incidence) could be well predicted using a linear combination of the estimated probabilities of leaf blight and leaf spot incidence based on independence of the two diseases. Heterogeneity of total disease incidence, measured with the estimated theta parameter of the beta-binomial distribution, could also be well predicted using a linear combination of the weighted theta values for leaf blight and leaf spot, with weights proportional to incidence of the individual diseases.  相似文献   

6.
Lesion-count data on fruits/leaves from two regions of China and on leaves from controlled-environment studies were used to investigate incidence-density [incidence of leaves/fruits with lesion(s) and average number of lesions per leaf/fruit] and incidence-incidence [incidences of leaves and shoots with lesion(s)] relationships. Few of the datasets for the number of lesions per fruit/leaf could be fitted satisfactorily by a Poisson distribution. Three two-parameter distributions (negative binominal, Neyman type A and Polya-Aeppli) provided significantly better fit than the Poisson distribution, indicating a degree of aggregation in the number of lesions on a single leaf/fruit. However, many datasets could still not satisfactorily be fitted by these distributions. The dynamics of aggregation of lesions on leaves/fruits was well described by Taylor's power-law model. Regression models provided accurate predictions of the average number of lesions per leaf/fruit from the incidence of leaves or fruits with lesion(s). Nevertheless, the incidence-density relationship varied considerably between regions and between leaf and fruit scab. Field data also indicated that the number of scabbed leaves per shoot showed some degree of aggregation. The incidence of leaves with scab could be predicted accurately from the incidence of shoots with scab. The incidence-density relationships developed in this study could be used in making practical disease-management decisions when incidence of leaves with scab is less than 35%.  相似文献   

7.
A two-year study was conducted to determine the effect of six sanitation treatments on leaf litter density (LLD), relative ascospore production of Venturia inaequalis and scab incidence on spur-leaf clusters, leaves and harvested fruits, on two cultivars with low and high scab susceptibilities, in Hungarian integrated and organic apple orchards. The following sanitation treatments were used: sprays of lime sulphur in autumn, collecting fallen leaves in autumn, straw mulch cover in late winter, sprays of lime sulphur followed by mulch cover, collecting fallen leaves followed by mulch cover, collecting fallen leaves followed by covering the orchard floor with plastic foil, and non-sanitized control. LLD decreased continuously in all treatment plots by 0–23% by mid-May in both orchards and years; however, LLD reduction was 1.4–4.2 times higher in the organic orchard compared to the integrated one. All treatments, except for the lime sulphur treatment, resulted in significant (P < 0.05) reduction of LLD and ascospore production in both the integrated and organic apple orchards compared to non-sanitized plots. The most efficient treatment was leaf collection combined with plastic foil cover, followed by leaf collection combined with mulch cover, leaf collection alone, mulch cover alone, and lime sulphur spray combined with mulch cover, with a reduction in the ascospore production of >95, 72–92, 56–79, 24–38, and 27–46%, respectively, in the mean of both orchards and years. However, only treatments of leaf collection applied alone, or in combination with mulch or with plastic foil cover reduced significantly (P < 0.05) leaf and/or fruit scab incidence by 18–57% compared to non-sanitized plots. These three leaf collection treatments are recommended in both integrated and organic orchards and the possibilities of successfully incorporating these methods into orchard management practices are interpreted.  相似文献   

8.
ABSTRACT Relationships between disease incidence measured at two levels in a spatial hierarchy are derived. These relationships are based on the properties of the binomial distribution, the beta-binomial distribution, and an empirical power-law relationship that relates observed variance to theoretical binomial variance of disease incidence. Data sets for demonstrating and testing these relationships are based on observations of the incidence of grape downy mildew, citrus tristeza, and citrus scab. Disease incidence at the higher of the two scales is shown to be an asymptotic function of incidence at the lower scale, the degree of aggregation at that scale, and the size of the sampling unit. For a random pattern, the relationship between incidence measured at two spatial scales does not depend on any unknown parameters. In that case, an equation for estimating an approximate variance of disease incidence at the lower of the two scales from incidence measurements made at the higher scale is derived for use in the context of sampling. It is further shown that the effect of aggregation of incidence at the lower of the two scales is to reduce the rate of increase of disease incidence at the higher scale.  相似文献   

9.
A‐scab (Apple‐scab) is a dynamic simulation model for Venturia inaequalis primary infections on apple. It simulates development of pseudothecia, ascospore maturation, discharge, deposition and infection during the season based on hourly data of air temperature, rainfall, relative humidity and leaf wetness. A‐scab produces a risk index for each infection period and forecasts the probable periods of symptoms appearance. The model was validated under different epidemiological conditions: its outputs were successfully compared with daily spore counts and actual onset and severity of the disease under orchard conditions, and neither corrections nor calibrations have been necessary to adapt the model to different apple‐growing areas. Compared to other existing models, A‐scab: (i) combines information from literature and data acquired from specific experiments; (ii) is completely ‘open’ because both model structure and algorithms have been published and are easily accessible; (iii) is not written with a specific computer language but it works on simple‐to‐use electronic sheets. For these reasons the model can be easily implemented in the computerized systems used by warning services.  相似文献   

10.
Turechek WW  Mahaffee WF 《Phytopathology》2004,94(10):1116-1128
ABSTRACT The spatial pattern of hop powdery mildew was characterized using 3 years of disease incidence data collected in commercial hop yards in the Pacific Northwest. Yards were selected randomly from yards with a history of powdery mildew, and two to five rows were selected for sampling within each yard. The proportion of symptomatic leaves out of 10 was determined from each of N sampling units in a row. The binomial and the beta-binomial frequency distributions were fit to the N sampling units observed in each row and to SigmaN sampling units observed in each yard. Distributional analyses indicated that disease incidence was better characterized by the beta-binomial than the binomial distribution in 25 and 47% of the data sets at the row and yard scales, respectively, according to a log-likelihood ratio test. Median values of the beta-binomial parameter theta, a measure of small-scale aggregation, were near 0 at both sampling scales, indicating that disease incidence was close to being randomly distributed. The variability in disease incidence among rows sampled in the same yard generally increased with mean incidence at the yard scale. Spatial autocorrelation analysis, used to measure large-scale patterns of aggregation, indicated that disease incidence was not correlated between sampling units over several lag distances. Results of a covariance analysis showed that heterogeneity of disease incidence was not dependent upon cultivar, region, or time of year when sampling was conducted. A hierarchical analysis showed that disease incidence at the sampling unit scale (proportion of sampling units with one or more diseased leaves) increased as a saturation-type curve with respect to incidence at the leaf level and could be described by a binomial function modified to account for the effects of heterogeneity through an effective sample size. Use of these models permits sampling at the sampling unit scale while allowing inferences to be made at the leaf scale. Taken together, hop powdery mildew was nearly randomly distributed with no discernable foci, suggesting epidemics are initiated from a well-distributed or readily dispersible overwintering population. Implications for sampling are discussed.  相似文献   

11.

BACKGROUND

Ants can become efficient biocontrol agents in plantation crops as they prey on pest insects and may inhibit plant pathogens by excreting broad-spectrum antibiotics. However, ants also provide a disservice by augmenting attended honeydew producing homopterans. This disservice may be avoided by offering ants artificial sugar as an alternative to honeydew. Here we tested the effect of artificial sugar feeding on aphid abundance in an apple plot with wood ants (Formica polyctena, Förster), and tested the effect of ant presence on apple scab (Venturia inaequalis, Cooke) disease incidence.

RESULTS

Over a 2-year period, sugar feeding eliminated ant-attended aphid populations on the apple trees. Furthermore, scab symptoms on both leaves and apples were reduced considerably on ant trees compared to control trees without ants. The presence of ants on the trees reduced leaf scab infections by 34%, whereas spot numbers on fruits were reduced by between 53 and 81%, depending on apple variety. In addition, the spots were 56% smaller.

CONCLUSION

This shows that problems with wood ant-attended homopterans can be solved and that ants can control both insect pests and plant pathogens. We therefore propose wood ants as a new effective biocontrol agent suitable for implementation in apple orchards and possibly other plantation crops. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

12.
Xu X  Madden LV 《Phytopathology》2002,92(9):1005-1014
ABSTRACT The relationships between disease incidence and colony density and between leaf and shoot disease incidences for apple powdery mildew were investigated over four seasons in order to derive a simple relationship for predicting density using incidence. The Neyman type A distribution generally provided a good fit to the observed number of colonies per leaf and shoot, and provided a significantly better fit than the Poisson distribution, indicating a degree of aggregation of mildew colonies. In general, Taylor's power-law satisfactorily described the observed variance-mean relationship for colony density; however, Taylor's power-law broke down at very high levels of mean density. Incidence of leaf infection could be determined based on average number of colonies per leaf assuming a fixed variance-mean relationship and a Neyman type A distribution for colony density. Regression models using the complemen- tary log-log transformation of incidence also provided accurate predictions of leaf (or shoot) disease incidence from colonies per leaf (or per shoot). Similar accuracies of these incidence-density models suggested that variance-mean ratio of colony density was more or less constant over time. Unlike the case with colony density, the number of mildewed leaves per shoot generally had a random pattern, as indicated by the good fit of the binomial distribution. Thus, it was possible to estimate the leaf incidence of the youngest unrolled leaves on a shoot using the shoot incidence. It is argued that the leaf incidence-density relationships developed in the present study may be used in making practical disease management decisions.  相似文献   

13.
Apple scab caused by Venturia inaequalis is a major disease in apple production. Epidemics in spring are initiated by ascospores produced on overwintering leaves whereas epidemics during summer are driven by conidia produced on apple leaves by biotrophic mycelium. Fungal colonisers of sporulating colonies of V. inaequalis were isolated and their potential to reduce the production of conidia of V. inaequalis was evaluated on apple seedlings under controlled conditions. The four most effective isolates of the 63 screened isolates were tested subsequently under Dutch orchard conditions in 2006. Repeated applications of conidial suspensions of Cladosporium cladosporioides H39 resulted in an average reduction of conidial production by V. inaequalis of approximately 40%. In 2007, applications of conidial suspensions of C. cladosporioides H39 reduced conidial production by V. inaequalis by 69% on August 6 and by 51% on August 16, but no effect was found on August 20. However, viability of available conidia of C. cladosporioides H39 was low at the end of the experiment. Epiphytic and endophytic colonisation by Cladosporium spp. of leaves treated during the experiment with C. cladosporioides H39 was significantly higher than on control leaves sampled 6 weeks after the last application. It is concluded that C. cladosporioides H39 has promising potential as a biological control agent for apple scab control. More information is needed on the effect of C. cladosporioides H39 on apple scab epidemics as well as on mass production, formulation and shelf life of conidia of the antagonist.  相似文献   

14.
In field experiments on the effectiveness of overhead irrigation spraying of crop protection chemicals, an oscillating bar sprinkler was compared with hand spraying in post-harvest applications of protective fungicides mancozeb (0.096% a.i.) with zineb (0.022% a.i.) for the control of blackcurrant leaf spot, Pseudopeziza ribis. Twin-jet rotating sprinkler nozzles were compared with conventional automatic spraying of Cox's Orange Pippin apple trees in the application of a malathion emulsion (0.125% a.i.) for the control of apple-grass aphid, Rhopalosiphum insertum and also in applications of pre-blossom dodine emulsion (0.03% a.i.) and post-blossom captan suspension (0.09% a.i.) for control of apple scab, Venturia inaequalis. All applications were made at a nominal rate of 2250 litres/ha (200 gal/acre). On blackcurrants, the hand spraying gave much better control of leaf spot and was shown by fluorescent tracer assessment to give more cover on the lower surfaces of the leaves than the sprinkler. On apple, the rotating sprinklers gave almost as good control of apple-grass aphid and apple scab as the conventional automatic spraying. The malathion deposit levels, determined by g.l.c., on the flower trusses were also comparable, though the liquid volume distribution from the irrigation nozzles was uneven.  相似文献   

15.
In field trials against apple scab (caused by Venturia inaequalis) and powdery mildew (caused by Podosphaera leucotricha), improved control of one or other disease has been given by the newer systemic fungicides benomyl, triarimol and the thiophanates. However, in tests on apple seedlings in the greenhouse, biological evidence of translocation from individual deposits was generally limited to movement within the treated leaf. In greenhouse tests with cucumbers and marrows, using Oidium sp., there was again little evidence for movement of toxicant from a treated leaf, although effective disease control was readily obtained by root application of several compounds at low dosage. These results suggest that the systemic properties of the compounds evident when used as soil or seed treatments are of little account when they are applied as foliar sprays.  相似文献   

16.
Atypical scab‐like symptoms were reported for the first time in 2007 in the south of France on fruits of apple cultivars carrying the Rvi6 (=Vf) major resistance gene to Venturia inaequalis. With microscopic observations, nucleotide sequence data and pathological tests, it was shown that the causal agent was Venturia asperata. Scanning electron microscopy was used to compare its infection process and conidiogenesis to those of Venturia inaequalis on apple and Venturia pirina on pear. Venturia asperata produced fewer hyphae and fewer spores than the two other Venturia species, and resulted in weaker symptoms. This fungal species was previously described as a saprotroph on apple leaf litter. This is the first report of damage on apple fruits caused by V. asperata. Changes in host and cultural practices may have created a new context favourable for the emergence of this pathogen. It was also detected on symptomless leaves and on overwintered leaves on the ground. Pseudothecia developed on overwintered leaves and released ascospores over a 2‐month period from the end of March until the end of May, suggesting that the fungus is able to survive from season to season. However, it is not yet known if this new disease will establish over coming years and become an emergent disease.  相似文献   

17.
In 3 year field experiments on pest and disease control by mobile overhead spraying of intensive Cox's Orange Pippin apple trees, overhead booms applying 1125 litres/ha and overhead mist-blowing equipment applying 562 litres/ha, each spraying two complete rows from one alley in half the normal time, were compared with conventional automatic mast spraying at 2250 litres/ha and with conventional mist-blowing at 562 litres/ha. The overhead boom application of demeton-S-methyl (0.0036% a.i.) with azinphos-methyl (0.0165% a.i.) or of fenitrothion (0.031% a.i.) at the green cluster stage gave control of the applegrass aphid, Rhopalosiphum insertum, virtually equal to that obtained by conventional application of the same insecticides. Similarly, the overhead mist applications of conventional quantities of insecticides gave equal control, but not when applying one-quarter of the normal amount of insecticides. The conventional methods generally gave better control of apple sucker, Psylla mali. In 1971, when the incidence of apple scab, Venturia inaequalis, was only moderate, the overhead boom method gave equal control to conventional spraying with both dodine/captan (0.03% a.i. and 0.094% a.i.) and benomyl (0.025% a.i.) programmes: in 1972 and 1973, when the scab incidence was heavier, the overhead boom spraying was again equal to the conventional method with the benomyl programme but was less effective with the dodine/captan programme. The overhead mist applications gave control only when the scab incidence was light. Repeated applications of dinocap emulsion (0.025% a.i.), included in the fungicide programme in 1971, gave as good control of the active stages of fruit tree red spider mite, Panonychus ulmi, when applied by the overhead methods as by conventional spraying, but application of the benomyl programme gave poor control. Mobile overhead spraying of small intensive apple trees is a promising method but needs further development before becoming fully acceptable.  相似文献   

18.
White tip disease of leek (Allium porrum), caused byPhytophthora porri, was studied in field experiments. On fields infested by soil-borne inoculum (oospores), relatively short periods of explosive disease increase alternated with periods in which apparently no new infections occurred. The analysis of rain data and disease data, using a degree-day model for incubation periods at constant temperatures, confirmed the hypothesis that disease increase ofP. porri is significantly correlated with rain; R adj 2 was 0.91, 0.41 and 0.51 in 1992, 1993 and 1994, respectively. Correlations were highest early in the season. Lack of correlation later in the season may be ascribed to the effect of lesion death, which may be caused by total or partial leaf death, by desiccation or by other fungi overgrowingP. porri, and to the effect of secondary infection by zoosporangia, which appears to be not so strongly rain-driven as primary infection. Zoosporangia were observed in fields on water-logged light-green lesions. High lesion densities of leaf tips and leaf units at 10–20 cm above the leaf axils indicated that most infections depend on free water, either in puddles or in a water basin near the leaf axils. Although disease correlates well with rain data, disease forecasts will be unreliable as long as rain forecasts are unreliable.  相似文献   

19.
ABSTRACT Spatial pattern of the incidence of strawberry leaf blight, caused by Phomopsis obscurans, was quantified in commercial strawberry fields in Ohio using statistics for heterogeneity and spatial correlation. For each strawberry planting, two transects were randomly chosen and the proportion of leaflets (out of 15) and leaves (out of five) with leaf blight symptoms was determined from N = 49 to 106 (typically 75) evenly spaced sampling units, thus establishing a natural spatial hierarchy to compare patterns of disease. The beta-binomial distribution fitted the data better than the binomial in 92 and 26% of the 121 data sets over 2 years at the leaflet and leaf levels, respectively, based on a likelihood ratio test. Heterogeneity in individual data sets was measured with the index of dispersion (variance ratio), C(alpha) test, a standard normal-based test statistic, and estimated theta parameter of the beta-binomial. Using these indices, overdispersion was detected in approximately 94 and 36% of the data sets at the leaflet and leaf levels, respectively. Estimates of the slope from the binary power law were significantly (P < 0.01) greater than 1 and estimates of the intercept were significantly greater than 0 (P < 0.01) at both the leaflet and leaf levels for both years, indicating that degree of heterogeneity was a function of incidence. A covariance analysis indicated that cultivar, time, and commercial farm location of sampling had little influence on the degree of heterogeneity. The measures of heterogeneity indicated that there was a positive correlation of disease status of leaflets (or leaves) within sampling units. Measures of spatial association in disease incidence among sampling units were determined based on autocorrelation coefficients, runs analysis, and a new class of tests known as spatial analysis by distance indices (SADIE). In general, from 9 to 22% of the data sets had a significant nonrandom spatial arrangement of disease incidence among sampling units, depending on which test was used. When significant associations existed, the magnitude of the association was small but was about the same for leaflets and leaves. Comparing test results, SADIE analysis was found to be a viable alternative to spatial autocorrelation analysis and has the advantage of being an extension of heterogeneity analysis rather than a separate approach. Collectively, results showed that incidence of Phomopsis leaf blight was primarily characterized by small, loosely aggregated clusters of diseased leaflets, typically confined within the borders of the sampling units.  相似文献   

20.
The effect of an extract of Yucca schidigera on the control and infection process of the apple scab pathogen, Venturia inaequalis, was examined and compared with the chemical resistance inducer, acibenzolar-S-methyl (ASM). In seedling assays, both materials significantly reduced apple scab symptoms and pathogen sporulation on leaves and both showed similar control efficacies as the reference treatment, sulphur. Whereas yucca extract and sulphur gave significant inhibition of conidial germination in vitro, ASM did not inhibit germination. Histopathological studies of the infection process of V. inaequalis in apple leaves showed that the yucca extract primarily acted by inhibiting pre-penetration events and penetration itself. In contrast, the ASM treatment significantly inhibited more stages of the infection process (pre-penetration, penetration and post-penetration events). These observations suggest that the yucca extract acted mainly by a direct fungitoxic effect whereas ASM, as expected, acted as a resistance inducer. However, expression studies of two genes encoding the PR proteins, PR1 and PR8, in apple seedlings indicated that yucca extract may also affect plant defence as expression of both genes was up-regulated following yucca treatment, to a level similar to that observed after treatment with ASM. The fungitoxic effect of sulphur on V. inaequalis was also confirmed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号