首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
Creep under fire of laminated veneer lumber (LVL) joined with metal connectors was studied. The fire-resistant performance of LVL butt joints connected with metal plates protected with graphite phenolic sphere (GPS) sheeting was discussed. The GPS sheeting was overlaid on the joint in different sizes and locations. The joint was exposed to a burner with a top flame temperature of 800°C and loaded with a load of 200 N to test for creep under fire. The results showed that the fire-resistant performance of the joint was markedly improved by the sheeting. The size and location of the GPS sheet significantly affected the time to rupture of the specimen, which was six times longer than that without GPS. Temperature measurements at the joint showed that the GPS sheeting distributed the heat along the surface and delayed failure. Thermographic images and analyses clarified the improvement in fire-resistant properties due to GPS.  相似文献   

2.
Cone-shaped carbon particles were produced inside the cell lumen of sugi (Japanese cedar) charcoal treated at 2500°C. We succeeded in clarifying the structural and morphological features by separating the cone-shaped carbon from the carbonized cell wall by heating to 800°C in air. Cone-shaped carbon is less susceptible to oxidation than the carbonized cell wall. The isolated cone-shaped carbon and carbonized cell wall fracture were observed separately by transmission electron microscopy and selected area electron diffraction. Results revealed that the cone-shaped carbon has a very highly ordered cone structure with regularly stacked hexagonal carbon sheets, whereas the carbonized cell wall has a disordered structure of mosaic-like turbostratic carbon.Part of this work was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

3.
As an example of activated carbon (AC) moldings, AC sheets were prepared from thermoplastic acetic acid lignin by lamination. The resulting AC sheets are a new type of product that can be applied as water and air cleaners. Powdered softwood acetic acid lignin (SAL) was molded into sheets by a thermal pressing method. When the sheet was carbonized under a stream of nitrogen at 1000°C, it was deformed with expansion and contained much foam. The deformation during carbonization was suppressed by the addition of pulp to the lignin. A sheet prepared by mixing lignin with pulp was directly carbonized without thermostabilization. The carbonized sheet was activated with steam for 2h. The resulting AC sheet had adsorption properties, such as specific surface and iodine adsorption capacity, comparable to those of commercial AC powders or granules. Furthermore, the AC sheet had a larger capacity to adsorb methane than did the commercial AC powder. Therefore, SAL seems to be a promising source for the AC moldings.  相似文献   

4.
Sugi (Cryptomeria japonlca D. Don) wood powder was carbonized at varying temperatures by a onestep process up to 1000C and a two-step process using wood charcoal as the raw material up to 1600C. This study was conducted to evaluate the adsorptive properties of wood charcoal and discuss the mechanism of its adsorptive function in relation to the physical and anatomical characteristics of wood after carbonization. Anatomical characteristics of carbonized wood materials were directly observed under heating using an environmental scanning electron microscope (ESEM); the cell wall structures were analyzed by high-resolution transmission electron microscope (HRTEM). The largest weight losses were observed at the highest temperatures, in both the one-step and twostep processes but leveled off above 800C. Shrinkages in the tangential, radial, and longitudinal directions increased with carbonization temperature, peaking at 1000C. Direct observations by ESEM showed distinct shrinkage at around 400C. The first trial observations by HRTEM on the changes in the ultrastructure of cell walls of wood charcoals were done, and it was assumed to affect the formation of micropores. Adsorption was found to follow the Langmuir isotherm model. With the one-step carbonization process, the iodine adsorption capacities of the carbonized wood powders increased with increasing carbonization temperature, peaking at 800C, but decreased at higher temperatures. The wood powder carbonized at 1000C with the two-step process showed the highest capacity, but further heating up to 1400C drastically decreased the adsorption. The shrinkage of cells was related to the increases and decreases in its specific surface area. Specific surface area and total pore volume were evidently related to the adsorptive properties.Part of this paper was presented at the Second International Wood Science Seminar, Indonesia, November 6–7, 1998  相似文献   

5.
竹片覆面胶合板的初步研究   总被引:2,自引:0,他引:2  
本文研究了以竹片为外层材料、多层杨木单板为芯层材料的复合胶合板的结构和力学性能,分析了板坯结构形式、纵向纵片厚度、单板层数及板坯压缩率与产品机械强度之间的关系。初步研究结果表明,板坯结构形式对产品的静载荷抗弯曲性能影响显著;在试验范围内,纵向竹片厚度为3.5-5.0mm、板坯压缩率在23%左右时,竹片覆盖面杨木胶合板的综合力学性能比较理想。  相似文献   

6.
采用3.00、4.50、6.00mm厚度小径柚木单板制备单板层积材(LVL),研究单板厚度对单板层积材力学性能的影响。结果表明:单板厚度对于层积材静曲强度和弹性模量有显著影响,随着单板厚度增加,静曲强度与弹性模量减小;强度均达到GB/T20241—2006《单板层积材》中不同等级要求。生产相同厚度单板层积材时应根据耗胶量与所需力学强度选择合适单板厚度,寻求成本与质量的平衡。  相似文献   

7.
The purpose of this study was to develop a cost-effective method to manufacture high-performance laminated veneer lumber (LVL) from mountain pine beetle (MPB)-affected veneers through partial resin impregnation and optimum board layup. Dry MPB-affected veneer sheets were segregated into two stress grades based on dynamic modulus of elasticity (MOE). A new phenol formaldehyde resin with a 30% solids content was formulated for resin impregnation. To reduce resin consumption, only veneer sheets used as outer layers were dipped in the resin for 5?min and then dried to manufacture 13-ply LVL. The bending properties, shear strength and dimensional stability of these LVL billets were examined and compared to those from the controls made from entirely untreated veneers. The results demonstrated that high-grade (E1) MPB-affected veneers had lower resin solids uptake than low-grade (E2) counterparts based on a 5?min dipping. Compared with the controls, the LVL billets made from resin-impregnated veneers for outer layers yielded increased surface hardness, significantly improved dimensional stability, shear strength and modulus of rupture on both edgewise and flatwise as well as better appearance with no cosmetic concerns. However, the improvement in LVL bending MOE was dependent on initial veneer stress grade. For high-grade (or density) E1 veneers, the use of impregnated veneers resulted in insignificant improvement in bending MOE. The optimum product layup was to place one ply of impregnated E1 grade veneer each for product face and back. By contrast, for low-grade (or density) E2 veneers, the use of impregnated veneers yielded a significantly higher flatwise bending MOE compared to the controls. The recommended product layup was the placement of two plies of impregnated E2 grade veneer sheets each for product face and back.  相似文献   

8.
Zephyr strand board (ZSB) and zephyr strand lumber (ZSL) were produced using zephyr made from poplar veneer to investigate the greater utilization of low-density poplar as a structural material. These materials were then compared to ordinary plywood, laminated veneer lumber (LVL) from poplar veneer, lauan plywood, and particleboard. The bending properties (moduli of rupture and elasticity) of ZSB proved superior to those of poplar plywood: and ZSL produced from poplar veneer zephyr had bending properties greater than ordinary LVL from poplar veneer. Apparently, the conversion of the poplar veneer into zephyr material had a positive effect on bending properties. Additionally, poplar ZSB had bending properties superior to those of lauan particleboard and equal to those of lauan plywood. The internal bond strength of poplar veneer ZSB was nearly two times greater than that of lauan particleboard.Parts of this report were presented at the international symposium on the utilization of fast-growing trees, Nanjing, China, October 1994. Report IV appeared inMokuzai Kogyo 49:599, 1994  相似文献   

9.
单板厚度是影响单板层积材(英文缩写LVL)强度性能的主要因素之一,在同样的工艺条件下,单板越厚,LVL的剪断强度越低,剥离率越高。冷压胶合制造非结构单板积材时,建议采用4mm厚的单板  相似文献   

10.
Six wood species were carbonized under various carbonization temperatures and nonoxygen conditions to obtained charcoal. The effects of wood species, rate of temperature rise, and carbonization temperature on the electromagnetic shielding efficiency (ESE) of the electric field were investigated. The wood species used in this study were Japanese cedar, China fir, western hemlock, red oak, fortune paulownia, and Taiwan acacia. Tested materials were carbonized in a high-temperature oven under the following conditions: rate of temperature rise 1°–5°C/min; carbonization temperature 500°–1100°C, with temperature intervals of 100°C; maximum temperature maintained for 1h; and flow rate of nitrogen 300ml/min. The electromagnetic insulation strength system was used to detect the ESE of the electric field of charcoal. It was found that western hemlock and fortune paulownia charcoal showed maximum ESE values of of 36 and 61dB generated at a carbonization temperature of 1000°C. The charcoals derived from four other wood species showed maximum ESE values of 28dB for Japanese cedar, 23dB for China fir, 32dB for red oak, and 38dB for Taiwan acacia, respectively, at a carbonization temperature of 1100°C. The ESE value for fortune paulownia charcoal was similar to those of metal nets. The relations between ESE and logarithmic values of resistivity (log) could be represented by a negatively exponential formula.Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

11.
Authors established a new manufacturing technology for crack-free carbonized boards by pressing and carbonizing the medium-density fiberboard. Industrialization of new functional carbon materials was performed by investigating the fundamental properties of the carbonized boards. To be used as a construction material, the carbonized board needs to satisfy the fire performance regulation. In this study, the carbonized boards were manufactured from medium-density fiberboard (c-MDF) at different temperatures and then fire performance including flame retardancy and smoke toxicity was analyzed using a cone calorimeter and noxious gas analyzer. The results show that as the carbonization temperature increases, weight loss ratio decreases and flame retardancy increases. In the c-MDF at 800 and 1000 °C, no external damage was observed after combustion. These c-MDFs satisfy the total heat release (standard below 8 MJ/m2) and heat release rate (standard below 200 kW/m2) regulations according to the Building Standard Law of Korea and Japan. In addition, the c-MDFs showed the lower total smoke release (TSR, 0.213 m2/m2) than that of virgin MDF (94.281 m2/m2). The c-MDF at 800 and 1000 °C were, therefore, classified as a class III flame retardancy material and can be used as indoor finishing material.  相似文献   

12.
Wood charcoal carbonized at various temperatures was analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to investigate the changes of chemical structures during the carbonization process. From the infrared spectra, the carbon double bonds and aromatic rings were seen to form at a carbonization temperature of about 600°C. From the XPS spectra, the ratio of aromatic carbons increased in the temperature range 800–1000°C and over 1800°C. The condensation of aromatic rings proceeded as carbonization progressed. The drastic reduction of electrical resistivity of charcoals was observed in almost the same temperature range. It was found that the condensation of aromatic rings had some relation to the decline in electrical resistivity. Wood charcoal carbonized at 1800°C was partly graphitized, a finding supported by the results of X-ray diffraction and XPS. The functional groups containing oxygen diminished with the increase in carbonization temperature.This paper was presented at the 45th Annual Meeting of the Japan Wood Research Society in Tokyo, April 1995 and at the 47th Annual Meeting of the Japan Wood Research Society in Kochi, April 1997  相似文献   

13.
Anisotropic thermal properties of molded carbon phenolic spheres (CPS), a mixture of sugi wood charcoal powders and phenol formaldehyde resin molded with a hot press, were investigated. The effects of the carbonizing temperature, particle size of chars, and density of the CPS on thermal properties were discussed. The molded CPS specimens were measured for their thermal properties using the laser flash method in both horizontal and vertical directions. The configuration of the CPS was observed by scanning electron microscopy. Anisotropy of the thermal properties (thermal diffusivity and thermal conductivity) between horizontal and vertical directions of the molded CPS was much higher than that of the uncarbonized molded phenolic spheres. Therefore, converting wood into molded CPS is an effective way to enhance the thermal-anisotropy properties. More marked effects of the carbonizing temperature, particle size, and density were observed in the horizontal direction than in the vertical direction. Anisotropy in thermal properties of the molded CPS may be considered an advantage for developing a new fire-retardant material for wood composites.An outline of this study was presented at the 47th and 48th annual meetings of the Japan Wood Research Society, Kochi and Shizuoka, 1997 and 1998.  相似文献   

14.
介绍了用β射线对单板密度进行检测实验,重点研究了木材厚度和β射线透射时间对单板密度检测结果的影响,并对其进行分析,得出了将β射线检测法用于单板密度的在线、无损自动检测上的应用条件.  相似文献   

15.
This study focused on the relationship between stress level and the fire resistance of structural lumber. The 210 samples were prepared from 15-year-old trees of Acacia mangium from the Forest Estate Plantation, Indonesia. Specimens were 20 ® × 20 (T) × 500mm (L) and were air-dried. Sixty samples were tested under four-point bending stress to obtain the modulus of elasticity (MOE) and the modulus of rupture (MOR) for classifying the stress grades of the remaining 150 samples. The tests were performed using a four-point load bending position at various stress level while the specimens were exposed to fire along the shear-free region. Time to failure was affected by the stress levels in an exponential trend. Despite changes in stress level, charring rate, and time to failure, the critical stress of a member from the same species was similar. The fire performance under applied load could be predicted by using simplified fire-testing methods. The developed testing apparatus is valid for evaluating the small-scale fire resistant behavior of structural lumber in bending.  相似文献   

16.
杨木单板的湿热处理规律以及对杨木单板层积材性能影响的研究结果表明,单板湿热处理后产生了塑化,形成了一部分不可恢复的变形,密度平均增加了38.7%;对抗拉强度的影响不显著;对单板压缩率和膨胀率有着特别显著的影响,单板平均压缩了27.8%,经24h水浸泡,单板恢复膨胀仅18.7%.单板湿热处理后经过低压压制,可以得到与高压压制相同密度的板材,且板材的断面密度差异小,水平剪切强度提高了27.1%,静曲强度增加了17.8%,弹性模量没有显著变化,吸水厚度膨胀率降低了约10个百分点.  相似文献   

17.
The embedment tests of laminated veneer lumber (LVL) with two moduli of elasticity (MOE; 7.8 GPa and 9.8GPa), parallel strand lumber (PSL), and laminated strand lumber (LSL) were conducted in accordance with ASTM-D 5764. The load-embedment relation for each of these engineered wood products (EWPs) was established. The directional characteristics of bearing strength (e), initial stiffness (k e), and effective elastic foundation depth were obtained from the tested results. The effective elastic foundation depth (=E/k e,E = MOE), based on the theory of a beam on elastic foundation, was obtained from thek e and MOE. An of 90° (perpendicular to the grain) was calculated by dividingE 90 [MOE of 90° from the compression test, but MOE of 0° (E 0), parallel to the grain, obtained from the bending test] byk e90, the initial stiffness of 90°. This study aimed to obtain the bearing characteristics of each EWP, taking into consideration their anisotropic structures, for estimating the fastening strength of a dowel-type fastener. The relations between the bearing coefficients ( e,k e,) on the loading direction and dowel diameter were established from the load-embedment curves. Based on the results of the embedment test, tested EWPs showed different tendencies in all directions from wood and glued laminated timber.Part of this study was presented at the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

18.
The carbonization process causes different physical and chemical transformations to wood, affecting the final properties of the charcoal produced. In Brazil, the cutting and use of Ocotea porosa (Nees & Mart. Ex Nees) L. Barroso is legally prohibited. But the difficulty of identifying the species used to produce charcoal hinders enforcement efforts to protect this and other endangered tree species. The aim of this work was to characterize the anatomy of charcoal made from O. porosa at different temperatures to provide information to facilitate differentiation of the species by the authorities in charge of suppressing illegal commerce. Samples were carbonized by direct heating and final temperatures of 350, 450 and 650 °C, besides a group under a ramp heating regime also with a final temperature of 450 °C. The qualitative characteristics of the O. porosa wood were preserved at the carbonization temperatures studied permitting the use of its anatomical structures for identification of carbonized wood to support control of the illegal trade in charcoal of this species.  相似文献   

19.
A new spiral-winder was developed for continuous manufacturing of cylindrical laminated veneer lumber (LVL), and a suitable resin adhesive for this cylindrical LVL manufacturing system was investigated. This phase was followed by trial manufacturing and evaluation of cylindrical LVL with the optimum resin adhesive identified. The results are summarized as follows. (1) The shortest gelation time was recorded with a mixture of two commercial resorcinol based resins (DF-1000 and D-33) at a weight ratio of 2575. (2) Bath temperature had a remarkable effect on the gelation time of the adhesive mix. (3) High bonding strength was recorded by 2575 DF-1000/D-33 adhesive mix at a high press temperature despite a short pressing duration. Based on the results of items (1) to (3), 2575 DF-1000/ D-33 is recommended for use in the new spiral-winder. (4) The mechanical properties of cylindrical LVL could be improved by using 2575 DF-1000/D-33 with wider veneer width and longer pressing time. (5) The mechanical properties, especially the modulus of rupture, of the cylindrical LVL manufactured require further improvement for practical structural application.  相似文献   

20.
利用杨木碎单板制造PSL,考察板密度、板厚度、单板条长度以及铺装方式对PSL材性变异性的影响。研究表明,材性变异性均随板密度、板厚度的增大而减小,随单板条长度的增大而增大,铺装方式的影响中平行定向铺装时最小,定向抛洒铺装稍大,≤30°角铺装时最大。各项工艺因子对顺纹抗压强度变异性的影响均较小。对工艺因子影响下的力学强度进行可靠性分析,得出PSL安全系数为:MOE 2.4~5.149;MOR 3.229~8.401;顺纹抗压强度1.131~1.54。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号