首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以竹炭为前驱体、三聚氰胺为氮源、碳酸钾为预活化剂,采用两次活化工艺成功制备了氮掺杂竹活性炭超级电容器电极材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、比表面积及孔隙分析(BET)和X射线光电子能谱(XPS)等测试方法对制备的电极材料的形貌、结构、化学成分进行表征。通过控制活化过程中的炭碱比(质量比)优化样品的电化学性能,结果表明:炭碱比为1∶1时制备的NC-1样品比表面积高达1 984.4 m2/g,平均孔径为1.26 nm,样品具有清晰的介孔以及内部蠕虫状的微孔。炭材料中氮元素和氧元素含量(质量分数)分别为2.20%和4.65%,有利于增加活性炭表面的亲水性和赝电容,从而提高其比电容量。经电化学性能测试,NC-1样品循环伏安曲线(CV曲线)具有良好的对称性,呈近似矩形;其中在低电势窗口出现明显的宽峰,表明充放电过程中材料表面的含氮官能团与电解液之间发生氧化还原反应,贡献赝电容。恒流充放电显示在1 A/g电流密度下质量比电容高达224 F/g,与未采用该活化工艺的样品比较提高了86.7%。在50 A/g电流密度下其质量比电容高达144 F/g,且在10 A/g下经5 000次循环充放电后仍可达到93%的初始电容保持率,显示了氮掺杂竹活性炭超级电容器电极材料较优异的电化学性能和稳定的循环性能。  相似文献   

2.
以椰壳为原料,水蒸气活化法制备了椰壳活性炭(AC),并以乙醇和水作为溶剂,采用水热法将AC与石墨烯(GR)按质量比90∶0、90∶5、90∶54、90∶90和54∶90复合,将制得的复合材料(GAC1~GAC5)作为电极应用于超级电容器。通过氮气吸脱附、X射线衍射(XRD)、扫描电镜(SEM)方法表征了活性炭的孔结构和表面形貌;采用循环伏安(CV)、恒电流充放电(GCD)方法分析比较不同复合比例下超级电容器电极材料的性能。实验结果表明:在炭化温度800℃,活化温度900℃及活化时间1.5 h的条件下制备的椰壳活性炭比表面积为2482 m^2/g,其孔径主要分布在2~4 nm,孔容可达1.33 cm^3/g,在6 mol/L KOH电解液中比电容为85 F/g,石墨烯改性的复合材料GAC-5作为电极材料具有优异的电化学性能,在电流密度1 A/g时比电容可达186 F/g。  相似文献   

3.
炭化温度对竹基活性炭孔结构及电化学性能的影响   总被引:1,自引:0,他引:1  
以毛竹为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过SEM、XRD、BET、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了炭化温度对竹基活性炭材料结构和性能的影响。研究结果表明:随着炭化温度升高,活性炭材料的比表面积与总孔容、中孔孔容均不断减小,微孔比表面积和微孔孔容先增大后减小。其中炭化温度为500℃的样品BAC500比表面积为3447m~2/g,总孔容为1.96cm~3/g,在有机电解液中以1mA/cm~2的电流密度充放电时,比电容高达178.8 F/g,电流密度增大50倍容量保持率为74.6%,显示出良好的功率特性。活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率。  相似文献   

4.
椰壳活性炭作为电极材料和吸附剂的应用研究   总被引:1,自引:0,他引:1  
制备了高比表面积的椰壳活性炭,对其结构性质进行了表征并测定了以椰壳活性炭为电极材料的双电层电容器的充放电性质和循环伏安性质.实验结果表明:以椰壳活性炭为电极材料的双电层电容器具有良好的充放电性能,电极比电容达164 F/g.以椰壳活性炭为吸附剂测定了NH3、CO2、CH4、N2、O2和H2在298K的吸附等温线.椰壳活性炭对不同气体的吸附性能存在很大差异,其对NH3的吸附远远大于对CO2、CH4、O2、N2和H2的吸附.以平衡吸附量的比值为参考,椰壳活性炭是适用于NH3/N2、NH3/O2及NH3/空气这些气体混合物中NH3吸附分离的优良吸附剂,可用于NH3/CH4气体混合物中NH3的吸附分离并具有吸附分离CO2/N2、CO2/O2及CO2/空气这些气体混合物中CO2的潜力.  相似文献   

5.
我国竹材资源丰富,以竹废料为原料,制备可用于超级电容器电极材料的竹活性炭,有助于推动竹产业发展,助力国家“双碳”目标实现。在本研究中,分别采用KOH共热和水热处理对竹粉进行活化,并对制备的竹活性炭进行电化学性能、比表面积、表面微观形貌等测试。实验结果表明,KOH共热活化法的最佳条件为炭化温度350℃,活化温度900℃,升温速率2℃/min,碱炭质量比4∶1;制备的活性炭比表面积为3 299 m2/g, 0.5 A/g电流密度下的比电容为287.8 F/g, 5 000次充放电测试后,电容保持率为95%~105%。水热活化法的最佳条件为KOH质量分数20%,反应温度150℃,反应时间12 h,制备的活性炭比表面积为192.91 m2/g, 0.5 A/g电流密度下的比电容为170.4 F/g,电容保持率为88.89%。2种方法制备的活性炭孔径结构都是以微孔为主,中孔混合分布,含有少量大孔;2种活性炭均含有双层或多层石墨烯结构,但水热活化法制备的活性炭石墨化程度更高,制备条件更温和。研究结果既可为超级电容器用活性炭的研究提供了理论思路,也有效地扩...  相似文献   

6.
利用(NH_4)_6Mo_7O_(24)·4H_2O溶液对椰壳活性炭掺杂改性,制得对苯蒸气具有较好吸附能力的载钼活性炭(Mo/AC),当钼盐质量分数分别为0.1%、0.3%、0.5%和0.7%时,改性活性炭分别标记为AC-1、AC-2、AC-3和AC-4。采用扫描电镜(SEM)、N_2吸附-脱附等温线、X射线衍射(XRD)和X射线光电子能谱(XPS)对Mo/AC进行表征,以常温动态吸附装置考察浸渍钼盐质量分数对Mo/AC吸附苯蒸气性能的影响,结果表明:钼在活性炭表面主要以MoO_3形式存在;改性后活性炭的比表面积和总孔容均有不同程度提高,AC-2的比表面积和总孔容最大,分别为1 372.12 m~2/g和0.74 cm~3/g,但平均孔径变化不大,维持在2.16 nm左右;表面醚键和羧基含量明显下降;随着浸渍钼盐溶液质量分数增加,活性炭样品对苯蒸气的平衡吸附量增加,但钼盐质量分数过高(0.3%)时吸附性能下降,质量分数为0.3%时,制得改性活性炭AC-2的吸附性能最好,平衡吸附量高达332.80 mg/g,较原炭(267.20 mg/g)提高24.55%,理论吸附时间为110.93 min,较原炭提高24.54%。AC-2循环吸附5次后,平衡吸附量仍达306.99 mg/g,理论吸附时间为101.27 min。  相似文献   

7.
为了制备价格低廉、性能优良的超级电容器活性炭,以马尾松为原料,采用常规的水蒸气活化法制备了超级电容器木质活性炭。采用元素分析,N2吸附/脱附等手段分析了活性炭的元素含量和孔隙结构;采用循环伏安、恒电流充放电和交流阻抗等方法,分析了活性炭电极在以1-乙基-3-甲基咪唑四氟硼酸盐/乙腈为电解质溶液的超级电容器中的电化学性能,考察了活化温度、活化时间对木质活性炭电化学性能的影响规律。结果表明:随着活化温度的升高,活性炭的比电容量先增后降;随着活化时间的延长,活性炭的比电容量也呈现先增后降的变化趋势。在炭化温度900℃、活化温度900℃和活化时间1 h的条件下制得的活性炭比表面积高达1 647 m~2/g,总孔容积1.00 cm3/g;在5 m V/s的扫描速率下活性炭电极的比电容量最高,达到155 F/g,且倍率性能和循环稳定性良好,循环5 000次后比电容量保持率89%;其在有机电解液中的能量密度高达33.6(W·h)/kg。  相似文献   

8.
以落叶松木粉为原料,木粉液化后与甲醛制得落叶松基树脂,并以树脂作为碳前驱体,利用超声波喷雾热解法制备落叶松基炭球(LCSs)。通过改变炭化温度和落叶松基树脂质量分数制备得到不同的LCSs样品,采用SEM、TEM、N_2吸附-脱附等温线、XRD、Raman对LCSs的表面形貌、孔结构、晶型结构和石墨化程度进行表征,并对样品的电化学性能进行测试。研究结果表明:所制备的LCSs为无定形的规则球形结构,在炭化温度900℃、落叶松基树脂质量分数1%下制备得到的样品LCSs3的比表面积高达626.6 m^2/g,总孔容达到0.345 cm^3/g;在6 mol/L KOH电解液中,电流密度为0.2 A/g时比电容为309 F/g,当电流密度增加到5 A/g时,比电容为173.7 F/g,其比电容保持率为56%,显示了优异的倍率性能。  相似文献   

9.
电容去离子技术(CDI)是新型高效低耗的苦咸水淡化技术,本研究探讨了基于活性炭电极的CDI生产纯水的可行性。采用活性炭电极、石墨集流体、有机玻璃隔板等自行设计组装的CDI脱盐系统,以城市自来水为水源,研究了该脱盐系统的脱盐量、能耗、脱盐率、离子截留率、回收率和循环稳定性等。结果表明:活性炭BET比表面积为1 586 m2/g,平均孔径为2.08 nm,孔容积为0.82 cm3/g, XPS分析表明该活性炭含碳、氧、氮的量分别为94.81%、 4.10%和1.09%,表面含有少量的含氧官能团和含氮官能团;电容去离子技术可以制备出离子浓度0.06 mmol/L、溶解性总固体量低于5 mg/L的纯水,产水能耗仅为0.115 5 kWh/m3,脱盐率为98.1%,对各离子截留率为78.6%~99.8%,水回收率达到80%,且脱盐系统经过吸附-脱附循环42次后,电极的脱盐性能保持稳定,循环性能良好。  相似文献   

10.
油茶果壳基活性炭的制备及其中孔结构调控研究   总被引:2,自引:0,他引:2  
研究了油茶果壳经水蒸气活化后,浸渍磷酸再活化对活性炭中孔结构调控的影响,制备出中孔丰富的活性炭。实验结果显示:820℃下制备的水蒸气法油茶果壳活性炭以微孔为主,BET比表面积1 076 m2/g,总孔容积0.81 cm3/g,微孔率63%,中孔率33%,亚甲基蓝吸附值180 mg/g,碘吸附值1 012 mg/g;水蒸气法油茶果壳活性炭经800℃下磷酸再活化后,可明显增加BET比表面积(1 608 m2/g)和总孔容积(1.17 cm3/g),尤其对中孔率(61%)的发展更有效,同时保留一定比例的微孔(37%),显示出更高的亚甲基蓝吸附值(330 mg/g)和碘吸附值(1 326 mg/g)。  相似文献   

11.
选用低温竹炭为原料、氢氧化钾为活化剂,制备不同炭碱比和不同活化时间的竹活性炭。运用傅立叶红外光谱议(FTIR)、比表面积测定仪(BET)等仪器对竹活性炭表面官能团、比表面积和孔径结构及比电容进行了测试和分析。结果表明,炭碱比1:4、活化温度700℃、活化时间3h条件下制备的竹活性炭,比表面积为2897.7m2/g,总孔容为1.340cm3/g,平均孔径为2.59nm,亚甲基蓝吸附值为27.7ml/0.1g,碘吸附值为1920mg/g,作为超级电容器(EDLC)的电极,其比电容为114.4F/g。  相似文献   

12.
以中密度纤维板(MDF)厂废料为原料,采用微波辐射磷酸法制备活性炭。探讨了在微波功率900W条件下磷料比、水料比、辐照时间对产品活性炭各项主要指标的影响。得到了试验条件下微波辐射磷酸法制备活性炭的最佳工艺: 磷料比3.5:1,水料比1:1,辐照时间9min。用此工艺制备活性炭产品的得率39.44%,碘吸附值949.08mg/g,亚甲基蓝脱色力10.76mL/0.1g,苯酚吸附值350.25mg/g。本工艺方法为中密度纤维板厂废料的综合利用找到了新的途径。  相似文献   

13.
为了考察磷酸法活性炭作为双电层电容器电极材料的可行性,通过浸渍三聚氰胺后在500、700、900℃下热处理的方法对活性炭进行了表面改性,分别得到改性活性炭AC-N-500、AC-N-700、AC-N-900,考察不同热处理温度对活性炭表面氮元素结合状态的影响,及其对磷酸法活性炭作为双电层电容器电极材料的电化学性能的影响。采用氮气吸附、元素分析、X射线光电子能谱及电化学测试等方法分析表征活性炭的孔隙结构、元素组成、表面官能团存在形式以及电化学性能。结果表明:随着热处理温度的升高,改性活性炭氮元素含量逐渐下降,由AC-N-500的8.49%下降为AC-N-900的4.16%;三聚氰胺改性活性炭比表面积和总孔容明显降低。改性活性炭中氮元素主要以N-6(吡啶型)、N-5(吡咯型)、N-Q(季氮型)、N-X(氮氧型)4种形式存在;随着热处理温度的升高,N-6和N-5型官能团的比例略微减少并部分转变为N-Q。改性活性炭AC-N-700可制备出比电容达203 F/g(扫描电压1 m V/s)的活性炭电极材料,减小电极与电解液间的阻力有利于离子的渗入和电荷的传导,表明磷酸法活性炭具有作为双电层电容器电极材料的潜力。  相似文献   

14.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响。综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性炭的比表面积2 312 m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg/g;孔径分布以微孔为主;表面含有羟基(—OH)、活泼氢(—H)等基团。  相似文献   

15.
丙酮回收用活性炭微结构的研究   总被引:3,自引:0,他引:3  
利用AS-703比表面积、孔径分布测定仪对几种回收丙酮溶剂的商品活性炭进行了比较深入的剖析,从微观结构上阐明了影响丙酮回收用活性炭的主要因素,并提供了国产化样品,与进口商品活性炭相比较具有价格低吸附性能好等优点.微孔容积的大小决定了丙酮吸附量的多少,而与总孔容积关系不大.丙酮回收用活性炭的孔径主要集中在1nm左右,微孔容积在0.40~0.50cm3/g.  相似文献   

16.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

17.
薄皮核桃壳基活性炭的制备及表征   总被引:1,自引:0,他引:1  
【目的】以农林废弃物薄皮核桃壳为原料,通过化学活化-高温炭化法制备多孔活性炭材料,优化制备工艺过程,表征吸附性能机理,为薄皮核桃壳的开发利用提供技术指导。【方法】以碘吸附值和亚基甲蓝吸附值为考察指标,进行活化剂的筛选,并进一步考察原料粒度、料液比、活化时间、炭化温度和炭化时间对制备出的活性炭的吸附性能的影响。采用N2吸附-脱附等温线、元素分析仪和FTIR测定了活性炭的孔隙结构、主要元素组成和表面官能团,扫描电镜分析形貌结构,XRD和TG分析活性炭的结晶度和热稳定性。【结果】选用磷酸为最佳活化剂,薄皮核桃壳活性炭的最佳制备工艺条件为:核桃壳粉100目、料液比1:4、活化时间120 min、炭化温度500℃、炭化时间60 min,此工艺条件下制备出的活性炭的碘吸附值为657.42±3.16 mg/g、亚甲基蓝吸附值为248.55±1.94 mg/g。制备出的活性炭的表面积为449.80 m2/g,具有丰富的孔隙结构,孔容积为1.11 m2/g,平均孔径为7.87 nm。碳元素含量为65.56%,结晶度不高,为无定型结构,活性炭在400℃左右发生热降解,主要含有羧基、酚基、醇羟基等活性官能团。【结论】采用磷酸活化法制备出的薄皮核桃壳活性炭的孔隙结构发达,具有良好的吸附性能,碘吸附值和亚甲基蓝吸附值均高于国家标准,具有将废弃物资源循环利用的价值和前景。  相似文献   

18.
杉木屑制备高丁烷工作容量颗粒活性炭   总被引:3,自引:0,他引:3  
研究提出了一种简单的高丁烷工作容量(BWC)颗粒活性炭(GAC)的制备方法.在磷酸法制备活性炭的工艺中通过添加浓硫酸作为助催化剂,以杉木屑为原料制备了BWC高达165g/L的产品,其表观密度为241g/L,比表面积、总孔容、微孔孔容和平均孔径分别为2 627 m2/g 1.574cm3/g、0.941 cm3/g和2....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号