首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探索大尺寸半固定式喷灌系统适宜的灌水技术参数,通过田间试验研究不同工作压力、不同喷头间距以及不同风速组合条件下大尺寸半固定式喷灌灌水均匀度。试验结果表明,在推荐工作压力范围内,单喷头的喷灌均匀度系数随着工作压力的增加呈提高趋势;无风环境下,工作压力为425 k Pa时,喷头间距不大于35和39 m时,灌水均匀度可以达到90%和80%以上,喷头间距控制在35~39 m比较适宜;风速在0~1、1~3和3~5 m/s范围内,喷灌灌水均匀度达到75%以上的喷头间距组合分别为不大于39、30和20 m,说明风速在0~1和1~3 m/s范围时,喷头适宜间距分别为39和30 m,当风速超过3 m/s时,风速是影响喷灌均匀度系数的主要因子。大尺寸半固定式喷灌系统适宜的间距为30~39 m。  相似文献   

2.
【目的】研究喷头不同组合方式对喷灌均匀度的影响,得到最佳的组合方式。【方法】根据FYRB471 型喷头在不同工作压力下间距1 m采样所得的无风喷洒降水强度,针对喷头分别呈正三角形、正方形、正六边形等组合方式,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数计算了相应的喷灌均匀度。【结果】当工作压力一定时,不同组合方式下的喷灌均匀度都随喷头间距的增大而减小;当喷头间距一定时,组合均匀度与工作压力正相关。当间距小于5.5 m时,不同工作压力下3 种组合方式的均匀度相差不大;当间距大于5.5 m时,随着工作压力或者组合间距的增大,正三角形组合方式所提供的喷灌均匀度最优,正方形组合方式次之,正六边形组合方式最低。正三角形组合方式喷头间距变大时,喷灌均匀度降低;工作压力过大或间距过小时会增加成本,因此农业生产可兼顾考虑效率和成本选择喷头的组合方式以及工作压力,制定合理的喷灌方案。【结论】当组合间距介于5.5 m和8.5 m之间,工作压力介于200 kPa 与320 kPa 时,应考虑采用正三角形组合方式,此时的喷灌均匀度最高,达80%以上;当组合间距小于等于5.5 m时,不同工作压力下的均匀度基本相同,应考虑采用正六边形组合方式,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

3.
本文根据微喷灌系统全湿润喷洒灌溉的试验数据和生产考核,分析了微喷灌为正方形布置时,在相应的组合间距下,达到的均匀度指标。SWP-J,SWP-2折射式微喷头正方形布置时,建议其组合间距a×b采用0.7~0.8R,DLXD1.5离心式微喷头组合间距a×b=0.8~0.9R(风速在0~3.8m/s范围),此时喷洒均匀系数不低于0.85。  相似文献   

4.
为了探究不同工况对射流式喷头喷灌水量的影响,通过对射流式喷头在不同组合间距和工作压力下的水量分布数据进行分析,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数和分布均匀性系数计算了相应的喷灌均匀度.结果发现喷头组合间距在1.0R~1.4R变化时正方形组合喷灌的CU值随喷头间距的增大呈下降趋势,CU值均大于70%;1.0R和1.2R组合间距下正方形组合喷灌低值区域的占比比三角形组合高,而1.4R的组合间距则与上述相反;当压力由0.1 MPa升至0.3 MPa时三角形组合喷灌区域的灌水峰值随着压力的增大呈先减小后增大的趋势;在正方形组合形式下增大工作压力有利于提高喷洒区域内的均匀性;压力损失并不总是降低喷灌的均匀性,0.2~0.3 MPa压力下,10%的压力损失对喷头喷灌均匀性几乎没影响;射流式喷头1.4 m安装高度、0.25 MPa压力下宜采用1.4R间距的三角形组合.  相似文献   

5.
为了研究气力辅助作用下静电雾化的流场特性,采用粒子图像测速技术(PIV)对风速、荷电电压及通气管与喷头间距等参数影响下的喷雾流场进行测量,并结合Tecplot后处理软件对所储存图片进行处理和分析,获得了不同参数下的静电喷雾流场特性.结果表明:通气管和喷头的间距以及风速一定时,不同的荷电电压形成不同程度的卷吸,且电压越大,卷吸现象越明显,卷吸区域沿着喷雾的轴向逐渐向下延伸;通气管和喷头的间距以及荷电电压一定时,随着风速的增大,气动力的主导作用越来越明显,在气流区的卷吸程度逐渐减弱,卷吸现象逐渐消失,卷吸区域逐渐向喷雾核心区收缩;风速以及荷电电压一定时,随着通气管与喷头间距的拉大,雾滴的漂移现象越来越严重,同时喷雾流场的卷吸现象越来越明显并逐渐向喷雾核心区靠近.  相似文献   

6.
气力辅助静电雾化的PIV试验研究   总被引:2,自引:0,他引:2  
为了研究气力辅助作用下静电雾化的流场特性,采用粒子图像测速技术(PIV)对风速、荷电电压及通气管与喷头间距等参数影响下的喷雾流场进行测量,并结合Tecplot后处理软件对所储存图片进行处理和分析,获得了不同参数下的静电喷雾流场特性.结果表明:通气管和喷头的间距以及风速一定时,不同的荷电电压形成不同程度的卷吸,且电压越大,卷吸现象越明显,卷吸区域沿着喷雾的轴向逐渐向下延伸;通气管和喷头的间距以及荷电电压一定时,随着风速的增大,气动力的主导作用越来越明显,在气流区的卷吸程度逐渐减弱,卷吸现象逐渐消失,卷吸区域逐渐向喷雾核心区收缩;风速以及荷电电压一定时,随着通气管与喷头间距的拉大,雾滴的漂移现象越来越严重,同时喷雾流场的卷吸现象越来越明显并逐渐向喷雾核心区靠近.  相似文献   

7.
变量喷洒全射流喷头水力性能试验   总被引:2,自引:0,他引:2  
以变量喷洒全射流喷头为研究对象,对正方形和三角形喷洒域分别进行了水力性能试验,测量并分析了喷头的射程和喷灌强度等性能参数.结果表明:三角形比正方形喷洒域最大射程有所降低;三角形和正方形喷洒域水量分布相对均匀;变量喷洒喷头与传统全射流喷头相比,雨滴粒径相差较小;三角形与正方形喷洒域喷头平均喷灌强度相差较小,三角形喷洒域喷头的最大喷灌强度相对平均喷灌强度差值较大.变量喷洒全射流喷头比全射流喷头,组合间距增大、重叠率降低,且单位面积所用喷头数量减少.在组合间距系数为1.25,室外风速小于1.2 m/s情况下,正方形组合喷洒具有良好的喷洒均匀性.  相似文献   

8.
低压雾化喷头雾化性能试验   总被引:1,自引:0,他引:1  
为了进一步了解低压雾化喷头的雾化性能,为以后优化喷头性能提供理论依据,进行了相关试验.选取低压雾化喷头的孔径为0.5,0.8,1.0 mm,压力为0.08,0.11,0.14 MPa,喷头和锥盘间距为2,4,6 mm,锥盘夹角为150°,120°,90°等4个参数,设计并进行了正交试验.通过测量3种不同孔径的喷头在0~2.4 m雾化射程时的雾化水量分布特性,并对喷头以正方形组合方式和三角形组合方式时在不同组合间距下的均匀性进行分析,在此结果上进行极差分析,得到各因素影响趋势.结果表明:径向水量分布呈现正态分布,最高雾化水量点出现在接近雾化射程末端,且与喷嘴孔径成正相关;与三角形组合方式相比,正方形组合方式较好;影响雾化射程的主次顺序依次为孔径、锥盘夹角、压力、间距,对三角形组合均匀性系数的影响主次顺序依次为锥盘夹角、孔径、间距、压力,正方形组合均匀性系数的影响主次顺序依次为锥盘夹角、孔径、压力、间距.  相似文献   

9.
基于MATLAB全射流喷头组合喷灌计算模拟   总被引:9,自引:0,他引:9  
对国内原创全射流喷头组合喷灌进行研究后,提出了一种分析处理喷头水量分布数据以实现三维可视化编程的方法.研究表明,MATLAB语言可以方便可靠地将喷头径向水量分布数据转换为网格型数据,并绘制出单喷头和喷头组合的三维水量分布图.通过插值叠加求出各网格点总降水深,求出不同组合间距系数下的全射流喷头组合均匀系数,实现计算结果可视化.根据模拟分析,提出了组合间距系数值:正方形布置时为1.2,各喷头均匀系数平均值为82.4%;三角形布置时为1.5,各喷头均匀系数平均值为85.7%.另外认为,MATLAB语言编程进行喷头喷洒分析具有功能强大,方便快捷,可视性强等优点,适用于任何喷头水量分布的分析.  相似文献   

10.
20PY2掺气喷头是以20PY2摇臂喷头结构为基础,引入气液两相流理论得到的一种喷头.以20PY2掺气喷头为研究对象,研究其低压下的喷灌效果,并对比摇臂喷头的喷灌效果.试验评价指标:平均喷灌强度、蒸发漂移量、喷灌均匀系数及分布均匀系数;变量:工作压力和组合间距.试验结果表明:与摇臂喷头相比,掺气喷头的射程变化不大,但掺气喷头的平均喷灌强度随工作压力递增,随着组合间距递减;低压下,掺气喷头在风速为1 m/s时的蒸发漂移量约为5%,其组合喷灌的最佳工作压力和组合间距分别为300 kPa和1.1R.掺气喷头喷灌强度峰值与谷值的阶梯性较好,同等数量测点的喷灌强度峰值区间和谷值区间平均值趋向于平均喷灌强度,峰值区间和谷值区间喷灌强度在灌溉总强度中的占比分别低于和高于摇臂喷头.因此,喷灌效果优于摇臂喷头.  相似文献   

11.
<正> 一、引言 固定式喷灌装置的效率、增产以及经济性主要取决于水量分布的均匀度,而水量分布的均匀度主要受气象条件(尤其是受风向和风力)以及射程的影响。迄今为止,固定式喷灌系统的设计主要依据的是无风条件下(风速≤0.5m/s)检测的喷头的各种参数。在德国东部地区,风速≤0.5m/s是较为罕见的。据估计,日平均风速一般为4m/s左右。 国际上通常采用两种方法来减少风对喷灌均匀度的影响。其一是推荐喷头组合间距的设计尺寸,该设计尺寸考虑到了单喷头湿润面积的减小问题,另一是设计出水量分布不受风影响的喷头。本文以8000/8002型单喷嘴中射程旋转式喷头为例阐述了风向和风力对喷头参数的影响。  相似文献   

12.
基于弹道理论有风条件下折射式喷头喷灌均匀度研究   总被引:3,自引:0,他引:3  
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

13.
出口可调式变量喷头喷灌均匀性   总被引:2,自引:0,他引:2  
陈超  李红  袁寿其  王超 《排灌机械》2011,29(6):536-541
以喷洒域形状和水量分布均匀性为指标研究变量喷头的喷灌均匀性,分析了影响PY2系列喷头射程和水量分布的关键因素,得知改变单一参数的变量喷头喷灌均匀性较差.为提高变量喷头的灌溉均匀性,设计了出口可调式的变喷洒域喷头,使用流量调节机构改变喷头工作压力,使用出口调节机构改变喷头出口面积,通过出口面积和喷头工作压力的同步调节实现均匀喷洒.测试了出口可调式变量喷头的水力性能,对比了圆形喷嘴变量喷头和出口可调式变量喷头水量分布,出口可调式变量喷头不同射程处喷灌强度相近,喷洒性能优于圆形喷嘴变量喷头.计算了变量喷头的方形喷洒域系数和不同间距下的组合灌溉均匀性,结果显示BPY20变量喷头的方形喷洒域系数为97.8%,最佳组合间距为1.66,组合灌溉均匀性为75.4%;BPY30变量喷头的方形喷洒域系数为91.5%,最佳组合间距为1.69,组合灌溉均匀性为77.2%.  相似文献   

14.
喷头的喷洒图形与组合喷洒均匀性   总被引:1,自引:0,他引:1  
选择喷头或决定喷头的布置间距有两种作法,一种是按照使用目的先选好喷头,再根据组合喷灌均匀度达到基准值的原则来决定喷头的布置间距;另一种作法恰恰相反,先由地块形状等决定喷头的布置间距,再根据此间距下的组合喷灌均匀度能达到基准值的原则来选择喷头。而通常都是只按照一种  相似文献   

15.
为探究流道出口形状、工作压力、喷嘴直径对折射式喷头水力性能的影响,设计了矩形、Y形、垭口形3种流道出口的喷盘,通过正交试验测试单喷头移动水量分布,采用线性插值计算射程,利用直接叠加法计算不同喷头间距下组合均匀性系数,并运用综合加权评分法评价了喷头水力性能。结果表明:喷嘴直径、工作压力和流道出口形状对射程均影响显著,而其对单喷头移动水量分布的影响主要表现在水量区域位置和喷灌强度峰值不同。影响射程、喷灌强度峰值和组合均匀性系数的主次顺序为喷嘴直径、流道出口形状、喷头组合间距、工作压力。喷头水力性能最优的因素组合为:喷嘴直径为2.98mm,喷盘流道出口形状为Y形,喷头组合间距为2.5m,工作压力为100kPa。  相似文献   

16.
本文是叙述确定风对固定式、单喷咀、远射程喷头水量分布图影响的一项研究。风对灌水均匀度的影响是根据有风时的水量分布图与计算的无风时水量分布图的比较来决定的。实测的水量分布图与无风时水量分布图的偏差,随着风速的增加而增大。若是同一种喷头在田间沿行道移动,则水量分布常用固定的水量分布图来进行计算。计算出移动喷头的水量分布后,按不同的移动间距进行组合,並确定每个移动间距的克里斯琴逊均匀系数值。推导了一个回归方秤,用以计算均匀系数为0.85的最大移动间距,此间距为情条件风和喷头压力的函数。风速和喷头弯管处的压力都影响水量分布。对移动式喷头,影响水量分布的,还有风向与移动方向相互关系,当风向比较接近移动方向时,移动间距应缩小,以保持满意的水量分布均匀度。  相似文献   

17.
考虑水滴运动蒸发的喷灌水量分布模拟   总被引:3,自引:0,他引:3  
提出了有风条件下喷头水滴运动与喷灌水量分布模拟方法,并利用Visual Basic 6.0开发了喷灌水量分布模拟软件.该软件在已知单喷头的径向水量分布数据时,可以模拟出不同风速、风向、空气温湿度等环境条件下单喷头或多喷头组合的喷灌水量分布,计算出喷灌系统的组合喷灌强度、喷灌均匀系数和蒸发损失率.以9708A型喷头为例,分别对工作压力为0.20、0.25和0.30 MPa下单喷头径向水量分布以及喷灌系统组合间距为14 m x 14 m和14 m×12 m时的喷灌水量分布进行了模拟,并与实测值进行了对比,结果表明:模拟的单喷头径向水量分布与实测值总体一致,由模拟水量分布推算的喷头流量与实测值的相对误差为0.83% ~8.01%;喷灌均匀系数模拟值与实测值的相对误差为0.69%~6.36%,蒸发损失率模拟值为0.51% ~ 1.75%,小于实测的水量损失率.模拟了不同组合间距下的喷灌水量分布,得到的喷灌均匀系数模拟值与其他软件比较,相对误差在0.11% ~2.44%之间.  相似文献   

18.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、喷头间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300 k Pa。  相似文献   

19.
摇臂喷头低压掺气情况下田间组合喷灌试验研究   总被引:1,自引:0,他引:1  
为了对比掺气喷头与摇臂喷头对灌水均匀性改善的效果,采用田间组合喷灌试验的方法对比了两类喷头在较低工作压力时的性能.采用平均喷灌强度和喷灌均匀系数为主要评价指标,其中对于喷灌均匀系数主要讨论了工作压力和组合间距的影响.试验结果表明:掺气喷头和摇臂喷头的平均喷灌强度理论值与试验值差异在5%左右,说明低压、微风环境下试验的蒸发漂移损失小.在组合喷灌间距均为1.0R时,掺气方法提高喷灌均匀系数,使均匀系数达到并超过标准中规定的75%的要求.在1.0R,1.1R,1.2R这3种组合间距情况下,掺气喷头的喷灌均匀系数均高于同型号摇臂喷头2.2%~5.8%.  相似文献   

20.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300k Pa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号