首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of plant nutrition》2013,36(8):1311-1323
Tomato (Lycopersicon esculentum Mill.) yields are known to decrease for plants grown in saline soils. This study was conducted to determine the effects of arbuscular mycorrhizal fungi (AMF) inoculation on fruit yield and mineral content of salt-tolerant and salt-sensitive tomato cultivars grown with varied levels of salt. NaCl and CaCl2were added to soil in the irrigation water in equal molar ratios to give ECe values of 1.4 (nonstressed) and 4.9 dS m?1 (salt stressed). Plants were grown in a greenhouse using unsterilized, low phosphorus (P) (silty clay) soil-sand mix. Mycorrhizal root colonization occurred whether cultivars were salt stressed or nonstressed, but the extent of AMF root colonization was higher in AMF inoculated than uninoculated plants. The salt tolerant cultivar ‘Pello’ generally had higher AMF root colonization than the salt sensitive cultivar ‘Marriha’. Shoot dry matter (DM) yield, fruit fresh yield, and AMF colonization were higher for plants grown under nonstressed than for plants grown under salt stressed conditions. Shoot DM and fruit fresh yields were higher in AMF inoculated than uninoculated plants grown with or without salt stress. Pello generally had higher fruit fresh yield per plant and fruit weight than Marriha, but these differences were only significant for fruit weight in unioculated plants grown under salt stressed conditions. The enhancement in fruit fresh yield due to AMF inoculation was 26 and 23% under nonstressed and 28 and 46% under salt stressed treatments for Pello and Marriha, respectively. For both cultivars, fruit contents of P, potassium (K), zinc (Zn), copper (Cu), and iron (Fe) were higher in AMF inoculated compared with uninoculated plants grown under nonstressed and salt stressed conditions. Fruit Na concentrations were lower in AMF inoculated than uninoculated plants grown under salt stressed conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in Pello cultivar under salt stressed conditions. The results of this study indicated that AMF inoculated plants had greater tolerance to salt stress than unioculated plants.  相似文献   

2.
丛枝菌根对酸枣实生苗耐盐性的影响   总被引:15,自引:4,他引:15       下载免费PDF全文
本文研究了在土中加入不同量NaCl条件下 (0、1 5、3 0、4 5gkg-1干土 )接种丛枝菌根真菌 (AMF)Glomusmosseae对盆栽酸枣 (ZizyphusspinosusHu)实生苗生长及耐盐性的影响。结果表明 ,无论接种与否 ,植株的高度、根茎叶的干鲜重均随土壤NaCl浓度的增加而降低 ,而根、茎、叶和整株的Na浓度及Na全量均随土壤NaCl浓度的增加而增大。在土壤盐浓度相同的条件下 ,接种AMF植株的生长量 (株高、鲜重、干重等 )和叶片的叶绿素含量显著高于不接种植株。接种AMF的植株茎、叶中Na浓度低于不接种植株 ,而根中Na浓度、植株Na总量显著高于不接种植株。盐浓度最大的接种处理 ,其植株生长量和叶片叶绿素含量均高于不加盐不接菌处理。播种时进行盐胁迫处理和播种后 4 0d开始进行盐胁迫处理对菌根的侵染率、植株生长的影响差异不显著。上述四种盐浓度播种时进行盐处理的接种AMF植株的总干重比不接种植株分别提高 16 4 %、14 9%、4 8%、35 % ,在播种后 4 0d进行盐处理的接种AMF的植株比不接种植株分别提高 194 %、12 7%、72 %、4 6 %。结果证明 ,酸枣实生苗具有较强的耐盐性 ,其生长对菌根真菌有很强的依赖性 ,接种菌根真菌提高了其耐盐能力。  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) as a biostimulant enhance salt tolerance in plants, while the informations regarding AMF-induced changes in soil structure are only available to a limited degree. In this study, trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Diversispora versiformis under 100 mM NaCl for 85 days. The salt stress considerably inhibited mycorrhizal colonization by 26%, compared with non-salt stress. Mycorrhizal inoculation significantly increased plant height, stem diameter, leaf number, shoot biomass, and root biomass, length, surface area, and volume in comparison to non-mycorrhizal inoculation under salt stress or non-salt stress. Mycorrhization induced significantly higher production of easily extractable glomalin-related soil protein (EE-GRSP), and total glomalin-related soil protein (T-GRSP), higher percentage of water-stable aggregates (WSAs) in 0.25–0.50, 0.50–1.00, and 1.00–2.00 mm size, and lower in 2.00–4.00 mm size, regardless of non-salt stress or salt stress. Mycorrhizal soils represented higher aggregate stability (in terms of mean weight diameter) under salt and non-salt stress, which was related with root colonization, root surface area, root volume, EE-GRSP, and T-GRSP. The better soil structure by mycorrhization provided higher leaf water potential under salt stress. It suggests that mycorrhizas had a positive contribution to improve plant growth and soil structure, thereby enhancing salt tolerance.  相似文献   

4.
A pot experiment was carried out to study the effects of three arbuscular mycorrhizal fungi (AMF), including Glomus intraradices, Glomus constrictum and Glomus mosseae, on the growth, root colonization and Cd accumulation of marigold (Tagetes erecta L.) at Cd addition levels of 0, 5 and 50 mg kg-1 in soil. The physiological characteristics, such as chlorophyll content, soluble sugar content, soluble protein content and antioxidant enzyme activity, of Tagetes erecta L. were also investigated. The symbiotic relationship between the marigold plant and arbuscular mycorrhizal fungi was well established under Cd stress. The symbiotic relationship was reffected by the better physiobiochemical parameters of the marigold plants inoculated with the three AMF isolates where the colonization rates in the roots were between 34.3% and 88.8%. Compared with the non-inoculated marigold plants, the shoot and root biomass of the inoculated marigold plants increased by 15.2%- 47.5% and 47.8%-130.1%, respectively, and the Cd concentration and accumulation decreased. The chlorophyll and soluble sugar contents in the mycorrhizal marigold plants increased with Cd addition, indicating that AMF inoculation helped the marigold plants to grow by resisting Cd stress. The antioxidant enzymes reacted differently with the three AMF under Cd stress. For plants inoculated with G. constrictum and G. mosseae, the activities of superoxide dismutase (SOD) and catalase (CAT) increased with increasing Cd addition, but peroxidase (POD) activity decreased with increasing Cd addition. For plants inoculated with G. intraradices, three of the antioxidant enzyme activities were significantly decreased at high levels of Cd addition. Overall, the activities of the three antioxidant enzymes in the plants inoculated with AMF were higher than those of the plants without AMF inoculation under Cd stress. Our results support the view that antioxidant enzymes have a great influence on the biomass of plants, and AMF can improve the capability of reactive oxygen species (ROS) scavenging and reduce Cd concentration in plants to alleviate Tagetes erecta L. from Cd stress.  相似文献   

5.
Although there is evidence for a positive involvement of the antioxidant defense system in plant response to salt stress, there is poor information regarding the influence of mycorrhizal symbiosis on enzymatic and nonenzymatic antioxidant defense in wheat under saline conditions. The present article focuses on the contribution of mycorrhizae to antioxidant defense in salt‐stressed wheat plants. Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under nonsaline or two saline conditions (4.7 and 9.4 dS m–1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization and plant productivity, particularly in Giza 168. Interestingly, mycorrhizal colonization alleviated the adverse effect of salt stress and significantly enhanced plant productivity, especially in Sids 1. The concentration of glycinebetaine, the activities of antioxidative enzymes (superoxide dismutase, peroxidase, catalase, and glutathione reductase) and the concentrations of antioxidant molecules (glutathione and ascorbate) were increased under saline conditions; these increases were more significant in salt‐stressed mycorrhizal plants, especially in Sids 1. Salt stress induced oxidative damage through increased lipid peroxidation, electrolyte leakage, and hydrogen peroxide concentration, particularly in Giza 168. Mycorrhizal colonization altered plant physiology and significantly reduced oxidative damage. Elimination of reactive oxygen species (ROS) can be one of the mechanisms how AMF improve wheat adaptation to saline soils and increase its productivity.  相似文献   

6.
ABSTRACT

Salinity stress alleviation through arbuscular mycorrhizal fungi (AMF) application and sodium (Na) localization in strawberry plants were investigated. A greenhouse experiment in a completely randomized design with three replications revealed AMF (Gigaspora margarita) association alleviated salinity stress (200 mM NaCl). AMF inoculated plants had greater dry weight, maintained chlorophyll content, and decreased leaves browning compared to the control under salinity stress. The Na+ concentration and Na+/K+ ratio were found lower in the following organs, young and old leaflets and petioles, main roots and lateral roots of mycorrhizal plants than the control. The scanning electron microscope and energy dispersive x-ray spectroscopy (SEM-EDX) analysis of Na in old petiole and main root tissues revealed, excess Na localized in the vascular bundle margin of old petioles and main roots of both the control and mycorrhizal plants. So, suppression of Na absorption through roots might be the mechanism of salt stress alleviation in mycorrhizal plants than to the control Na localization. The higher cellulose and lignin contents in the cell wall of mycorrhizal roots act as the apoplastic barrier which might be suppressing Na influx.  相似文献   

7.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

8.
Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.  相似文献   

9.
Effectiveness of arbuscular mycorrhizal fungi (AMF) is crucial for maximum plant growth and acquisition of mineral nutrients under drought. The objective of this research was to determine effects of varied rates of AMF inoculum on plant growth and acquisition of phosphorus (P), zinc (Zn), copper (Cu), and manganese (Mn) by barley (Hordeum vulgare L. cv. SLB‐6) grown with and without drought stress (WS and nonWS). Plants inoculated with four inoculum rates [control (M0), 120 (M1), 240 (M2), and360 (M3) spores per 100 g dry soil] of Glomus mosseae were grown in a low P silty clay (Typic Xerochrept) soil (pH=8.0) mix in a greenhouse for 45 days. Root AMF colonization increased as inoculum rate increased in plants grown with WS and nonWS. Leaf area and shoot and root dry matter (DM) increased as inoculum rate increased up to M2 regardless of soil moisture. Shoot concentrations of P, Cu, and Mn were generally higher for mycorrhizal (AMF) than for nonmycorrhizal (nonAMF) plants grown with both WS and nonWS. Shoot contents of P, Zn, Cu, and Mn were higher for AMF than for nonAMF plants grown with nonWS, and shoot contents of P were higher for AMF than for nonAMF plants with WS. For plants grown with WS and nonWS, contents of P, Zn, Cu, and Mn were generally higher for plants inoculated with M2 compared to other rates of inoculum. The results of this study indicated that plant responses to root colonization with AMF were dependent on AMF rate and soil moisture. Based on enhancements in plant DM and mineral acquisition traits, M2 inoculum was the most effective rate of inoculation for this AMF isolate.  相似文献   

10.
蒲子天  张林  张弛  王红  王鑫鑫 《土壤》2022,54(5):882-889
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能与宿主植物形成共生体,广泛存在于陆地生态系统中。大量研究表明,不同水分条件下,植物通过接种AMF比未接种AMF的植物具有更强的水分吸收能力和更高的水分利用效率。在干旱、盐胁迫下,接种AMF能有效提高宿主植物的耐旱性与耐盐性。本文综述了不同水分条件下,与植物共生的AMF通过扩大植物根系吸收面积、改善根系结构,增强植物根系吸收水分能力的相关研究进展。土壤中根外菌丝网络的形成,不但为植物增加了水分吸收途径(菌根途径),还通过改善植物体内的矿质营养来调节植物对水分的吸收,进而影响植物的水分吸收状况;不同水分条件下,根系被AMF侵染后植物的光合作用、蒸腾作用以及气孔导度都得到增强,植物蒸腾作用的增强能够直接有效的提升植物的蒸腾拉力,因此植物对水分的吸收能力得以提升。同时,被AMF侵染的植物的水分利用率、蒸腾速率以及净光合速率得以提升从而提高了植物的水分利用能力。进一步总结了缺水胁迫(干旱胁迫、盐胁迫)严重影响植物体内的水分状况,通过接种AMF可以有效调节植物在缺水胁迫下植物体内渗透调节物质的含量、抗氧化酶的活性,平衡植物体内离子平衡,提升植物光合、蒸腾作用水平,从而提高植物的耐胁迫能力。本文通过综述不同水分条件下,接种AMF对植物的影响及机制,期望为未来新型菌剂的研发与菌根互作对植物水分状况的改善提供支撑。  相似文献   

11.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

12.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

13.
A pot experiment was used to evaluate the effects of an arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae on plant growth performance, root-hair growth, and root hormone levels in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) and drought stress (DS). A 9-week mild DS treatment significantly reduced mycorrhizal colonization of 2nd- and 3rd-order lateral roots. Root mycorrhizal colonization was relatively higher in the 2nd- and 3rd-order lateral roots than in the taproot and the 1st-order lateral root under WW and DS. AMF seedlings exhibited significantly higher root-hair density, length (except for the taproot) and diameter in taproot and 1st-, 2nd-, and 3rd-order lateral roots under WW, and considerably higher root-hair density (except for 1st-order lateral root), length (except for 2nd-order lateral root) and diameter under DS. Mycorrhizal inoculation remarkably increased root abscisic acid (ABA), indole-3-acetic acid (IAA), methyl jasmonate, and brassinosteroids (BRs) concentrations under DS, in company with the decrease in root zeatin riboside and gibberellins levels and root IAA effluxes. Root-hair traits were significantly positively correlated with root colonization and root ABA and BRs levels. It is concluded that mycorrhizal plants possessed better root-hair growth to adapt mild DS, which is associated with mycorrhizal colonization and endogenous hormone changes.  相似文献   

14.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

15.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

16.
Individually, arbuscular mycorrhizal fungi (AMF), drought stress, and root damage can alter terrestrial plant performance but the joint effects of these three factors have not been explored. Because AMF can improve water relations, colonization by these root symbionts may increase the host’s tolerance of drought especially when roots have been compromised by herbivory. This full factorial study examined effects of AMF, water deficit, and artificial root herbivory in three genotypes of wild strawberry, Fragaria virginiana Duchesne that originated from the same restored tallgrass prairie as the AMF inoculum. Drought stress and root damage altered allocation to roots vs. shoots but the effects were not additive and the interaction did not depend on AMF treatment. Effects of AMF were absent with one exception: root damage significantly reduced belowground mass only in plants inoculated with AMF. Although drought stress did not interact with the AMF treatment, both drought stress and root damage reduced the abundance of arbuscules, and especially vesicles, and colonization varied among genotypes. Failure to detect strong effects of AMF on host growth could be due to variable responses of individual AMF species summing to no net effects. Functionally, AMF were primarily commensals of strawberry in this study.  相似文献   

17.
Quality of vegetable seedlings is affected by nursery management practices, essentially growing media. For sustainable greenhouse horticulture, it is important to characterize biologically based approaches to improve plantlet quality. Here, we investigate the possibility of developing a biotized growth substrate for nursery production using date palm wastes (DPWs) peat as an alternative to commercial sphagnum peat and indigenous arbuscular mycorrhizal fungi (AMF). A greenhouse experiment was established using different rates of DPWs peat to substitute commercial peat in both conventional and organic nursery production systems. Lettuce seedlings were inoculated or not with native AMF isolated from plots with conventional or organic production system (CM and OM respectively). When lettuce plantlets attained commercial size, a microscopic observation revealed that the establishment of mycorrhizal association was successful in all mixtures of growing media. Significant increase in growth parameters (height shoot, number and area of leaves, shoot and root biomass) were observed on plantlets inoculated with indigenous AMF isolated from organic plot compared to those isolated from conventional plot and to control (without AMF). Commercial peat partial substitution with DPWs peat in proportion of 25–50% improves better lettuce performance than complete-peat use. Consequently, these mixtures seem to be an appropriate formulation for sustainable nursery production.  相似文献   

18.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) can benefit growth and yield of agriculturally significant crops by increasing mineral nutrient uptake, disease resistance and drought tolerance of plants. We conducted a meta-analysis of 38 published field trials with 333 observations to determine the effects of inoculation and root colonization by inoculated and non-inoculated (resident) AMF on P, N and Zn uptake, growth and grain yield of wheat. Field AMF inoculation increased aboveground biomass, grain yield, harvest index, aboveground biomass P concentration and content, straw P content, aboveground biomass N concentration and content, grain N content and grain Zn concentration. Grain yield was positively correlated with root AMF colonization rate, whereas straw biomass was negatively correlated. The most important drivers of wheat growth response to AMF were organic matter concentration, pH, total N and available P concentration, and texture of soil, as well as climate and the AMF species inoculated. Analysis showed that AMF inoculation of wheat in field conditions can be an effective agronomic practice, although its economic profitability should still be addressed for large-scale applications in sustainable cropping systems.  相似文献   

20.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号