首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
【目的】研究生物炭对氮肥硝化过程中硝态氮、铵态氮含量及N2O、NH3排放的影响,为提高肥料氮的利用率、减少氮损失提供参考。【方法】在陕西关中地区,采集小麦 玉米轮作大田耕层0~20 cm土壤,采用室内培养试验,在供试土娄土中分别添加麦秸和烟秆生物炭,同时施用氮肥尿素,施氮量90 kg/hm2,每种生物炭添加量设3个水平(0(对照)和15,30 Mg/hm2),试验共计6个处理,测定尿素硝化过程中不同处理土壤硝态氮、铵态氮含量以及N2O、NH3排放通量的动态变化。【结果】与对照相比,添加两种生物炭均可以降低土壤铵态氮和硝态氮含量,显著抑制尿素的硝化作用,其中高量麦秸生物炭的抑制作用更明显,烟秆生物炭较麦秸生物炭的抑制作用更强。添加烟秆生物炭和麦秸生物炭均可以增加尿素硝化过程中N2O排放通量以及总排放量,而且高量烟秆生物炭处理的N2O总排放量显著高于低量烟秆生物炭处理。与对照相比,两种生物炭之间NH3总排放量无显著变化,表明土娄土中添加生物炭对尿素硝化过程中氨的挥发无显著影响。【结论】在土娄土中施用生物炭有增加温室气体N2O排放的风险,建议采用改性生物炭或采取相应的其他措施减少N2O的排放。  相似文献   

2.
为进一步厘清生物炭在减缓农业生态系统土壤N2O排放的作用和机制,本研究基于CNKI、Springer、Wiley和Science Direct数据库,以“生物炭”、“农业生态系统”、“N2O”为关键词,搜索2008—2021年相关文献,并进行了总结和归纳。结果表明:土壤N2O可通过多种微生物过程产生,其中硝化作用和反硝化作用是主要过程,硝化细菌反硝化、硝态氮异化还原成铵、化学反硝化等非生物过程也可产生N2O;生物炭添加对土壤N2O排放影响的结论不一,多数研究认为生物炭有利于减少土壤N2O的排放,少数认为生物炭刺激了土壤N2O的排放或对其无影响;提出了生物炭减缓土壤N2O排放机制(生物炭本身理化性质的差异、生物炭影响土壤理化性质和氮转化过程);并分析了生物炭降低堆肥土壤N2O排放的潜力和生物炭促进酸性土壤的植物生产力。最后,基于上述研究提出三点展望:有必要建立生物炭特性数据库;系统性的加强生物炭在N2O减排潜力的估算;进行长期野外田间试验的必要性。  相似文献   

3.
施用生物炭对农田土壤N2O的减排效应   总被引:1,自引:1,他引:0  
生物炭作为一种土壤改良剂,在农田土壤氮素转化和温室气体减排等方面发挥着重要作用。本实验对不同施氮量的农田土壤添加生物炭,研究了其对N2O的减排潜力,为生物炭的固氮减排提供理论依据。于2015年6月18日至9月25日,利用盆栽实验研究了施用生物炭对农田土壤在不同氮肥用量下N2O排放的影响,实验共设4个处理:对照(CK)为不施氮处理、N1(200 kg·hm-2)、N2(400 kg·hm-2)和N3(600 kg·hm-2),各处理均施用土壤质量15%(W/W)的等量生物炭。结果表明,随着施氮量的增加,土壤N2O的累积排放量逐渐增加,N2和N3处理差异不显著,N2O排放系数逐渐降低,N1、N2、N3的排放系数分别为1.33%、1.27%、0.90%。Pearson相关分析表明,土壤孔隙含水量(WFPS)、土壤pH、土壤NO3--N和土壤微生物量氮(MBN)含量是影响N2O排放最主要的因素,其中土壤WFPS、土壤NO3--N和MBN含量与N2O排放通量之间呈极显著的正相关关系,土壤pH与N2O排放通量之间呈极显著负相关关系。生物炭的施用对农田土壤N2O具有巨大的减排潜力,并且生物炭与氮肥配施对土壤氮素有很好的固持作用。  相似文献   

4.
反硝化作用是土壤氮循环中最重要的活性氮移除途径之一。在这一过程中,硝态氮被还原为气态氮素氧化亚氮(N2O)或氮气(N2)等离开土壤进入大气,而其气态产物N2O/N2化学计量比是土壤反硝化研究的热点和难点,合理调控N2O/N2是减少农业源温室气体排放的重要途径。在土壤环境中,反硝化产物比受多种因素的影响,硝态氮、O2含量和Cu离子有效性是介导产物比变化的关键影响因子,而电子供体量、pH、水分为一般影响因子。这些因素既可以通过影响反硝化酶活、反硝化微生物丰度和群落结构等直接作用于反硝化过程,也可以通过改变反硝化发生的土壤微环境间接影响反硝化产物比。本文综述了近年来土壤反硝化气态产物N2O/N2控制因素的相关进展,并讨论了其对不同影响因素变化的响应机理,以期为后续相关研究提供思路和背景。  相似文献   

5.
添加生物黑炭对茶园土壤CO2、N2O排放的影响   总被引:4,自引:2,他引:2  
采用室内培养试验,研究了不同生物黑炭施用量对两种茶园土壤(红壤和黄壤)CO2、N2O排放特征的影响。生物黑炭用量设5个水平:H0(0 g·kg-1)、H1(3.56 g·kg-1)、H2(7.11 g·kg-1)、H3(14.22 g·kg-1)、H4(28.44 g·kg-1).结果表明:红壤茶园土壤CO2排放量显着高于黄壤,N2O排放总量则低于黄壤;与H0处理相比,施用低量的生物黑炭(H1)对两种茶园土壤CO2排放无显着影响;高量的生物黑炭处理(H3、H4)则显着增加土壤CO2排放量,增幅为20%~47%(P<0.05).生物黑炭施用后(H2、H3、H4)明显降低两种茶园土壤N2O释放速率及反硝化损失率,土壤N2O排放总量降幅为37%~63%(P<0.05),反硝化损失量降幅22%~54%(P<0.05),且均随着生物黑炭施用量增加而增大。此外,从土壤pH值、无机氮含量和硝化率角度,探讨了生物黑炭影响茶园土壤CO2和N2O排放的因素。  相似文献   

6.
不同水分条件下海南红壤N2O排放对不同碳源添加的响应   总被引:1,自引:1,他引:0  
为探讨添加不同水分条件下土壤N2O排放对碳源添加的响应,以无任何添加的土壤为空白处理(CK),设置B1、B2两个生物炭处理(B1:生物炭添加量为土壤质量的1%;B2:生物炭添加量为土壤质量的2%)和秸秆处理S(水稻秸秆添加量为土壤质量的2.75%,秸秆用量与制备B1的秸秆用量相当),同时设置45%持水量W1(模拟干旱)、75%持水量W2(适中)和100%持水量W3(淹水)3个水分条件,培养25 d。结果表明:不同水分条件下土壤NH4+-N含量为W1>W2>W3,NO3--N含量为W3>W2>W1。土壤水分显著影响N2O排放,相比W1,CK、S、B1、B2处理在W2和W3水分条件下的N2O累积排放量分别增加806.2%、455.8%、713.2%、311.3%和798.6%、315.3%、801.6%、661.7%。W1和W2水分条件下,相比CK,秸秆添加显著增加土壤N2O累积排放量,增幅分别为80.9%和10.9%。添加生物炭在各水分条件下均降低土壤N2O累积排放量,水分含量越高,降幅越大,B1和B2降幅分别为25.7%~33.5%和22.9%~65.0%。研究表明,海南红壤中添加生物炭可以减少土壤N2O排放,而秸秆还田在持水量小于75%时可增加土壤N2O排放,在淹水条件下可降低土壤N2O排放。  相似文献   

7.
甲酸盐和葡萄糖对两种土壤N2O排放的刺激作用   总被引:1,自引:0,他引:1  
为初步探究某些根系分泌物对土壤N2O排放的影响,采用室内培养的方法,以甲酸盐和葡萄糖为外加碳源(0、0.5、1 μmolC·g-1),测定了其对菜地和稻田土壤N2O排放的影响。结果表明,无外加有机碳源情况下,菜地土壤的N2O-N(2.65~2.69 μg·kg-1)排放量显著小于稻田土壤(6.19~11.79 μg·kg-1)(P<0.01);添加葡萄糖的情况下,菜地土壤的N2O-N(2.47~3.44 μg·kg-1)排放量也显著小于稻田土壤(9.55~13.34 μg·kg-1)(P<0.01);但在甲酸盐(1 μmol C·g-1)的刺激下菜地土壤N2O-N排放量(54.86 μg·kg-1)显著高于稻田土壤(42.40 μg·kg-1)(P<0.01);增加施氮量并没有显著增加土壤中N2O排放。荧光定量PCR结果表明,稻田土壤微生物拷贝数(包括真菌、细菌、反硝化细菌)是菜地的3~8倍。进一步通过高通量测序分析发现,反硝化真菌在菜地中的相对丰度(53.8%),远远高于其在稻田土壤中的丰度(6.6%)。有报道指出,反硝化真菌能够有效地利用甲酸盐产生N2O,我们的研究也发现小分子有机物质的微量添加可以显著刺激土壤N2O排放;微生物群落结构可以显著地影响土壤N2O排放对不同有机碳源添加响应;甲酸盐添加下的菜地土壤中,大量反硝化真菌很可能是N2O的主要贡献者。  相似文献   

8.
为探究秸秆和秸秆生物炭连续添加5 a后对土壤氨(NH3)挥发和氧化亚氮(N2O)排放的影响,并确定合理的秸秆还田措施,以降低碱性棉田氮损失。本研究基于等碳量输入,设置秸秆翻埋、秸秆催腐+覆盖还田、秸秆生物炭翻埋和不还田对照共4个处理,氮磷钾肥统一施用。结果表明:秸秆生物炭翻埋下土壤NH3挥发和N2O排放分别较不还田对照显著降低27.3%和56.7%,主要归因于生物炭显著抑制土壤羟胺还原酶与硝酸还原酶活性,增加棉花氮吸收量,也与生物炭自身的强吸附能力有关。而秸秆翻埋、秸秆催腐+覆盖还田分别较对照增加NH3挥发37.2%和21.2%,但减少N2O排放17.1%和38.3%,这两种秸秆还田方式均显著促进土壤有机氮矿化和羟胺还原酶活性,抑制硝酸还原酶活性。冗余分析(RDA)结果表明羟胺还原酶和棉花氮吸收是土壤NH3挥发和N2O排放的主要影响因子,解释率分别为64.8%和20.1%。研究表明,秸秆生物炭翻埋对NH3和N2O减排的综合效果优于秸秆,是碱性棉田土壤值得推荐的氮减排措施。  相似文献   

9.
为研究纳米碳材料对土壤N2O排放的影响,选用纳米碳溶胶(一种纳米级材料,利用电解石墨制备而成)作为供试材料,以未经秸秆还田改良(秸秆离田)和秸秆还田改良的潮土为供试土壤,通过培养试验探讨纳米碳溶胶对潮土N2O排放的影响,培养条件为25℃和80%田间持水量。结果表明:施氮条件下,添加纳米碳溶胶显著增加了秸秆离田土壤N2O排放,但显著降低了秸秆还田土壤N2O排放,减排效率达63%。纳米碳溶胶显著提高了两种处理土壤的硝化潜势(PNR),但降低了秸秆还田土壤反硝化潜势(PDR)。然而,秸秆离田土壤PDR对纳米碳溶胶无显著响应。纳米碳溶胶通过促进秸秆离田土壤的硝化作用提高N2O排放。对于秸秆还田土壤,纳米碳溶胶减排N2O的机理可能是土壤可溶性有机碳含量的增加一方面激发了土壤异养微生物对底物无机氮的固持,另一方面促进了土壤彻底反硝化过程。  相似文献   

10.
水氮耦合对设施土壤N2O和NO排放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为实现设施生产水氮高效利用及N2O和NO减排,基于连续7 a的设施水氮定位试验,采用密闭静态箱法,分别对番茄生长季的N2O和NO排放进行田间原位同步观测。通过灌水下限(土壤水吸力W1、W2和W3分别为25、35 kPa和45 kPa)和施氮量(N1、N2和N3分别为75、300 kg·hm-2和525 kg·hm-2)两因素三水平随机区组设计,研究了水氮耦合对设施土壤N2O和NO排放特征的影响。结果表明,N2O和NO排放峰值出现在施肥和灌溉后,峰值期的排放通量表现为N2O高于NO,但NO峰值持续时间较长。水分、施氮量和水氮交互作用对设施土壤N2O、NO总累积排放量均有极显著影响,水氮耦合效应使W1N1处理的NO总累积排放量、W2N1处理的N2O和N2O+NO总累积排放量最低,且均与其他处理差异显著。水分、施氮量和水氮交互效应对番茄产量影响效力表现为灌水下限>施氮量>水氮交互。与W1N1、W1N2、W1N3相比,W2N1处理的番茄产量分别显著增加48.92%、50.69%和17.82%。水氮耦合效应使W2N1处理单产N2O和NO累积排放量最低(P<0.01),分别比其他处理降低40.00%~78.57%和21.43%~60.71%。冗余分析表明,N2O和NO排放通量与铵态氮含量、硝态氮含量、amoA-AOA和nirK基因丰度均呈显著正相关关系。综合设施蔬菜经济和环境效应,配施有机肥条件下,灌水下限35 kPa和施氮量75 kg·hm-2的水氮管理更有助于设施土壤N2O和NO减排及产量保证。  相似文献   

11.
不同生物质炭对酸化茶园土壤N2O和CO2排放的影响   总被引:1,自引:1,他引:0  
为了研究不同生物质炭对酸化茶园土壤温室气体排放的影响,采用原料为小麦秸秆、柳树枝、椰壳3种生物质炭,通过室内培养试验来探究不同生物质炭对茶园土壤性质及N_2O、CO_2排放特征的影响。试验中生物质炭添加量为20 g·kg~(-1),同时设置了施氮肥处理,采用尿素作为外加氮源,施氮量为100 mg·kg~(-1)。结果表明,施加生物质炭提高了酸化茶园土壤pH值,柳树枝生物质炭处理土壤pH值最高为6.71,显著高于其他处理。不同生物质炭对土壤DOC含量的影响效果存在差异,柳树枝生物质炭使土壤DOC平均含量增加了95.6%,椰壳生物质炭使土壤DOC含量降低36.1%,小麦秸秆生物质炭则影响不显著。生物质炭通过抑制土壤硝化和反硝化作用降低土壤N_2O的排放,椰壳生物质炭降低N_2O排放比例达91.7%,减排效果最显著。在施氮条件下柳树枝生物质炭对土壤N_2O的减排效果显著低于小麦秸秆和椰壳生物质炭。土壤CO_2的排放通量与pH值、DOC含量均呈极显著正相关,生物质炭促进了土壤CO_2的排放,柳树枝生物质炭处理CO_2的排放显著高于其他处理。此外,外加氮源降低了土壤pH值,增加了土壤N_2O的排放,但是对土壤DOC含量变化无显著影响。  相似文献   

12.
添加玉米秸秆及其生物质炭对砖红壤N2O排放的影响   总被引:5,自引:2,他引:3  
为比较秸秆和生物质炭对土壤氧化亚氮排放的影响,利用室内培养试验研究生物质炭、秸秆添加对土壤性质、硝化作用及N_2O排放的影响。试验设生物质炭、秸秆和空白3个处理,试验培养条件为30℃和75%田间持水量。结果表明,添加秸秆和生物质炭显著提高土壤pH、有机碳和速效K含量,其中秸秆对土壤pH的增加作用更为突出。与对照(1 604.82±168.93μgN_2O-N·kg~(-1))相比,添加秸秆和生物质炭减少N_2O排放量分别为58.0%和65.6%,但二者减排机理不同;秸秆对N_2O的减排因生物的氮固定,降低了硝化反应底物的有效性,生物质炭对N_2O减排可能源于硝化过程中较低的N_2O产生比例。由于生物质炭显著促进土壤硝化速率,而产生较多的NO_3~-,使得热带地区砖红壤硝态氮的淋失风险增大。  相似文献   

13.
尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响   总被引:3,自引:0,他引:3  
为明确生物质炭对酸化茶园土壤改良及温室气体排放的影响,利用室内培养试验,研究了在施氮(N1)和不施氮(N0)条件下,不同小麦秸秆生物质炭添加量(B1,10 g·kg~(-1);B2,30 g·kg~(-1);B3,50 g·kg~(-1))对茶园土壤pH值、CO_2和CH_4排放的影响。结果表明,添加生物质炭显著提高了茶园土壤pH值(P0.05),生物质炭施加比例越高,土壤pH值提高幅度越大,处理组N0B1、N0B2和N0B3土壤平均pH较对照组CK(氮和生物质炭都不施)分别提高了0.18、0.53、1.06个单位,生物质炭添加量为3%(B2)时,短期内可达到提高土壤pH值、改良酸化土壤的效果;CO_2和CH_4的累积排放量随着生物质炭添加比例的升高而增大,且显著高于对照组CK(P0.05)。施加尿素短期内显著提高了土壤pH值(P0.05),并促进了CO_2的排放,但对CH_4的排放无显著影响。与单施生物质炭相比,生物质炭与尿素共施时土壤pH提高幅度更大,CO_2累积排放量提高程度也更为显著,而CH_4的排放得到抑制,但仍显著高于对照组CK(P0.05)。生物质炭的添加在提高土壤pH值的同时也会增加CO_2和CH_4的排放量,增大环境风险,但当土壤酸化程度较轻时,可适当施加低量生物质炭,在缓解土壤酸化状况的同时尽可能地减少温室气体的排放量。  相似文献   

14.
集约化菜地N2O排放及减排——基于文献整合分析   总被引:1,自引:1,他引:0  
为了评估中国菜地生态系统N2O排放及其减排潜力,通过搜集已发表的露天及温室菜地N2O减排田间原位观测数据,利用整合分析方法,评估了减施氮肥、配施硝化抑制剂、有机肥替代、施用生物质炭和优化灌溉等几种措施在蔬菜生产中减排N2O的潜力。结果表明:菜地中大量施用氮肥虽然增加蔬菜产量,但也显著增加了菜地N2O排放。在高施氮下,与露天菜地相比,温室菜地降低N2O排放系数和单位产量N2O排放量。与当地常规管理措施相比,各种优化措施均可在不同程度上降低菜地N2O排放,幅度分别为49.4%(减施氮肥)、33.2%(配施硝化抑制剂)、26.6%(有机肥替代)、29.1%(施用生物质炭)和34.3%(优化灌溉),平均达36.6%。在高施氮下,有机肥替代化肥能更有效地降低N2O排放系数和单位产量N2O排放量。菜地N2O排放量随着氮肥减施率的增加而降低,在低施氮土壤中N2O减排效果更好。优化灌溉在不同施氮量下对N2O的减排效果相当,配施硝化抑制剂和施用生物质炭则在低施氮条件下N2O减排效果更好。中国露天和温室菜地生态系统N2O减排潜力大,减施氮肥、配施硝化抑制剂、有机肥替代、施用生物质炭和优化灌溉等几种措施均能有效降低N2O排放。由于温室菜地集约化程度更高,N2O减排效果明显。  相似文献   

15.
【目的】研究生物炭处理对新疆连作棉田土壤养分和微生物多样性的影响,为农业废弃物的合理利用和防治棉花连作障碍提供科学依据和理论指导。【方法】在大田覆膜滴灌栽培条件下,测定土壤养分含量,并采用常规培养法,结合Biolog微平板技术对连作棉田根际和非根际土壤可培养微生物、生理菌群数量和碳源利用进行分析,研究施用生物炭对新疆石河子垦区灰漠土和风沙土土壤养分和微生物多样性的影响。灰漠土试验分别设生物炭+常规NPK施肥(BC+CK)和常规NPK施肥(CK)两种,生物炭施用量22.5 t·hm-2;风沙土设低量生物炭+常规NPK施肥(BC1+CK)、高量生物炭+常规NPK施肥(BC2+CK)和常规NPK施肥(CK)3种,低量生物炭施用量22.5 t·hm-2,高量生物炭施用量45 t·hm-2。【结果】施用生物炭对新疆连作棉田根际和非根际土壤pH和养分有一定的影响。和常规施肥相比,灰漠土pH降低或差异不显著,风沙土则显著升高。有机质含量两组灰漠土根际土壤分别增加36.1%和7.9%,非根际土壤分别增加32.8%和15.4%;风沙土低量生物炭和高量生物炭根际土壤分别增加63.6%和295.1%,非根际土壤分别增加93.5%和108.8%。灰漠土其余养分含量规律不明显,风沙土速效磷和速效钾含量有增加趋势,速效氮含量降低。施用生物炭对新疆连作棉田根际土壤细菌和真菌数量有提升作用,风沙土作用效果好于灰漠土。两组灰漠土根际土壤细菌数量分别提高2.2%和72.1%,真菌数量分别提高80.0%和83.3%;风沙土低量和高量生物炭处理细菌数量分别提高16.1%和35.7%,真菌数量均提高了300.0%。同时施用生物炭提高了灰漠土根际和非根际土壤纤维素分解菌和自生固氮菌的数量,但亚硝化细菌数量有降低趋势;风沙土根际和非根际土壤5类生理菌群的数量均显著提高。土壤微生物群落碳源利用表明,施用生物炭土壤微生物活性差异不显著或显著提升,但风沙土根际土壤微生物的作用效果好于非根际土壤;根际土壤Shannon指数有升高趋势。【结论】总体而言,施用生物炭能提高新疆灰漠土和风沙土连作棉田根际土壤养分和微生物多样性,且风沙土的改良效果好于灰漠土。  相似文献   

16.
为揭示外源物质生物炭、硝化抑制剂、脲酶抑制剂复配对温室气体排放的影响,采用室内培养试验,比较外源物质不同组合[对照(CK)、生物炭(BC)、硝化抑制剂(NP)、脲酶抑制剂(NB)、生物炭+硝化抑制剂(BCNP)、生物炭+脲酶抑制剂(BCNB)、硝化抑制剂+脲酶抑制剂(NPB)、生物炭+硝化抑制剂+脲酶抑制剂(BCNPB)]对温室气体排放的影响,同时监测土壤pH、NH+4-N、NO-3-N等影响因子的变化规律。结果表明:与CK相比,各处理均抑制了土壤N2O排放,其中NPB处理抑制效果最显著;所有处理均促进了土壤CO2排放;除BC处理为负效应外,土壤CH4排放效应与CO2结果类似;除BCNB处理外,其他处理对全球增温潜势有一定的抑制作用,其中NPB处理的抑制效果最佳。培养结束时,与CK相比,除NP处理提高了土壤pH外,其他6个处理均降低了土壤pH;在无机氮含量方面,与CK相比,各处理均增加了土壤NH+4-N含量,BCNPB、NP、NPB处理减少了NO-3-N含量,NB、BC、BCNP、BCNB处理增加了NO-3-N含量。综合考虑全球增温趋势和土壤性质,本试验条件下硝化抑制剂+脲酶抑制剂处理为抑制温室气体排放的最优外源物质处理。  相似文献   

17.
以华北平原石灰性潮土为对象,采用室内静态培养方法,在土壤中添加不同类型的抑制剂(硝化抑制剂、脲酶抑制剂),监测N_2O和无机氮随时间变化的特征,对比分析何种添加剂减排N_2O效果明显,为其在农业生产中的应用提供科学依据。试验设置7个处理:不施肥(CK);只施尿素(U);尿素和2-氯-6-三氯甲基吡啶(Nitrapyrin,由中化集团公司代理)同时施用(U+NP);尿素和推荐用量2-氯-6-三氯甲基吡啶(Nitrapyrin,由陶氏化学公司代理)同时施用(U+NPD);尿素和2倍推荐用量2-氯-6-三氯甲基吡啶(Nitrapyrin,由陶氏化学公司代理)同时施用(U+2NPD);尿素和双氰胺同时施用(U+DCD);尿素和N-丁基硫代磷酰三胺同时施用(U+n BPT),共培养56 d。在培养第1、2、3、5、7、10、14、19 d采气测定N_2O和CO_2,气体监测到培养第19 d为止;在培养的第0、1、3、7、14、21、28、42、56 d进行破坏性取样,监测土壤氮素转化。结果表明:供试硝化抑制剂能够降低87.4%~99.6%的N_2O排放,脲酶抑制剂降低30.0%N_2O排放;氮素转化过程中,硝化抑制剂处理只有0.03%~0.84%的铵态氮转化为N_2O,脲酶抑制剂处理有4.69%的铵态氮转化为N_2O。DCD和陶氏公司Nitrapyrin产品在抑制N_2O排放的效果上无显著差异,与推荐用量陶氏公司Nitrapyrin相比,施用2倍推荐量并没有显著降低N_2O排放。综上,供试硝化抑制剂能够显著降低石灰性土壤N_2O的排放,减排效果最好的处理为U+NP,陶氏公司Nitrapyrin产品按推荐用量施用即可。  相似文献   

18.
The objective of this study was to evaluate the effects on chemical and microbiological properties of paddy soil of short-term biochar,straw,and chemical fertilizers compared with chemical fertilization alone.Five soil fertilization treatments were evaluated:regular chemical fertilizers(RF),straw+regular chemical fertilizers(SRF),straw biochar+regular chemical fertilizers(SCRF),bamboo biochar(BC)+regular chemical fertilizers(BCRF),and straw biochar+70%regular chemical fertilizers(SC+70%RF).Their effects were investigated after approximately 1.5 years.The soil p H and cation exchange capacity(CEC)were significantly higher in biochar-treated soils.The soil phosphorous(P)and potassium(K)contents increased with biochar application.The soil Colwell P content was significantly increased with the addition of straw biochar in the treatments of SCRF and SC+70%RF.The oxygen(O):carbon(C)ratio doubled in BC picked from the soil.This indicated that BC underwent a significant oxidation process in the soil.The denaturing gradient gel electrophoresis(DGGE)fingerprints of microbial communities differed among the treatments.Soils with added biochar had higher Shannon diversity and species richness indices than soils without biochars.The results suggest that biochar can improve soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号