首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

2.
S. Prakash    I. Ahuja    H. C. Upreti    V. Dinesh  Kumar  S. R. Bhat    P. B. Kirti  V. L. Chopra   《Plant Breeding》2001,120(6):479-482
An alloplasmic mustard, Brassica juncea, has been synthesized by placing its nucleus into the cytoplasm of the related wild species Erucastrum canariense to express cytoplasmic male sterility. To achieve this, the sexual hybrid E. canariense (2n=18, EcEc) ×Brassica campestris (2n= 20, AA) was repeatedly backcrossed to B. juncea (2n= 36, AABB). Cytoplasmic male‐sterile (CMS) plants were recovered in the BC4 generation. These plants are a normal green and the flowers have slender, non‐dehiscing anthers that contain sterile pollen. Nectaries are well developed and female fertility is > 90%. The fertility restoration gene was introgressed to CMS B. juncea from the cytoplasmic donor E. canariense through pairing between chromosomes belonging to B. juncea with those of the E. canariense genome. The restorer plants have normal flowers, with well‐developed anthers containing fertile pollen. Meiosis proceeds normally. Pollen and seed fertility averaged 90% and 82%, respectively. F1 hybrids between CMS and the restorer are fully pollen fertile and show normal seed set. Preliminary results indicate that restoration is achieved by a single dominant gene. The constitution of the organelle genomes of the CMS, restorer and fertility restored plants is identical, as revealed by Southern analysis using mitochondrial and chloroplast probes atp A and psb D, respectively.  相似文献   

3.
We report the development of an improved cytoplasmic male sterile (CMS) system of Brassica juncea carrying cytoplasm of the wild species Diplotaxis berthautii. Flowers of the CMS line are smaller than the euplasmic line but have improved nectaries. Anthers are slender and fail to extend to the level of stigma. Female fertility of the CMS line is comparable to the euplasmic line. Fertility restorers of Moricandia arvensis and D. catholica-based alloplasmic CMS systems of B. juncea were found capable of restoring male fertility to this new CMS line. The fertility restoration is monogenic and gametophytic. Southern analysis showed that the cytoplasm of the CMS line is different from euplasmic B. juncea and other CMS systems restored by the same restorer lines. Northern analysis of the CMS, fertility restored and euplasmic lines using eight mitochondrial gene probes revealed altered atpA expression associated with male sterility. Cleaved amplified polymorphic sequence (CAPS) markers were identified for the plastid gene psbB, which could be useful for a quick identification of this CMS line. S.R. Bhat and P. Kumar contributed equally to this work.  相似文献   

4.
5.
The genetic relationship among three cytoplasmic male sterility (CMS) systems, consisting of WA, Dissi, and Gambiaca, was studied. The results showed that the maintainers of one CMS system can also maintain sterility in other cytoplasmic backgrounds. The F1 plants derived from crosses involving A and R lines of the respective cytoplasm and their cross-combination with other CMS systems showed similar pollen and spikelet fertility values, indicating that similar biological processes govern fertility restoration in these three CMS systems. The results from an inheritance study showed that the pollen fertility restoration in all three CMS systems was governed by two independent and dominant genes with classical duplicate gene action. Three F2 populations, generated from the crosses between the parents of good-performing rice hybrids, that possess WA, Dissi, and Gambiaca CMS cytoplasm, were used to map the Rf genes. For the WA-CMS system, Rf3 was located at a distance of 2.8 cM from RM490 on chromosome 1 and Rf4 was located at 1.6 cM from RM1108 on chromosome 10. For the Dissi-CMS system, Rf3 was located on chromosome 1 at 1.9 cM from RM7466 and Rf4 on chromosome 10 was located at 2.3 cM from RM6100. The effect of Rf3 on pollen fertility appeared to be stronger than the effect of Rf4. In the Gambiaca-CMS system, only one major locus was mapped on chromosome 1 at 2.1 cM from RM576. These studies have led to the development of marker-assisted selection (MAS) for selecting putative restorer lines, new approaches to alloplasmic line breeding, and the transfer of Rf genes into adapted cultivars through a backcrossing program in an active hybrid rice breeding program.  相似文献   

6.
The cytoplasmic male sterility (CMS) system msm1 in barley is known to be thermosensitive, sometimes resulting in spontaneous fertility restoration in the absence of the corresponding restorer gene Rfm1. Here, we investigated genotypic differences concerning temperature sensitivity and the plant developmental stage at which elevated temperature induces spontaneous fertility restoration in three CMS mother lines. While one line stayed completely male sterile, a significantly higher fertility was observed in two lines after treatment from growth stage DC 41 until maturation. Microscopic analysis revealed that sterile anthers contained neither intact pollen, nor remains of aborted pollen grains, whereas pollen was visible in anthers of potentially fertile plants. We conclude that the barley CMS system affects anther and pollen development prior to meiosis. Elevated temperature during heading and flowering can lead to a spontaneous fertility restoration by reactivating pollen growth. Nevertheless, genotypic variation exists enabling the selection for stable CMS mother lines and the development of F1 hybrids with high hybridity. As spontaneous fertility restoration due to environmental effects is difficult to phenotype, further investigations will focus on the development of molecular markers for marker‐assisted selection.  相似文献   

7.
Development of cytoplasmic-genic male sterility in safflower   总被引:1,自引:0,他引:1  
K. Anhani 《Plant Breeding》2005,124(3):310-312
An interspecific cross was made between Carthamaus oxyacantha and the cultivated species C. tinctorius to develop a cytoplasmic‐genic male sterility (CMS) system in safflower. C. oxyacantha was the donor of sterile cytoplasm. The 3: 1 segregation pattern observed in BC1F2 suggested single gene control with dominance of male‐fertility over male‐sterility. The information obtained from crossing male sterile X male fertile plants in BC1F3 and BC1F4 generations showed statistically significant single gene (1: 1) segregation for male sterility vs. male fertility. The results demonstrated that C. tinctorius possesses a nuclear fertility restorer gene and that a single dominant allele restored fertility (Rf) in progeny carrying CMS cytoplasm of C. oxyacantha. Male sterility occurred with the homozygous recessive condition (rfrf) in a sterile C. oxyacantha cytoplasm background and not in the normal cytoplasm of C. tinctorius. The genetic background of different restorer lines of C. tinctorius having normal cytoplasm did not effect fertility restoration. The absence of male sterile plants in C. tinctorius populations ruled out the possibility of genetic male sterility. Normal meiosis in F1 and BC1F2 ruled out a cytogenetic basis for the occurrence of male sterility.  相似文献   

8.
Gene flow from acetolactate synthase‐resistant (HR) Brassica juncea oilseed canola to related weed, Sinapis arvensis (density 1 plant/m2) was assessed in a 100 m2 field plot of HR B. juncea. Two HR F1 hybrids (H1 and H2) were detected among 109 951 seedlings screened with imazethapyr (hybridization frequency – 1.8 × 10?5). Hybridity was confirmed using flow cytometry, B. juncea‐specific amplified fragment length polymorphisms (AFLPs) markers, genomic in situ hybridization (GISH) and PCR‐based detection of B. juncea's HR gene. H1 and H2 had 2n = 27 and 2n = 45 chromosomes, corresponding 3x (SrAB) and 5x (SrAABB) genomic structures and reduced male fertility, 3.2 and 16.6% pollen viability, respectively. H1 was self‐incompatible, whereas H2 set seed when selfed (B. juncea trait). Selfed F2, F3 and F4 plants showed HR trait persistence and vigorous growth and high (80–100%) pollen fertility in 22% and 39% of the F2 and F3 plants, respectively. No progeny were obtained from F1, F2 or F3 hybrids × S. arvensis backcrosses, suggesting the likelihood of introgression of traits is low to negligible.  相似文献   

9.
The three short duration cytoplasmic genetic male sterility (CGMS) hybrids developed using A2 (Cajanus scarabeoides) cytoplasm-based male sterile lines (CORG 990047A, CORG 990052A and CORG 7A) and the restorer inbred AK 261322 and their segregating populations (F2 and BC1F1) were subjected to the study of inheritance of fertility restoration in pigeonpea. The fertility restoration was studied based on three different criteria, namely, anther colour, pollen grain fertility and pollen grain morphology and staining. The F2 and BC1F1 populations of the three crosses, namely, CORG 990047A × AK 261322, CORG 990052A × AK 261322 and CORG 7A × AK 261322, segregated in the ratio of 3:1 and 1:1, for anther colour (yellow:pale yellow), pollen grain fertility (fertile:sterile) and for pollen grain morphology and staining. The above study confirmed that the trait fertility restoration was controlled by single dominant gene. This finding can be utilized for the identification of potential restorers, which can be further used in the development of CGMS-based hybrids in pigeonpea.  相似文献   

10.
In order to introduce the Tomato Spotted Wilt Virus (TSWV) resistance from Nicotiana alata into Nicotiana tabacum, a cytoplasmic male sterility (CMS) line of N. tabacum (N. tabacum L. cv. (gla.) S ‘K326’), was successfully crossed with N. alata. Despite a high DNA content variability, F1 hybrids could be classified in two subgroups, a major one encompassing fertile hybrids morphologically similar to their tobacco maternal parent but TSWV sensitive, and a minor one displaying sterile hybrids showing an intermediate phenotype and TSWV resistant. In order to elucidate the unexpected fertility recovery of the fertile F1 plants, some N. alata fertility restoration ppr genes were cloned and were shown to be differentially expressed between parental lineages as well as between both F1 subgroups, suggesting that N. alata contains fertility restoring allele able to overcome the CMS of N. tabacum.  相似文献   

11.
12.
T. J. Zhao  J. Y. Gai 《Euphytica》2006,152(3):387-396
Most of the cytoplasmic-nuclear male-sterile (CMS) lines of soybean were developed only from a limited cytoplasm sources and performed not as good as required in hybrid seed production, therefore, to explore new male-sterile cytoplasm sources should be one of the effective ways to improve the pollination and hybridization for a better pod-set in utilization of heterosis of soybeans. In the present study, total 80 crosses between 70 cultivated and annual wild soybean accessions and three maintainers (N2899, N21249, and N23998) of NJCMS1A were made for detecting potential new sources with male-sterile cytoplasm. The results showed that in addition to the crosses with N8855.1 (the cytoplasm donor parent of NJCMS1A) and its derived line NG99-893 as cytoplasm parent, there appeared three crosses, including N21566 × N21249 and N23168 × N21249, with male-sterile plants in their progenies. According to the male fertility performance of backcrosses and reciprocal crosses with the tester N21249, the landrace N21566 and annual wild soybean accession N23168 were further confirmed to have male-sterile cytoplasm. Accordingly, it was understood that the source with male-sterile cytoplasm in soybean gene pool might be not occasional. The results also showed that the genetic system of male sterility of the newly found cytoplasm source N21566 was different from the old cytoplasm source N8855.1, while N23168 was to be further studied. Based on the above results, the derived male-sterile plants from [(N21566 × N21249) F1 × N21249] BC1F1 were back-crossed with the recurrent parent N21249 for five successive times, and a new CMS line and its maintainer line, designated as NJCMS3A and NJCMS3B, respectively, were obtained. NJCMS3A had normal female fertility and stable male sterility. Its microspore abortion was mainly at middle uninucleate stage, earlier than that of NJCMS1A and NJCMS2A. The male fertility of F1s between NJCMS3A and 20 pollen parents showed that 7 accessions could restore its male fertility and other 13 could maintain its male sterility. The male sterility of NJCMS3A and its restoration were controlled by one pair of gametophyte male-sterile gene according to male fertility segregation of crosses between NJCMS3A and three restorers. The nuclear gene(s) of male sterility in NJCMS3A appeared different from the previously reported CMS lines, NJCMS1A and NJCMS2A. The development of NJCMS3A demonstrated the feasibility to discover new CMS system through choosing maintainers with suitable nuclear background.  相似文献   

13.
Cytoplasmic and cytogenetic relationships among tetraploid Triticum species   总被引:1,自引:0,他引:1  
S. S. Maan 《Euphytica》1973,22(2):287-300
Summary The F1 hybrids from crosses of 59 accessions of wild and cultivated Triticum types including amphidiploids T. boeoticum-Ae. squarrosa, T. timopheevi-Ae. squarrosa, T. timopheevi-T. monococcum, T. boeoticum (4n), T. macha, and T. Zhukovskyi with T. durum Sel. 56-1 and/or T. aestivum were examined for male sterility and chromosome pairing at metaphase I of meiosis in pollen mother cells. Those hybrids which produced male-sterile F1's were recurrently backrossed with pollen from T. durum or T. aestivum to study segregation for male sterility and/or to confirm cytoplasmic male sterility.All T. timopheevi and T. araraticum accessions and several T. dicoccoides types, including T. dicoccoides var. nudiglumis from the Turkey-Iran-Iraq area, had male sterility inducing cytoplasm. The chromosome pairing in the F1 hybrids indicated that all tetraploid Triticum accessions with male sterility inducing cytoplasm had genome AAGG. T. dicoccoides Körn types from the Turkey-Iran-Iraq area had genomes AABB and did not have male sterility inducing cytoplasm. Therefore, T. dicoccoides Körn and the T. timopheevi complex differ from each other cytoplasmically and cytogenetically and occur sympatrically in the Turkey-Iran-Iraq area.Possibly, the cytoplasm of the emmers was not derived from the putative diploid progenitors, T. boeoticum, Ae. speltoides, or Ae. bicornis as indicated by their nucleo-cytoplasmic and cytogenetic relationships with the tetraploid Triticum species. The cytoplasmic differences among Ae. speltoides, T. araraticum and T. timopheevi are of a relatively smaller magnitude than the cytoplasmic differences among T. timopheevi, T. boeoticum, and the emmers. A complete analysis of nucleo-cytoplasmic relationships among Triticum and Aegilops species may indicate the cytoplasmic donor(s) to the two tetraploid Triticum species complexes.Authorized for publication 19 July, 1972 as Paper No 397 in the Journal Series of the North Dakota Agricultural Experiment Stations.  相似文献   

14.
Cytoplasmic male sterility (CMS), a maternally transmitted failure in pollen formation, is an effective pollination control system in hybrid rapeseed (Brassica napus) breeding. However, CMS is not widely used in the related oilseed species Brassica rapa. In the past years, several male sterile plants have been isolated from the B. rapa landrace ‘0A193’, collected in Shaanxi, China, in 2011. It is noteworthy that the fertility expression of 0A193‐CMS was affected by temperature. In contrast to pol CMS, fertility tests with 18 B. rapa and 9 B. napus accessions suggest that a different system of maintaining and restoring is responsible for the observed phenotype. Further on, genetic investigation evidenced that fertility of 0A193‐CMS is controlled by both cytoplasmic and one pair of nuclear recessive genes. Interestingly, plants of the 0A193‐CMS type possess a highly specific fragment of the mitochondrial gene orf222, a crucial regulator of male sterility in nap CMS. Our study broadens the CMS resources in B. rapa and provides a highly applicable alternative to pol CMS and ogu CMS for hybrid breeding production.  相似文献   

15.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) cv. Saturn into the cytoplasm of H. petiolaris (2n=34) by successive backcrossing, resulted in progenies with indehiscent anthers containing white, rather than normal yellow, pollen. Further backcrossing by cv. Saturn failed to restore pollen shed, suggesting that the male sterility was cytoplasmic. In vivo germination tests of pollen from 23 such plants from eight BC5 lines, indicated complete pollen sterility for 14 plants, but normal seed set, suggesting that female fertility was not affected. Meiosis in all plants examined was normal.Crosses between seven sources of pollen-fertility restorer, one collection of wild H. annuus, and an existing source of cytoplasmic male sterility, resulted in a high frequency of plants with normal pollen shed in all F1 progenies. However, no normal pollen shed was evident in F1 progenies for similar crosses between BC5 male-steriles and three of the seven restorer sources, nor for the single wild H. annuus evaluated. The foregoing suggests that the backcross substitution lines are a new source of cytoplasmic male sterility. The inheritance of restoration of pollen shed was complex and not fully elucidated. Some data suggested that two independent, complementary, dominant genes were required, but others indicated two to three independent, dominant genes.  相似文献   

16.
Summary Ten cytoplasmic male sterile (CMS) sunflower (Helianthus annuus L.) lines were crossed with nine maintainer or male fertility restorer lines in a diallel crossing scheme. Based on fertility restoration of the F1 generation, CMS lines were divided into four groups. At least two new sources of CMS, CMS PET2 and CMS GIG1, were found to be potentially useful for commercial production of hybrids. Environment had an influence on fertility restoration of one CMS line, CMS MAX1. Effective restoration of male fertility for CMS RIG1, CMS ANN2, and CMS ANN3 was not found.  相似文献   

17.
A new cytoplasmic male-sterility system was developed in an oilseed Brassica, viz. B. juncea var. ‘Pusa Bold’ with the cytoplasmic background of a wild species, Diplotaxis siifolia, obtained through wide hybridization. The synthetic alloploid (D. siifolia×B. juncea: 2n = 56, D3D3AABB) was repeatedly backcrossed to B. juncea to achieve cytoplasmic substitution. The CMS plants resembled the cultivar in growth and morphology. The flowers had narrow sepals and petals and short, shrivelled anthers which failed to dehisce. The meiotic process appeared to be normal. The microspores degenerated at an early stage after tetrad formation. Female fertility in the CMS plants was as good as in the cultivar. Female transmission of sterility confirmed it to be cytoplasmically encoded.  相似文献   

18.
The orf138 gene, which is specific to Ogura male-sterile cytoplasm, was analysed in mitochondrial DNA (mtDNA) of the wild radish, Raphanus raphanistrum, by polymerase chain reaction (PCR), Southern hybridization and sequencing. The effect of R. raphanistrum cytoplasm on the expression of male sterility was also examined in progeny with R. sativus. A PCR-aided assay and Southern hybridization revealed that three out of six strains analysed included plants with orf138. The sequence of wild type orf138 was same as that of Ogura, except for one or two nucleotide substitutions. Southern hybridization showed a novel mtDNA configuration in R. raphanistrum, in addition to the normal and Ogura types identical to those in R. sativus. Among interspecific hybrids, all the F1 had normal pollen fertility. In the F2 progeny between female wild plants having orf138 and the maintainer of Ogura male sterility, male-sterile plants were segregated, fitting the ratio of 3 fertile: 1 sterile plant. R. raphanistrum has cytoplasm that induces male sterility in radishes, and contains a dominant fertility restorer gene.  相似文献   

19.
Search for male sterility-inducing cytoplasm in wild species of the genus Oryza was attempted with a view to diversify the base of the cytoplasmic genetic male sterility system currently used in the development of commercial rice hybrids. A total of 132 interspecific crosses were made involving accessions of four wild and two cultivated species, all belonging to the A genome. Wild accessions possessing sterility-inducing cytoplasms were identified following reciprocal and sterile F2 backcross methods. Sterile segregants were pursued through substitution backcrosses to develop cytoplasmic male-sterile (CMS) lines. CMS lines were developed with the cytoplasm of either O. rufipogon (VNI) or O. nivara (DRW 21018, DRW 21001, DRW 21039, DRW 21030 and RPW 21111). Based on shape, staining, and abortive pattern of pollen and also on type of interaction with a set of restorers and maintainers for known cytoplasmic male steriles of WA source (V 20A), the newly-developed CMS lines were grouped into four classes. Of these, RPMS 1 and RPMS 2 showed gametophytic male sterility with a restorer reaction different from WA cytoplasmic male-sterile stocks.  相似文献   

20.
Reproductive fertility traits were studied in the reciprocal hybrids of the eggplant(Solanum melongena L.) and S. aethiopicum L. Gilo Group, and in synthetic amphidiploids to discover whether fertility in these reciprocal hybrids was restored by chromosome doubling. Isozyme and RAPD analyses confirmed hybridity of the hybrids and amphidiploids. Analyses of chloroplast and mitochondrial DNAs confirmed that the cytoplasm of each of the hybrids and amphidiploids was from the maternal parent. Pollen sterility of S. melongena × S. aethiopicum Gilo Group [F1 (Mel × Aet)] was restored by chromosome doubling, while the reciprocal hybrid S. aethiopicum Gilo Group ×S. melongena [F1 (Aet × Mel)]and its amphidiploid did not produce any pollen grains; their microspores degenerated without being released from tetrads. Hence the cytoplasm of S. aethiopicum Gilo Group seems to beresponsible for their pollen-non-formation type sterility of the hybrid. Both the F1 hybrids did not set any fruits by either selfing or backcrossing, while their amphidiploids set fruits after pollinating with pollen from the amphidiploid of F1 (Mel × Aet). Seeds obtained from both the amphidiploids germinated normally. Chromosome doubling has been effective in restoring fertility of the hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号